시장보고서
상품코드
1832425

농업용 접종제 시장 : 유형, 작물, 제제, 최종 용도, 적용 방법, 판매채널별 - 세계 예측(2025-2032년)

Agricultural Inoculant Market by Type, Crop, Formulation, End Use, Application Method, Sales Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

농업용 접종제 시장은 2032년까지 연평균 복합 성장률(CAGR) 7.61%로 123억 8,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 68억 8,000만 달러
추정 연도 : 2025년 74억 2,000만 달러
예측 연도 : 2032년 123억 8,000만 달러
CAGR(%) 7.61%

지속 가능한 작물 관리의 핵심 요소이자 현대 농업 시스템 전반의 농학적 성과를 촉진하는 요소인 농업용 접종제의 전략적 프레임워크

농업용 접종제는 작물의 회복력을 높이고, 영양 효율을 개선하며, 합성 투입물에 대한 의존도를 줄이는 데 필수적인 도구로 점점 더 많이 인식되고 있습니다. 이 소개에서는 식물성 제제를 단순히 보완적인 투입물로서가 아니라 농학, 미생물학, 상업적 전략이 교차하는 종합적인 작물 관리 프로그램의 필수적인 요소로 간주하고 있습니다. 이 기술을 현재의 환경과 경영상의 압박 속에서 이 기술을 배치함으로써 종묘회사에서 투입물 판매업체에 이르기까지 이해관계자들이 생물학 기반 솔루션을 중심으로 포트폴리오를 재구성하고 있는 이유를 알 수 있습니다.

지난 10년간 균주 개발, 제형 과학 및 적용 시스템의 발전으로 접종제는 실험적인 첨가제 제품에서 농학적 성과에 기여하는 것으로 확인된 제품으로 변모했습니다. 이러한 기술적 개선은 규제 당국의 기대치 변화와 측정 가능한 농업적 이점과 작업 적합성을 추구하는 생산자들의 보다 정교한 구매 행동과 함께 이루어지고 있습니다. 결과적으로, 이 소개는 업계 진출기업에게 과학적 기회와 상업적 확장성을 동시에 충족시키는 것이 필수적이라는 점을 강조하며, 시장 역학, 세분화, 지역 패턴, 전략적 대응에 대한 후속 분석의 토대를 마련합니다.

미생물 과학의 발전, 규제 상황의 명확화, 상업적 채널의 진화가 어떻게 수렴하고 접종제 전망에서 제품 개발 및 채택을 재정의하는가?

농업용 접종제 정세는 기술적, 규제적, 상업적 힘의 수렴으로 변모하고 있습니다. 균주 선택과 미생물 컨소시엄 설계에 있어 생명공학의 발전은 식균제의 기능적 범위를 확장하고, 배합자가 더 높은 특이성으로 스트레스 완화, 영양 동원, 질병 억제를 목표로 삼을 수 있게 해줍니다. 동시에 저장성, 취급성, 종자 처리 및 농약과의 호환성을 향상시키기 위한 제제 과학도 발전하여 주요 연작 작물 및 특수 작물로의 채택의 길이 넓어지고 있습니다.

규제의 진화 또한 시장 진입과 제품 차별화의 계산법을 바꾸고 있습니다. 일부 관할권에서는 미생물 제제의 정의와 기대되는 데이터가 명확해지고 있으며, 기업들은 표준화된 유효성 시험과 안전성 자료에 대한 투자를 장려하고 있습니다. 디지털 판매 플랫폼과 정밀 농업 서비스를 통해 타겟팅된 배포와 성능 추적이 가능하며, 그 결과 반복적인 제품 개선에 반영됩니다. 그 결과, 비즈니스 모델은 일회성 부품 판매에서 접종제를 자문, 분석, 작물 관리 지원과 연계한 번들 서비스 제공으로 전환되고 있습니다.

마지막으로, 구매자의 기대가 성숙해지고 있습니다. 생산자들은 재현 가능한 결과, 조작의 용이성, 비용 효율성을 점점 더 많이 요구하고 있습니다. 따라서 실제 조건에서의 시험 검증과 기존 농장 관행과의 적합성이 더욱 중요하게 여겨지고 있습니다. 이러한 변화를 종합하면, 확실한 과학과 확장 가능한 공급망, 명확한 가치 제안을 결합할 수 있는 기업에게는 기회가 주어지는 반면, 현장에서의 입증 없이 초기 단계의 참신함에만 의존하는 기업에게는 어려움이 가중될 것입니다.

2025년까지 관세 조정별, 접종약 가치사슬 전반의 조달, 생산 현지화, 재고 전략, 시장 진입 경로의 선택이 어떻게 변화했는지 평가합니다.

2025년까지 시행되거나 조정된 관세 조치는 농업용 접종약의 가치사슬에 누적 영향을 미쳐 원자재 이동, 제조 경제, 무역 흐름에 영향을 미치고 있습니다. 특수 캐리어, 발효 투입물, 포장 부품을 국제적으로 조달하는 기업에게 관세 인상은 육지 투입 비용을 상승시켜 조달 전략의 재검토를 촉구하고 있습니다. 이에 대응하기 위해 일부 제조업체는 공급업체 다변화를 추구하고, 가능한 한 관세가 면제되는 원산지로부터의 조달을 우선시하거나, 변동하는 무역 관세의 영향을 줄이기 위해 특정 제조 공정의 현지화를 가속화하고 있습니다.

무역 마찰은 또한 완성된 접종제 제품 및 성분 수출업체의 수출 경쟁력도 변화시키고 있습니다. 관세로 인해 주요 수입 시장으로의 완제품 운송 비용이 상승하는 경우, 수출업체들은 지역적 충전 및 마무리 사업 설립, 현지 생산 라이선스 또는 국내 재포장을 포함한 유통 파트너십 구축과 같은 대안적 접근 방식을 모색해 왔습니다. 이러한 적응형 전략은 시장 접근성을 유지하는 동시에 현지 상황에 맞는 공급 비용과 규제 준수를 관리하는 것을 목표로 합니다.

또한, 물류 및 재고 관리에도 간접적인 영향을 미치고 있습니다. 관세 변화를 예상하고 일부 기업은 관세 변화를 헤지하기 위해 완충 재고를 늘리거나 출하 시기를 조정하는 등 재고 순서를 변경했습니다. 이러한 조치는 단기적으로 공급의 연속성을 보호할 수 있는 반면, 운전 자금이 필요하고 생물학적으로 민감한 제품의 품질 관리에 복잡성을 가져옵니다. 중요한 것은 관세가 연구개발의 우선순위를 정하는 데에도 영향을 미치고 있다는 점입니다. 기업들은 국경을 넘나드는 취급을 줄이고, 현지 모듈 생산을 가능하게 하는 제품 형태와 적용 방법에 중점을 두고 있습니다. 예를 들어, 현지 혼합 시스템에 적합한 액체 접종제, 보존기간을 연장한 안정화 과립제 등이 있습니다.

시나리오 분석, 유연한 조달, 적응형 채널 전략 등을 통해 관세 리스크를 상업 계획에 반영하는 기업은 무역 불확실성이 지속되는 가운데 사업을 유지하고 시장 모멘텀을 유지하는 데 더 유리한 위치에 있습니다.

생물학적 유형, 대상 작물, 제형, 최종 사용 시스템, 적용 방법, 판매 채널을 전략적 우선순위에 연계하는 다차원적 세분화 프레임워크

세심한 세분화 프레임워크를 통해 제품 개발, 상업적 초점 및 배포 물류에 대한 명확한 경로가 명확해집니다. 유형에 따라, 시장은 아조스피리람, 아조토박터, 프랑키아, 균근균, 근권균, 트리코데르마에 걸쳐 조사됩니다. 균근균은 외균근균과 내균근균에 걸쳐 조사했습니다. 이 분류학은 생물학적 기능과 공생 메커니즘이 제품 개발자가 해결해야 할 농학적 적합성, 규제 접근법 및 제형화 과제를 어떻게 결정하는지 강조합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 농업용 접종제 시장 : 유형별

  • Azospirillum
  • Azotobacter
  • Frankia
  • Mycorrhizae
    • Ectomycorrhizae
    • Endomycorrhizae
  • Rhizobium
  • Trichoderma

제9장 농업용 접종제 시장 : 작물별

  • 곡물
  • 과일 및 채소
  • 콩류 및 지방종자
  • 잔디 및 관상식물

제10장 농업용 접종제 시장 : 제제별

  • 과립
  • 액체
  • 분말

제11장 농업용 접종제 시장 : 최종 용도별

  • 기존 농업
  • 유기 농업

제12장 농업용 접종제 시장 : 적용 방법별

  • 엽면 살포
  • 종자 처리
  • 토양 처리

제13장 농업용 접종제 시장 : 판매채널별

  • 직접
  • 도매업체
  • 온라인

제14장 농업용 접종제 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 농업용 접종제 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 농업용 접종제 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Novozymes A/S
    • BASF SE
    • Bayer AG
    • Chr. Hansen Holding A/S
    • Evonik Industries AG
    • Lesaffre S.A.
    • Koppert Biological Systems B.V.
    • Lallemand Inc.
    • Rizobacter Argentina S.A.
    • Symborg S.L.
LSH 25.10.28

The Agricultural Inoculant Market is projected to grow by USD 12.38 billion at a CAGR of 7.61% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 6.88 billion
Estimated Year [2025] USD 7.42 billion
Forecast Year [2032] USD 12.38 billion
CAGR (%) 7.61%

A strategic framing of agricultural inoculants as core elements of sustainable crop management and drivers of agronomic performance across modern farming systems

Agricultural inoculants are increasingly recognized as essential tools for enhancing crop resilience, improving nutrient efficiency, and reducing reliance on synthetic inputs. This introduction positions inoculants not simply as complementary inputs, but as integral elements of integrated crop management programs that intersect agronomy, microbiology, and commercial strategy. By framing the technology within current environmental and operational pressures, the narrative establishes why stakeholders from seed companies to input distributors are refocusing portfolios around biologically based solutions.

Over the past decade, advances in strain development, formulation science, and application systems have shifted inoculants from experimental additive products to validated contributors to agronomic outcomes. These technical improvements have been accompanied by evolving regulatory expectations and more sophisticated buyer behavior among growers who now seek measurable agronomic benefits and operational compatibility. Consequently, this introduction underscores the imperative for industry participants to reconcile scientific opportunity with commercial scalability, setting the stage for subsequent analysis on market dynamics, segmentation, regional patterns, and strategic responses.

How advances in microbial science, regulatory clarity, and evolving commercial channels are converging to redefine product development and adoption in the inoculant landscape

The landscape for agricultural inoculants is undergoing transformative shifts driven by converging technological, regulatory, and commercial forces. Biotechnological advances in strain selection and microbial consortia design are expanding the functional envelope of inoculants, allowing formulators to target stress mitigation, nutrient mobilization, and disease suppression with higher specificity. Concurrently, formulation science has progressed to improve shelf life, handling, and compatibility with seed treatments and agrochemicals, which broadens adoption pathways for mainstream row-crop and specialty crop operations.

Regulatory evolution is also changing the calculus for market entry and product differentiation. Authorities in several jurisdictions are clarifying definitions and data expectations for microbial products, prompting companies to invest in standardized efficacy studies and safety dossiers. At the same time, commercial channels are adapting: digital sales platforms and precision agriculture services are enabling targeted deployment and performance tracking, which in turn informs iterative product improvement. As a result, business models are shifting from one-time component sales toward bundled service offerings that link inoculants with advisory, analytics, and crop management support.

Finally, buyer expectations are maturing. Growers increasingly demand reproducible outcomes, operational ease, and cost-effectiveness. This has led to stronger emphasis on trial validation under real-world conditions and on compatibility with established farm practices. Taken together, these shifts create opportunities for companies that can combine robust science with scalable supply chains and clear value propositions, while also raising the bar for those that rely solely on early-stage novelty without demonstrable field performance.

Assessing how tariff adjustments through 2025 have reshaped sourcing, production localization, inventory strategies, and route-to-market options across the inoculant value chain

Tariff measures implemented or adjusted through 2025 have had a cumulative influence on the agricultural inoculant value chain, affecting raw material movement, manufacturing economics, and trade flows. For companies that source specialty carriers, fermentation inputs, or packaging components internationally, increased duties have elevated landed input costs and encouraged reassessment of procurement strategies. In response, some manufacturers have pursued supplier diversification, preferred sourcing from duty-exempt origins where possible, or accelerated localization of certain manufacturing steps to mitigate exposure to variable trade tariffs.

Trade friction has also reshaped export competitiveness for exporters of finished inoculant products and ingredients. Where tariffs raise the cost of shipping finished goods into key import markets, exporters have explored alternative approaches such as establishing regional fill-and-finish operations, licensing local production, or forging distribution partnerships that incorporate in-country repackaging. These adaptive strategies aim to preserve market access while managing cost-to-serve and regulatory compliance in local contexts.

Moreover, indirect impacts have emerged across logistics and inventory management. Anticipation of tariff changes prompted some firms to alter inventory cadence, increasing buffer stocks or timing shipments to hedge against duty shifts. While these measures can protect short-term supply continuity, they add working capital requirements and create complexity in quality control for biologically sensitive products. Importantly, tariffs have also influenced R&D prioritization: companies have weighted product formats and application methods that reduce cross-border handling or enable modular local manufacturing, such as liquid inoculants compatible with local mixing systems or stabilized granules with extended shelf life.

Policy responses and market reactions continue to evolve, and companies that integrate tariff risk into commercial planning-through scenario analysis, flexible sourcing, and adaptive channel strategies-are in a stronger position to sustain operations and preserve market momentum despite ongoing trade uncertainties.

A multi-dimensional segmentation framework linking biological types, crop targets, formulation formats, end-use systems, application methods, and sales channels to strategic priorities

A careful segmentation framework reveals distinct pathways for product development, commercial focus, and deployment logistics. Based on Type, market is studied across Azospirillum, Azotobacter, Frankia, Mycorrhizae, Rhizobium, and Trichoderma. The Mycorrhizae is further studied across Ectomycorrhizae and Endomycorrhizae. This taxonomy highlights how biological function and symbiotic mechanisms determine agronomic fit, regulatory approaches, and formulation challenges that product developers must address.

Based on Crop, market is studied across Cereals And Grains, Fruits And Vegetables, Pulses And Oilseeds, and Turf And Ornamentals. Differentiation by crop illustrates how adoption drivers diverge between high-acreage row crops that prioritize ease of application and low-margin economics, and high-value specialty crops that require tailored strain-performance and field support. Based on Formulation, market is studied across Granules, Liquid, and Powder. Formulation choices shape logistics, shelf life, and compatibility with existing farm equipment, influencing which distribution channels and end users will favor particular products.

Based on End Use, market is studied across Conventional Farming and Organic Farming. This contrast reflects distinct certification landscapes, label claims, and grower expectations. Based on Application Method, market is studied across Foliar Spray, Seed Treatment, and Soil Treatment. Application modality affects product development priorities, regulatory registration routes, and on-farm integration pathways. Based on Sales Channel, market is studied across Direct, Distributor, and Online. Channel segmentation underscores the growing role of digital commerce and distributor-led advisory services in translating product science into farmer-level adoption.

Taken together, these segmentation layers create a matrix of strategic imperatives: formulation must be engineered to match application methods, crop targets dictate strain selection and claims, and channel strategy must align with the operational realities of the end user. Companies that map their product roadmaps against these interlocking dimensions can more precisely allocate R&D, design effective pilot programs, and develop go-to-market strategies that resonate with distinct customer cohorts.

How diverse regional regulatory frameworks, distribution networks, and cropping systems across the Americas, Europe Middle East & Africa, and Asia-Pacific determine adoption pathways and competitive models

Regional dynamics shape the pathway to adoption and the competitive contours for inoculant providers across three primary geographic clusters: Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, the scale of commercial agriculture and established seed-treatment infrastructure creates opportunities for wide-area deployment, but also requires clear evidence of operational compatibility and cost-effectiveness. Meanwhile, regulatory regimes and public-private initiatives supporting sustainable intensification can accelerate adoption where incentives align with reduced input intensity.

In Europe, Middle East & Africa, regulatory rigor and public concern around environmental outcomes have fostered a policy environment that often favors biological alternatives, though market access can be fragmented by diverse national frameworks and certification requirements. In parts of this cluster, smallholder and fragmented farming systems present both a challenge and an opportunity: products designed for modular, low-capital application systems can achieve meaningful impact if distribution and extension networks are well structured.

Asia-Pacific presents a heterogeneous landscape where intensive cropping systems coexist with smallholder contexts and rapidly modernizing supply chains. High-value horticulture and rice production zones are focal points for targeted inoculant solutions, while growing interest in sustainable intensification fuels trials and pilot programs. Across all regions, local manufacturing, tailored registration strategies, and partnerships with extension networks or input distributors remain critical success factors. Ultimately, region-specific regulatory clarity, logistical capability, and agronomic needs determine the pace and profile of inoculant adoption.

Competitive differentiation arises from combining proprietary microbial science, resilient formulation platforms, and channel partnerships that scale agronomic validation and farmer adoption

Leading companies in the inoculant space are differentiating through integrated approaches that combine strain innovation, formulation expertise, and commercial alignment with grower workflows. Some firms emphasize deep microbiological pipelines to develop proprietary strains and consortia, while others concentrate on formulation technologies that improve stability, ease-of-use, and compatibility with existing agronomic inputs. Partnerships between biotech developers and legacy agricultural suppliers are increasingly common, as each party brings complementary strengths in science, scaling, and channel reach.

Across the competitive landscape, success correlates with demonstrated field replication, robust regulatory strategies, and efficient manufacturing capable of preserving biological integrity at scale. Strategic alliances with seed companies, distributors, and agronomic advisory networks help firms accelerate field validation and increase farmer-level confidence. Private-public collaborations and participation in demonstration networks also remain influential, offering pathways to validation under diverse agroecological conditions.

At the commercial level, companies that invest in customer education, performance analytics, and integrated service models-linking product application with advisory and data feedback loops-tend to capture stronger engagement from progressive growers. Conversely, players that rely solely on conventional sales channels without supporting agronomic evidence or field service risk slower adoption. The competitive picture is therefore one where technological capability must be matched by operational excellence and market-facing services to convert scientific promise into sustained commercial traction.

Actionable priorities for product, manufacturing, and commercial strategies that translate inoculant science into scalable, on-farm adoption and resilient supply models

Industry leaders should pursue a set of actionable priorities to convert scientific opportunity into commercially viable solutions. First, align R&D investment with pragmatic deployment constraints by prioritizing strains and formulations that demonstrate reproducible performance under real-world agronomic conditions and integrate seamlessly with seed-treatment and spray programs. Second, develop flexible manufacturing and packaging strategies that mitigate trade and logistics risk, including regional fill-and-finish capabilities and carrier systems designed for longer shelf life and thermal variability.

Third, embed field-level evidence generation into commercial rollouts through structured multi-site trials, extension partnerships, and digital monitoring to produce the rigorous data that growers and regulators expect. Fourth, design channel strategies that reflect end-user behavior: for broad-acre crops, focus on distributor and seed company collaborations, while for specialty and high-value crops, provide direct advisory services and targeted digital outreach. Fifth, incorporate tariff and trade scenario planning into procurement and market-entry decisions so that sourcing, pricing, and inventory approaches remain resilient to policy shifts.

Finally, invest in farmer education and performance transparency by offering clear usage protocols, success criteria, and mechanisms for capturing on-farm outcomes. These steps will reduce adoption barriers, build trust in biological solutions, and enable companies to scale both technically and commercially in a cost-effective manner.

A mixed-methods research approach combining stakeholder interviews, field validation, regulatory analysis, and literature synthesis to ensure practical and evidence-based insights

The research underpinning this analysis combined qualitative and quantitative methods to produce a balanced, evidence-driven perspective. Primary research included structured interviews with R&D leaders, commercial executives, distributors, and agronomists to capture operational realities, product innovation trajectories, and channel dynamics. Field-level practitioners and extension specialists were engaged to validate product performance narratives and to assess adoption constraints across different cropping systems.

Secondary research drew on regulatory filings, scientific literature, patent databases, and publicly available trade data to map technological developments, intellectual property trends, and cross-border movement of inputs and finished goods. Where available, peer-reviewed studies and standardized agronomic trials were synthesized to ground claims about strain functionality and application efficacy. Data triangulation and cross-validation methods were applied to reconcile divergent sources and to surface robust insights.

Throughout the methodology, attention was given to transparency and reproducibility: assumptions were documented, interview protocols were standardized, and source provenance was retained to support deeper follow-up. This mixed-methods approach ensures the analysis reflects both laboratory-level innovation and practical commercial considerations, providing a reliable foundation for strategic action.

Concluding synthesis emphasizing the dual imperative of scientific innovation and operational execution to achieve scalable and resilient inoculant adoption

Inoculants are positioned at the intersection of science and systems, offering tangible pathways to more resilient and sustainable cropping while presenting distinct commercialization challenges. Technological advances have expanded the capabilities of microbial solutions, yet adoption will be dictated by practical factors: compatibility with farm operations, clear evidence of repeatable outcomes, and resilient supply chains that absorb trade and logistic shocks. Companies that harmonize scientific rigor with commercial pragmatism and responsive channel strategies stand to lead the next phase of industry growth.

Policymakers and industry stakeholders should recognize that scale requires more than discovery; it requires investment in formulation, manufacturing, and farmer-facing services that translate biological potential into consistent agronomic value. By focusing on integration across the value chain-linking strain science, application modalities, and distribution networks-participants can accelerate meaningful adoption while mitigating risk. The conclusion therefore emphasizes the dual imperative of innovation and operational execution as the pathway to sustained impact in the agricultural inoculant domain.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Growing adoption of microbial consortia blends for enhanced crop nutrient uptake and resilience
  • 5.2. Integration of digital farming platforms with inoculant application for precision agriculture management
  • 5.3. Development of next-generation carrier formulations to improve inoculant shelf life and field performance
  • 5.4. Rising demand for biofertilizers in organic farming driven by regulatory restrictions on synthetic inputs
  • 5.5. Strategic partnerships between biotech companies and seed producers for co-developed inoculant seed treatments
  • 5.6. Use of artificial intelligence and machine learning to optimize strain selection and formulation efficacy

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Agricultural Inoculant Market, by Type

  • 8.1. Azospirillum
  • 8.2. Azotobacter
  • 8.3. Frankia
  • 8.4. Mycorrhizae
    • 8.4.1. Ectomycorrhizae
    • 8.4.2. Endomycorrhizae
  • 8.5. Rhizobium
  • 8.6. Trichoderma

9. Agricultural Inoculant Market, by Crop

  • 9.1. Cereals And Grains
  • 9.2. Fruits And Vegetables
  • 9.3. Pulses And Oilseeds
  • 9.4. Turf And Ornamentals

10. Agricultural Inoculant Market, by Formulation

  • 10.1. Granules
  • 10.2. Liquid
  • 10.3. Powder

11. Agricultural Inoculant Market, by End Use

  • 11.1. Conventional Farming
  • 11.2. Organic Farming

12. Agricultural Inoculant Market, by Application Method

  • 12.1. Foliar Spray
  • 12.2. Seed Treatment
  • 12.3. Soil Treatment

13. Agricultural Inoculant Market, by Sales Channel

  • 13.1. Direct
  • 13.2. Distributor
  • 13.3. Online

14. Agricultural Inoculant Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Agricultural Inoculant Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Agricultural Inoculant Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Novozymes A/S
    • 17.3.2. BASF SE
    • 17.3.3. Bayer AG
    • 17.3.4. Chr. Hansen Holding A/S
    • 17.3.5. Evonik Industries AG
    • 17.3.6. Lesaffre S.A.
    • 17.3.7. Koppert Biological Systems B.V.
    • 17.3.8. Lallemand Inc.
    • 17.3.9. Rizobacter Argentina S.A.
    • 17.3.10. Symborg S.L.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제