시장보고서
상품코드
1835195

지표투과레이더(GPR) 시장 : 유형별, 안테나 유형별, 주파수 범위별, 용도별 - 세계 예측(2025-2032년)

Ground Penetrating RADAR Market by Type, Antenna Type, Frequency Range, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 185 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

지표투과레이더(GPR) 시장은 2032년까지 CAGR 9.36%로 17억 339만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 8억 3,259만 달러
추정 연도 2025년 9억 1,072만 달러
예측 연도 2032년 17억 339만 달러
CAGR(%) 9.36%

현대식 지표투과레이더 기능, 배치 방법, 인프라 및 방어 워크플로우를 재구성하는 전략적 가치 제안의 종합적인 방향성

지표투과레이더(GPR)는 특수한 물리학적 도구에서 인프라, 공공사업, 환경 복원, 고고학, 국방 등 다목적으로 사용되는 플랫폼으로 변모하고 있습니다. 최근 안테나 설계, 신호 처리 및 데이터 시각화의 발전으로 탐지 가능한 대상의 범위가 확대되고 해상도와 조사 처리량이 향상되고 있습니다. 이러한 발전으로 토목 기술자, 유틸리티 사업자, 자산 관리자 등이 GPR 출력을 일상적인 검사 워크플로우와 디지털 트윈에 통합하는 등 기존 측량 기술자 외에도 GPR을 채택하고 있습니다.

동시에, 얕은 유틸리티 탐지를 위한 핸드헬드 유닛, 신속한 통로 평가를 위한 자동차 어레이, 접근이 어려운 현장을 위한 UAV 호환 패키징 등 도입 방법의 혁신으로 운영의 폭이 넓어지고 있습니다. 지리정보시스템 및 자산 관리 플랫폼과 GPR 데이터의 융합이 진행됨에 따라, 유지보수 계획 및 리스크 완화를 위한 실용적인 인사이트를 얻을 수 있게 되었습니다. 또한, 자동 특징 추출, 머신러닝을 통한 신호 분류 등 소프트웨어 주도의 개선으로 전문 분석가에 대한 의존도가 낮아지고 의사결정 주기가 빨라지고 있습니다.

향후 표면 부근의 해상도를 구현하는 고주파 안테나의 도입과 보다 심도 있는 이미징을 구현하는 견고한 저주파 시스템의 도입으로 사용 사례는 더욱 다양해질 것으로 예상됩니다. 이해관계자들이 자본 및 운영 비용과 상황 인식 강화를 비교 검토하는 가운데, GPR은 최신 인프라 프로그램, 환경 평가 및 보안 활동의 핵심 진단 장비가 될 준비가 되어 있습니다.

안테나 공학, 신호처리, 데이터 융합, 규제 강화가 동시에 진행되면서 지표투과레이더는 어떻게 운용 기술로 변모하고 있는가?

지표투과레이더의 정세는 기술적, 운영적, 규제적 동향의 상호 연관성에 의해 변모하고 있습니다. 안테나 엔지니어링과 전자공학의 발전으로 더 넓은 주파수 대역폭과 더 컴팩트하고 에너지 효율적인 폼팩터가 가능해져 고해상도 근지반 이미징과 더 깊은 지하 탐사를 모두 지원할 수 있게 되었습니다. 신호 처리와 머신러닝의 동시 발전으로 과거에는 수작업으로 진행되던 해석 단계가 자동화되어 처리량이 향상되고 분석가별 편차가 줄어들고 있습니다.

운영 측면에서는 GPR과 LiDAR, 자기 측정, 관성 항법을 결합한 통합 조사 시스템의 등장으로 보다 풍부한 멀티모달 데이터세트가 생성되어 대상 식별이 향상되고 오탐지가 감소하고 있습니다. 통로 검사를 위한 차량 탑재형 어레이, 접근이 어려운 지형을 위한 UAV 호환 시스템, 대상 유틸리티 탐지를 위한 핸드헬드 솔루션 등 다양한 활용이 가능해졌습니다. 이러한 전개 변화는 실시간 시각화, 클라우드 기반 협업, 자산 등록 및 토목 공사 계획 시스템에 공급할 수 있는 표준화된 출력과 같은 새로운 데이터 관리에 대한 기대와 함께 이루어지고 있습니다.

규제와 자금 조달 상황도 도입 패턴에 영향을 미치고 있습니다. 인프라의 강인성과 자산의 수명주기 관리에 대한 관심이 높아지면서 예방적 검사 기술에 예산을 투입하고, 매설된 유틸리티와 굴착을 관리하는 안전 규정으로 인해 많은 관할권에서 지하 조사에 대한 공식적인 요구사항이 생겨나고 있습니다. 이러한 추세를 종합하면, GPR은 틈새 조사 도구에서 엔지니어링, 공공사업, 국방의 의사결정 프로세스에 통합된 운영 기술로 변모하고 있습니다.

2025년 관세 정세는 지표투과레이더 제조업체와 최종사용자의 공급망 다각화, 제품 모듈화, 조달 재조정을 빠르게 촉진했습니다.

2025년 미국발 관세 및 무역 조치가 발동됨에 따라 지표투과레이더 어셈블리와 그 핵심 부품에 사용되는 시스템의 공급망에 새로운 역학이 도입되었습니다. 관세 변경으로 인해 특정 수입 하드웨어 및 서브 컴포넌트의 실효적 상륙 비용이 상승하여, 거래처 상표 제품 제조업체와 통합업체에게 즉각적인 조달 트레이드 오프가 발생했습니다. 공급망이 세계화된 제조업체들은 성능 사양을 희생하지 않고 가격 경쟁력을 유지하기 위해 조달 전략을 재검토해야 하는 상황에 직면했습니다.

그 결과, 일부 공급업체들은 공급업체 다변화를 가속화하고, 관세 면제 관할권에 있는 대체 공급업체를 인증하거나 주요 조립 공정을 리쇼어링하는 데 투자하여 리스크를 줄였습니다. 또한, 제품 로드맵을 수정하고 모듈성을 우선시하여 관세의 영향을 받는 모듈을 국내 조달 또는 관세 혜택이 있는 동급품으로 대체할 수 있도록 한 업체도 있었습니다. 이러한 적응에는 엔지니어링 검증 주기가 필요하며, 특히 특수 안테나나 맞춤형 전자 장비의 경우 구성 변경에 대한 리드 타임이 길어질 수 있습니다.

이와 함께 구매자들은 단기적인 가격 영향과 유지보수, 보증, 라이프사이클 지원을 포함한 장기적인 총비용의 균형을 고려하면서 재조정된 조달 전략에 직면하게 되었습니다. 전략적 조달 결정에서 공급업체의 탄력성, 재고 헤지, 향후 정책 변동성을 완화하기 위한 계약상 보호가 점점 더 중요해지고 있습니다. 그 누적된 효과는 공급망, 제품 제공 및 구매 행동의 균형을 단기적으로 재검토하는 것이며, 많은 조직이 투명한 공급업체 로드맵과 입증 가능한 연속성 계획을 더욱 중요하게 여기게 되었습니다.

전략적 세분화 인사이트를 통해 GPR 시스템 선택과 다양한 운영 영역에서의 용도별 깊이, 해상도, 배치의 트레이드오프를 일치시킬 수 있었습니다.

지표투과레이더 부문을 미묘하게 세분화하여 기술 선택과 적용 적합성을 명확히 합니다. 유형에 따라 시장은 2D와 3D로 조사되어 빠른 통로 평가와 복잡한 지하 구조물의 볼륨 이미징의 트레이드오프를 명확히 합니다. 안테나 유형별로 보면 공중 결합형과 지상 결합형이 있으며, 결합 효율, 조사 속도, 표면 부근의 잡음에 대한 민감도의 차이를 반영하고 있습니다. 주파수 대역별로는 고주파, 저주파, 중주파에 대해 조사하고 있으며, 각 주파수 대역은 특정 사용 사례에 대한 적합성에 직접적인 영향을 미치는 명확한 침투 깊이와 분해능의 특성을 기술하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 지표투과레이더 시장 : 유형별

  • 2D
  • 3D

제9장 지표투과레이더 시장 : 안테나 유형별

  • 에어 결합
  • 글랜드 결합

제10장 지표투과레이더 시장 : 주파수 범위별

  • 고주파
  • 저주파
  • 중주파

제11장 지표투과레이더 시장 : 용도별

  • 고고학
  • 건설
  • 환경
  • 군사
  • 석유 및 가스
  • 운송
    • 철도 검사
    • 도로 검사
  • 유틸리티 검출

제12장 지표투과레이더 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 지표투과레이더 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 지표투과레이더 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024년
  • FPNV 포지셔닝 매트릭스, 2024년
  • 경쟁 분석
    • Hexagon AB
    • SPX Technologies
    • GSSI Inc.
    • Guideline Geo
    • Chemring Group PLC
    • Japan Radio Co.,Ltd
    • Hilti
    • Screening Eagle Technologies
    • PipeHawk plc
    • Kontur
KSM 25.11.03

The Ground Penetrating RADAR Market is projected to grow by USD 1,703.39 million at a CAGR of 9.36% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 832.59 million
Estimated Year [2025] USD 910.72 million
Forecast Year [2032] USD 1,703.39 million
CAGR (%) 9.36%

A comprehensive orientation to contemporary ground penetrating radar capabilities, deployment modalities, and the strategic value proposition reshaping infrastructure and defense workflows

Ground penetrating radar (GPR) has transitioned from a specialized geophysical tool into a versatile, multidisciplinary platform used across infrastructure, utilities, environmental remediation, archaeology, and defense. Recent advances in antenna design, signal processing, and data visualization have expanded the range of detectable targets while improving resolution and survey throughput. These gains are prompting adoption beyond traditional surveyors, with civil engineers, utility operators, and asset managers integrating GPR outputs into routine inspection workflows and digital twins.

Concurrently, innovations in deployment methods-handheld units for shallow utility detection, vehicle-mounted arrays for rapid corridor assessment, and UAV-compatible packages for hard-to-reach sites-are broadening operational contexts. The increasing fusion of GPR data with geographic information systems and asset management platforms is enabling more actionable insights for maintenance planning and risk mitigation. Moreover, software-driven improvements, including automated feature extraction and machine learning-augmented signal classification, are reducing reliance on specialist analysts and accelerating decision cycles.

Looking ahead, the introduction of higher-frequency antennas for near-surface resolution, alongside robust lower-frequency systems for deeper imaging, will further diversify use cases. As stakeholders weigh capital and operational costs against enhanced situational awareness, GPR is poised to become a core diagnostic instrument within modern infrastructure programs, environmental assessments, and security operations.

How concurrent advances in antenna engineering, signal processing, data fusion, and regulatory emphasis are transforming ground penetrating radar into an operational technology

The landscape for ground penetrating radar is undergoing transformative shifts driven by interconnected technological, operational, and regulatory trends. Advances in antenna engineering and electronics are enabling wider frequency bandwidths and more compact, energy-efficient form factors that support both high-resolution near-surface imaging and deeper subsurface exploration. Parallel progress in signal processing and machine learning is automating previously manual interpretation steps, increasing throughput and reducing analyst-dependent variability.

Operationally, the rise of integrated survey systems-combining GPR with LiDAR, magnetometry, and inertial navigation-creates richer, multi-modal datasets that improve target discrimination and reduce false positives. Deployment diversity is expanding with vehicle-mounted arrays for corridor inspections, UAV-compatible systems for inaccessible terrain, and handheld solutions for targeted utility detection. These deployment shifts are accompanied by new data management expectations: real-time visualization, cloud-based collaboration, and standardized outputs that can feed asset registries and civil works planning systems.

Regulatory and funding landscapes are also influencing adoption patterns. Heightened focus on infrastructure resilience and asset lifecycle management is channeling budget toward preventive inspection technologies, while safety regulations governing buried utilities and excavation are creating formal requirements for subsurface surveys in many jurisdictions. Taken together, these trends are transforming GPR from a niche investigative tool into an operational technology embedded within engineering, utilities, and defense decision processes.

The 2025 tariff landscape prompted rapid supply chain diversification, product modularization, and procurement recalibration across ground penetrating radar manufacturers and end users

The imposition of tariffs and trade measures originating from the United States in 2025 has introduced a new set of supply chain dynamics for systems used in ground penetrating radar assemblies and their critical components. Tariff changes have increased the effective landed cost of certain imported hardware and subcomponents, creating immediate procurement tradeoffs for original equipment manufacturers and integrators. Manufacturers with globalized supply chains have had to reassess sourcing strategies to maintain price competitiveness without compromising performance specifications.

As a result, some vendors accelerated diversification of suppliers and invested in qualifying alternate vendors in tariff-exempt jurisdictions or in reshoring key assembly steps to reduce exposure. Others modified product roadmaps to prioritize modularity, enabling substitution of tariff-affected modules with domestically procured or tariff-favored equivalents. These adaptations required engineering validation cycles and sometimes led to lengthened lead times for revised configurations, particularly for specialized antennas and custom electronics.

In parallel, buyers faced recalibrated procurement strategies, balancing near-term price impacts against long-term total cost considerations, including maintenance, warranty, and lifecycle support. Strategic procurement decisions increasingly emphasized supplier resilience, inventory hedging, and contractual protections to mitigate future policy volatility. The cumulative effect was a near-term period of rebalancing across supply chains, product offerings, and purchasing behaviors, with many organizations placing greater value on transparent supplier roadmaps and demonstrable continuity plans.

Strategic segmentation insights that align GPR system selection with application-specific depth, resolution, and deployment tradeoffs across diverse operational domains

A nuanced segmentation of the ground penetrating radar domain offers clarity on technology choices and application fit. Based on Type, market is studied across 2D and 3D, which delineates the tradeoffs between rapid corridor assessments and volumetric imaging for complex subsurface structures. Based on Antenna Type, market is studied across Air Coupled and Ground Coupled, reflecting differences in coupling efficiency, survey speed, and sensitivity to near-surface clutter. Based on Frequency Range, market is studied across High Frequency, Low Frequency, and Medium Frequency, each frequency band delivering distinct penetration depth and resolution characteristics that directly influence suitability for a given use case.

Based on Application, market is studied across Archaeology, Construction, Environmental, Military, Oil & Gas, Transportation, and Utility Detection, where Transportation is further studied across Rail Inspection and Road Inspection; these application domains illuminate how performance parameters map to operational requirements. For example, archaeological surveys favor higher-frequency systems for fine detail, while environmental and oil & gas applications prioritize lower-frequency penetration for deeper profiling. In transportation, rail inspection requires systems optimized for detecting ballast and subsurface voids beneath continuously welded rails, whereas road inspection benefits from survey speed and resolution to identify delamination and voiding under pavement layers.

Integrating these segmentation lenses clarifies purchasing rationales: system selection hinges on the primary application, required survey scale, and the operator's tolerance for tradeoffs between depth and resolution. Vendors that offer configurable platforms spanning multiple segmentation axes can capture broader enterprise usage while enabling cost-effective specialization through modular options.

How regional infrastructure priorities, regulatory environments, and deployment ecosystems are shaping ground penetrating radar adoption across the Americas, EMEA, and Asia-Pacific

Regional dynamics shape both adoption trajectories and commercialization strategies for ground penetrating radar. In the Americas, investment momentum in infrastructure renewal and utility modernization is driving strong demand for instrumentation capable of rapid corridor assessment and utility detection. Public-sector programs and private capital projects increasingly require documentation of subsurface conditions prior to excavation, incentivizing adoption of standardized survey protocols and certified operators.

In Europe, Middle East & Africa, heterogeneity in regulatory frameworks and infrastructure maturity creates differentiated demand pockets. Northern and Western European markets emphasize integration with asset management systems and strict safety compliance, while select Middle Eastern and African projects prioritize large-scale subsurface mapping for resource development and major construction works. Cross-border projects and multinational engineering firms operating in these regions prioritize interoperable data formats and scalable deployment methodologies.

In Asia-Pacific, rapid urbanization and expansion of transportation networks have escalated the need for frequent inspection cycles and high-throughput survey solutions. The region's mix of legacy utilities and new infrastructure projects is driving interest in both handheld and vehicle-mounted GPR systems. Additionally, growth in smart-city initiatives is encouraging integration of GPR outputs into broader digital infrastructure programs. Across all regions, local supply chain considerations, regulatory environments, and skilled personnel availability influence procurement decisions and implementation timelines.

Competitive differentiation through antenna innovation, software-enabled workflows, and service models that accelerate adoption and reduce operational friction

Leading companies in the ground penetrating radar ecosystem are differentiating through a combination of hardware innovation, software-led workflows, and service-oriented delivery models. Some firms are concentrating R&D on antenna architectures and front-end electronics to push the envelope on bandwidth and signal-to-noise performance, while others are investing heavily in signal processing, machine learning, and user experience design to deliver actionable outputs with reduced analyst intervention.

Partnerships and ecosystem plays are also prominent: hardware vendors align with software providers and systems integrators to offer end-to-end solutions that include survey planning, data capture, automated reporting, and GIS integration. Service providers and specialized consultancies complement product sales by offering training, certification programs, and managed survey services, addressing the skills gap that can limit in-house adoption. Meanwhile, forward-looking companies are exploring subscription and software-as-a-service licensing models to provide continuous analytics updates and cloud-based collaboration features.

Competitive positioning increasingly hinges on demonstrating validated performance in target applications, transparent calibration and quality assurance processes, and post-sale support structures that reduce operational friction. Companies that can couple technical credibility with clear implementation pathways are best placed to win long-term enterprise engagements.

Actionable strategic moves for product modularity, software integration, supplier diversification, and operator certification that drive durable competitive advantage

Industry leaders should adopt a proactive strategy that prioritizes resilience, interoperability, and demonstrable operational ROI. First, investing in modular product architectures reduces exposure to component-specific policy changes and enables rapid substitution of tariff-affected modules without full redesign. This approach supports parallel configuration lines that meet both high-resolution and deep-penetration requirements while simplifying validation cycles.

Second, prioritize software investments that automate feature extraction, provide standardized output formats, and integrate seamlessly with GIS and asset management systems. These capabilities reduce the need for highly skilled interpretation personnel and embed GPR insights directly into decision workflows. Third, cultivate diversified supplier relationships and maintain defined inventory buffers for critical components; transparency in supplier roadmaps and capacity commitments will be increasingly valued by enterprise customers.

Fourth, develop comprehensive training and certification programs to expand the pool of qualified operators and reduce operational variability. Fifth, for service providers and vendors pursuing international expansion, tailor go-to-market approaches to regional regulatory regimes and procurement norms, demonstrating compliance and ease of deployment. Finally, engage proactively with standards bodies and public agencies to help shape specification frameworks that reward data quality and interoperability, thereby lowering barriers for customers seeking validated, auditable subsurface information.

A transparent, multi-source methodological framework combining technical review, expert interviews, and regional deployment analysis to validate actionable findings

The research methodology underpinning these insights combined a systematic review of recent technical literature, supplier product releases, regulatory notices, and deployment case studies, complemented by structured interviews with domain experts and system integrators. Technical assessment emphasized comparison of antenna technologies, frequency bands, and deployment form factors, while operational evaluation examined integration with GIS, data management protocols, and client adoption patterns.

Qualitative syntheses were drawn from practitioner interviews to surface implementation challenges, such as site-specific signal interference, operator skill requirements, and data interpretation bottlenecks. Comparative analysis across regions considered public infrastructure programs, procurement frameworks, and local manufacturing capabilities to contextualize deployment differences. To ensure robustness, findings were cross-validated against multiple independent vendor disclosures and peer-reviewed technical sources, with an emphasis on reproducible observations rather than proprietary commercial claims.

The methodological approach prioritizes transparency about data sources and analytic assumptions, focusing on observable technology trajectories, documented deployments, and stakeholder-identified barriers to adoption. This combination of technical and operational lenses yields recommendations that are both practicable and grounded in current industry practice.

A forward-looking synthesis highlighting technological maturation, operational integration, and the strategic levers that will accelerate reliable subsurface intelligence adoption

Ground penetrating radar is transitioning into an indispensable element of modern subsurface assessment, characterized by rapid technical maturation and broader operational integration. Advances in antenna design, signal processing, and systems integration are expanding the range of viable applications while enabling more rapid and reliable interpretation. These shifts are aligning the technology more closely with routine engineering, asset management, and safety compliance activities across multiple sectors.

However, adoption is not without friction: supply chain sensitivity to trade policy, variability in interpretation skills, and regional differences in regulatory frameworks remain material considerations for procurement and implementation. Organizations that proactively address these challenges-through modular product design, robust software ecosystems, diversified sourcing, and operator training-will capture disproportionate value. Moreover, collaboration across industry stakeholders to standardize data outputs and quality assurance protocols will lower transaction costs and accelerate institutional adoption.

In sum, the trajectory for ground penetrating radar favors vendors and users who combine technical excellence with practical deployment strategies, yielding more reliable subsurface intelligence and enabling better-informed infrastructure, environmental, and security decisions.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of artificial intelligence and machine learning for enhanced subsurface anomaly classification using ground penetrating radar
  • 5.2. Development of lightweight handheld GPR units for rapid utility detection in urban construction projects
  • 5.3. Adoption of multi-frequency and multi-channel radar systems for simultaneous deep and high-resolution imaging in geological surveys
  • 5.4. Emergence of drone-mounted ground penetrating radar platforms for large-area archaeological and environmental assessments
  • 5.5. Advancements in real-time 3D visualization software for improved interpretation of GPR data in infrastructure inspections
  • 5.6. Growing demand for trenchless technology integration combining GPR with electromagnetic locating in utility mapping mandates
  • 5.7. Implementation of automated data processing pipelines to reduce manual interpretation time in contaminated site assessments
  • 5.8. Expansion of GPR applications in forensic investigations for buried evidence detection at crime scenes
  • 5.9. Partnerships between GPR manufacturers and construction firms to develop tailored subsurface risk management solutions
  • 5.10. Regulatory frameworks driving mandatory underground asset documentation using ground penetrating radar in urban redevelopment

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Ground Penetrating RADAR Market, by Type

  • 8.1. 2D
  • 8.2. 3D

9. Ground Penetrating RADAR Market, by Antenna Type

  • 9.1. Air Coupled
  • 9.2. Ground Coupled

10. Ground Penetrating RADAR Market, by Frequency Range

  • 10.1. High Frequency
  • 10.2. Low Frequency
  • 10.3. Medium Frequency

11. Ground Penetrating RADAR Market, by Application

  • 11.1. Archaeology
  • 11.2. Construction
  • 11.3. Environmental
  • 11.4. Military
  • 11.5. Oil & Gas
  • 11.6. Transportation
    • 11.6.1. Rail Inspection
    • 11.6.2. Road Inspection
  • 11.7. Utility Detection

12. Ground Penetrating RADAR Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Ground Penetrating RADAR Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Ground Penetrating RADAR Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Hexagon AB
    • 15.3.2. SPX Technologies
    • 15.3.3. GSSI Inc.
    • 15.3.4. Guideline Geo
    • 15.3.5. Chemring Group PLC
    • 15.3.6. Japan Radio Co.,Ltd
    • 15.3.7. Hilti
    • 15.3.8. Screening Eagle Technologies
    • 15.3.9. PipeHawk plc
    • 15.3.10. Kontur
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제