시장보고서
상품코드
1835237

헬스케어 체온 모니터링 기기 시장 : 디바이스 유형, 모니터링 모드, 용도별 - 세계 예측(2025-2032년)

Healthcare Temperature Monitoring Devices Market by Device Type, Monitoring Mode, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 195 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

헬스케어 체온 모니터링 기기 시장은 2032년까지 CAGR 6.03%로 91억 1,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 57억 달러
추정연도 2025 60억 5,000만 달러
예측연도 2032 91억 1,000만 달러
CAGR(%) 6.03%

임상적 우선순위, 디지털 혁신, 환자 중심적 기대에 따라 최신 치료 경로에서 온도 모니터링 요구사항이 어떻게 변화하고 있는가?

헬스케어 시스템 및 기기 제조업체들은 다양한 진료 환경에서 정확하고 지속적인 상황별 체온 모니터링에 대한 기대치가 높아지고 있습니다. 임상의들은 전자건강기록과 원활하게 통합되고, 원격 모니터링 워크플로우를 지원하며, 환자의 방해를 최소화할 수 있는 솔루션을 점점 더 많이 찾고 있습니다. 그 결과, 기술 공급업체들은 센서의 정확성, 소형화, 연결성, 사용 편의성 및 임상적 연관성을 우선시하는 일관된 제품으로 수렴하고 있습니다.

또한 가치 기반 의료로의 광범위한 전환은 체온 모니터링의 운영상 이점을 높이고 있습니다. 온도 동향은 현재 패혈증 스크리닝, 감염 관리 프로토콜, 수술 후 감시 등에 영향을 미치고 있으며, 신뢰할 수 있는 장비와 강력한 데이터 수집의 중요성이 커지고 있습니다. 동시에, 소비자들은 웨어러블 및 홈 기반 모니터링 툴에 익숙해졌고, 의료 서비스 프로바이더는 병원 침대를 넘어서는 모니터링 패러다임을 재고해야 할 필요성이 있습니다. 그 결과, 이해관계자들의 기대는 장비의 성능뿐만 아니라 데이터 무결성, 사이버 보안, 종단면 분석도 포함하게 되었습니다.

포인트 측정에서 임상적으로 실용적인 스트림으로 전환하기 위해서는 표준의 일관성, 워크플로우의 통합, 임상적 유용성에 대한 명확한 증거가 필요합니다. 이 소개에서 강조한 바와 같이, 체온 모니터링 기술은 임상적 요구와 디지털 혁신의 교차점에 위치하여 기술 혁신의 기회를 창출하는 동시에 엄격한 검증과 도입 계획이 요구됩니다.

기술적 성숙도, 규제 강화, 상호운용성 요구, 공급망 강인성이 결합하여 온도 모니터링 솔루션의 진화를 가속화

온도 모니터링 장치를 둘러싼 환경은 몇 가지 집약적인 힘에 의해 변화하고 있습니다. 첫째, 센서 기술의 성숙으로 더 작은 폼팩터에서 더 높은 정확도를 구현할 수 있게 되면서 환자의 부담을 최소화하면서 거의 연속적인 체온 데이터를 제공할 수 있는 웨어러블 패치나 스마트 워치 개발이 용이해졌습니다. 이러한 진화를 통해 급성기 환경 외의 모니터링이 확대되고, 이전에는 실용적이지 않았던 종단적 건강 인사이트를 지원할 수 있게 되었습니다.

둘째, 연결성과 데이터 플랫폼이 체온 데이터 활용 방식을 재정의하고 있습니다. 병원 정보 시스템 및 원격 환자 모니터링 플랫폼과의 통합을 통해 체온 스트림은 자동 경보를 트리거하고 위험 계층화 모델에 공급되어 원격의료 상담을 지원합니다. 그 결과, 체온 모니터링은 더 이상 고립된 측정이 아니라 상호운용성과 확장 가능한 분석을 우선시하는 보다 광범위한 디지털 건강 생태계의 컴포넌트가 되었습니다.

셋째, 규제 당국의 기대와 상환 모델은 임상적 유용성에 대한 증거에 따라 진화하고 있습니다. 규제 당국은 현재 측정의 정확성, 데이터 안전성, 사용자 안전에 대한 보다 명확한 표시를 요구하고 있으며, 지불자는 피할 수 있는 입원을 줄이고 치료 전환을 지원하는 능력에 대해 기기를 평가했습니다. 이러한 변화는 벤더들이 임상 검증, 휴먼팩터 엔지니어링, 시판 후 감시(post-marketing surveillance)에 투자하도록 동기를 부여합니다.

마지막으로 공급망의 강인함과 제조의 민첩성이 경쟁에서 중요한 차별화 요소로 부상하고 있습니다. 생산 규모를 빠르게 확장하고, 제조를 현지화하고, 관세와 무역 환경을 잘 극복할 수 있는 기업은 전략적 우위를 점할 수 있습니다. 종합하면 이러한 혁신적 변화는 온도 모니터링 솔루션의 성숙을 가속화하고, 생태계 전반의 이해관계자들에게 경쟁적 및 경영적 계산을 재구성하고 있습니다.

2025년 관세 제도의 변화는 공급망 다각화, 니어쇼어링 고려, 온도 모니터링의 밸류체인 전반에 걸친 전략적 조달의 적응을 촉구

미국의 2025년 관세 정책 개발로 인해 온도 모니터링 장비의 조달 전략, 조달 결정 및 제조 발자국을 통해 영향을 미치는 새로운 변수가 도입되었습니다. 부품 및 완제품에 영향을 미치는 관세는 디바이스 OEM 및 위탁 생산업체에게 공급업체와의 관계, 비용 구조, 재고 전략의 재검토를 촉구합니다. 이에 따라 기업은 관세 변동에 따른 리스크를 줄이기 위해 공급망 지역 분산과 선택적 리쇼어링을 고려하고 있습니다.

그 결과, 조달팀은 대체 조달을 위한 유연성을 높이고, 관세 통과를 고려한 계약 조항을 포함하도록 조정하고 있습니다. 이러한 적응성은 단기적인 혼란을 줄여주지만, 공급업체 관리와 예측에 복잡성을 더합니다. 동시에 제조업체들은 새로운 비용 투입에 대응하면서 제품 성능을 유지하기 위해 부품 대체 전략과 인증 경로를 평가했습니다. 이러한 활동에는 추가적인 검증 작업이나 규제 당국에 재제출이 필요한 경우가 많으며, 적극적으로 관리하지 않으면 시장 출시까지 시간이 늘어날 수 있습니다.

또한 관세로 인한 비용 압박으로 인해 니어쇼어링과 전략적 재고 버퍼에 대한 논의가 가속화되고 있습니다. 이해관계자들은 가격 전략의 잠재적 조정, 채널 인센티브, 현지화된 서비스 모델 등 지속적인 무역 마찰이 경영에 미치는 영향을 이해하기 위해 시나리오 계획을 수립하고 있습니다. 중요한 것은 투명한 공급업체와의 관계를 우선시하고 유연한 제조 역량에 투자하는 조직은 관세 변동에 민첩하게 대응하고 임상 고객에 대한 공급의 연속성을 유지할 수 있다는 것입니다.

차별화된 제품 및 시장 진입 의사결정에 정보를 제공하기 위해 디바이스 아키텍처, 모니터링 모드, 케어 설정의 뉘앙스를 연관시키는 다차원적 세분화 분석

미묘한 세분화 프레임워크를 통해 제품 유형, 모니터링 모드, 임상적 용도가 제품 디자인, 채택 패턴, 가치 제안을 형성하는 방법을 명확히 합니다. 기기 유형에 따라 제품 전략은 고정형, 휴대용, 웨어러블 기기로 나뉩니다. 고정형 솔루션은 일반적으로 적외선 센서 기술 및 서미스터 프로브 구성을 사용하여 정의된 케어 환경에서 지속적인 모니터링 요구를 충족시키기 위해 견고한 통합과 센서의 내구성에 중점을 둡니다. 휴대용 기기는 빠른 측정과 사용자 이동성을 우선시하며, 휴대용 온도계와 열화상 스캐너는 선별 및 검진 워크플로우에 빠른 평가를 제공합니다. 웨어러블 솔루션은 장기적인 모니터링과 환자의 편안함을 목표로 하며, 접착식 패치나 스마트워치 플랫폼의 형태로 기존 환경 이외의 장소에서 장시간 관찰을 가능하게 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 헬스케어 체온 모니터링 기기 시장 : 디바이스 유형별

  • 고정
    • 적외선 센서
    • 서미스터 프로브
  • 휴대용
    • 핸드헬드 온도계
    • 서멀 스캐너
  • 웨어러블
    • 패치
    • 스마트워치

제9장 헬스케어 체온 모니터링 기기 시장 : 모니터링 모드별

  • 연속적
  • 단속적

제10장 헬스케어 체온 모니터링 기기 시장 : 용도별

  • 일반 병동
  • 재택 헬스케어
  • 집중치료실
    • 성인 ICU
    • 소아 집중치료실

제11장 헬스케어 체온 모니터링 기기 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제12장 헬스케어 체온 모니터링 기기 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제13장 헬스케어 체온 모니터링 기기 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제14장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Honeywell International Inc.
    • Emerson Electric Co.
    • Fortive Corporation
    • Dragerwerk AG & Co. KGaA
    • Vaisala Oyj
    • Testo SE & Co. KGaA
    • Sensitech, Inc.
    • T&D Corporation
    • Onset Computer Corporation
    • Monnit, LLC
KSA 25.10.31

The Healthcare Temperature Monitoring Devices Market is projected to grow by USD 9.11 billion at a CAGR of 6.03% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 5.70 billion
Estimated Year [2025] USD 6.05 billion
Forecast Year [2032] USD 9.11 billion
CAGR (%) 6.03%

How clinical priorities, digital transformation, and patient-centric expectations are reshaping temperature monitoring requirements across modern care pathways

Healthcare systems and device manufacturers face escalating expectations for accurate, continuous, and context-aware temperature monitoring across diverse care environments. Clinicians increasingly demand solutions that integrate seamlessly with electronic health records, support remote monitoring workflows, and minimize patient disturbance. As a result, technology suppliers are converging sensor accuracy, miniaturization, and connectivity into cohesive offerings that prioritize usability and clinical relevance.

Moreover, the broader shift to value-based care has raised the operational stakes for temperature monitoring. Temperature trends now influence sepsis screening, infection control protocols, and post-operative surveillance, which amplifies the importance of reliable devices and robust data capture. At the same time, consumers have grown more comfortable with wearables and home-based monitoring tools, prompting healthcare providers to reconsider monitoring paradigms that extend beyond the hospital bed. Consequently, stakeholder expectations now include not only device performance but also data integrity, cybersecurity, and longitudinal analytics.

Transitioning from point measurements to clinically actionable streams requires harmonized standards, workflow integration, and clear evidence of clinical utility. As this introduction underscores, temperature monitoring technology sits at the intersection of clinical need and digital transformation, creating opportunities for innovation while demanding rigorous validation and implementation planning.

Technological maturation, regulatory emphasis, interoperability demands, and supply-chain resilience are collectively accelerating the evolution of temperature monitoring solutions

The landscape for temperature monitoring devices is undergoing transformative shifts driven by several converging forces. First, sensor technology has matured to enable higher accuracy in smaller form factors, facilitating the development of wearable patches and smartwatches that can deliver near-continuous temperature data with minimal patient burden. This evolution expands monitoring beyond acute settings and supports longitudinal health insights that were previously impractical.

Second, connectivity and data platforms are redefining how temperature data is consumed. Integration with hospital information systems and remote patient monitoring platforms allows temperature streams to trigger automated alerts, feed risk stratification models, and support telehealth consultations. Consequently, temperature monitoring is no longer an isolated measurement but a component of broader digital health ecosystems that prioritize interoperability and scalable analytics.

Third, regulatory expectations and reimbursement models are evolving in response to evidence of clinical benefit. Regulators now demand clearer demonstrations of measurement accuracy, data security, and user safety, while payers increasingly evaluate devices for their ability to reduce avoidable admissions and support care transitions. These shifts incentivize vendors to invest in clinical validation, human factors engineering, and post-market surveillance.

Finally, supply-chain resilience and manufacturing agility have emerged as critical competitive differentiators. Firms that can rapidly scale production, localize manufacturing, and navigate tariff and trade environments gain strategic advantage. Taken together, these transformative shifts are accelerating the maturation of temperature monitoring solutions and reshaping the competitive and operational calculus for stakeholders across the ecosystem.

Shifts in 2025 tariff regimes are prompting supply-chain diversification, nearshoring considerations, and strategic procurement adaptations across the temperature monitoring value chain

United States tariff policy developments in 2025 have introduced new variables that reverberate through procurement strategies, sourcing decisions, and manufacturing footprints for temperature monitoring devices. Tariffs that affect components or finished devices prompt device OEMs and contract manufacturers to reassess supplier relationships, cost structures, and inventory strategies. In response, organizations are increasingly exploring regional diversification of supply chains and selective reshoring to mitigate exposure to tariff volatility.

Consequently, procurement teams are adapting contractual terms to include greater flexibility for alternative sourcing and to incorporate tariff pass-through considerations. This adaptability reduces near-term disruption but also adds complexity to supplier management and forecasting. At the same time, manufacturers are evaluating component substitution strategies and qualification pathways to preserve product performance while navigating new cost inputs. These activities often require additional validation work and regulatory re-submissions, which can extend time-to-market if not proactively managed.

Additionally, tariff-induced cost pressures are accelerating conversations about nearshoring and strategic inventory buffers. Stakeholders are engaging in scenario planning to understand the operational implications of sustained trade frictions, including potential adjustments to pricing strategies, channel incentives, and localized service models. Importantly, organizations that prioritize transparent supplier relationships and invest in flexible manufacturing capacity position themselves to respond more nimbly to tariff fluctuations and to maintain supply continuity for clinical customers.

A multi-dimensional segmentation analysis linking device architecture, monitoring mode, and care setting nuances to inform differentiated product and go-to-market decisions

A nuanced segmentation framework clarifies how device types, monitoring modes, and clinical applications shape product design, adoption patterns, and value propositions. Based on device type, product strategies diverge across fixed units, portable instruments, and wearable devices. Fixed solutions emphasize robust integration and sensor durability and commonly utilize infrared sensor technology or thermistor probe configurations to serve continuous monitoring needs in defined care environments. Portable instruments prioritize rapid measurements and user mobility, with handheld thermometers and thermal scanners offering quick assessments for triage and screening workflows. Wearable solutions target longitudinal monitoring and patient comfort, taking the form of adhesive patches or smartwatch platforms that enable extended observation outside traditional settings.

Based on monitoring mode, clinical use cases separate into continuous and intermittent modalities, each with distinct workflow and data management implications. Continuous monitoring supports early-warning systems and automated alerts but requires attention to data fidelity, alarm fatigue, and integration with clinician workflows. Intermittent monitoring aligns with periodic assessments and is often preferred in lower-acuity settings or where continuous telemetry is unnecessary.

Based on application, device requirements and procurement priorities differ across general ward, home healthcare, and intensive care unit environments. General wards favor solutions that balance accuracy with ease of use and minimal interruption to routine nursing care. Home healthcare demands devices with patient-friendly interfaces, reliable remote connectivity, and battery longevity. Intensive care unit deployments prioritize the highest-accuracy sensors and validated integration with advanced monitoring platforms, and within that context the needs of adult ICU and pediatric ICU populations diverge in terms of sensor placement, form factor, and clinical thresholds. These segmentation lenses guide product development, clinical validation plans, and commercialization strategies by aligning technical capabilities with distinct use-case requirements.

Regional regulatory heterogeneity, procurement structures, and digital health maturity establish differentiated adoption pathways and commercialization priorities across global markets

Regional dynamics exert a powerful influence on adoption pathways, regulatory navigation, and commercialization approaches for temperature monitoring devices. In the Americas, healthcare systems display a mix of centralized procurement and decentralized purchasing at health system levels, which shapes vendor engagement strategies and reimbursement conversations. This region also demonstrates a strong appetite for solutions that integrate with large electronic health record platforms and that support complex hospital workflows, prompting vendors to prioritize interoperability and local clinical evidence generation.

In Europe, the Middle East & Africa, regulatory frameworks and procurement mechanisms vary substantially, requiring adaptive regulatory strategies and flexible pricing models. Reimbursement and procurement processes in parts of this region emphasize cost-effectiveness and long-term operational impact, which increases the importance of health economics studies and partnerships with regional distributors to navigate fragmented markets.

In the Asia-Pacific region, rapid adoption of digital health platforms and a diverse mix of public and private healthcare providers create both high opportunity and complexity. Stakeholders here often balance aggressive digital transformation initiatives with a need for localized clinical validation and supply-chain responsiveness. Across all regions, localized support, tailored clinical evidence, and compliance with regional privacy and medical device regulations are essential for sustained adoption. Understanding these regional contours enables more effective allocation of commercial resources and targeted clinical engagement strategies.

Competitive advantage emerges from integrated sensor innovation, clinical validation partnerships, resilient manufacturing, and service-oriented commercialization strategies

Competitive dynamics in the temperature monitoring landscape emphasize rapid product iteration, strategic partnerships, and clarity around clinical differentiation. Leading device developers are investing in sensor accuracy, miniaturization, and low-power connectivity while simultaneously accelerating clinical validation programs to substantiate claims. Partnerships between medical device firms and digital health platforms have become increasingly common, enabling richer analytics, centralized device management, and improved clinician workflows.

In addition to product innovation, go-to-market strategies that prioritize channel relationships and service models are gaining prominence. Organizations that combine compelling device performance with dependable logistics, localized technical support, and clear training pathways foster stronger trust among clinical customers. Moreover, strategic collaborations with academic centers and health systems help validate device efficacy in real-world settings and generate the clinical evidence necessary for guideline adoption.

From an operational perspective, companies that demonstrate manufacturing agility and transparent supply-chain practices stand out. Investors and health system buyers increasingly scrutinize not only product specifications but also continuity-of-supply plans and quality systems. Consequently, companies that balance technical innovation with robust commercialization and operational execution are best positioned to scale adoption across care settings.

Practical steps for device makers and health systems to align clinical evidence, interoperability, supply resilience, and service delivery to accelerate adoption and trust

Industry leaders should prioritize a set of pragmatic actions to capture clinical trust and commercial traction in temperature monitoring. First, invest in targeted clinical validation that aligns device performance with specific workflows and outcomes, ensuring evidence packages speak directly to clinician concerns and payer requirements. This evidence should address accuracy across physiologic ranges, performance under real-world conditions, and impact on clinical decision-making.

Second, design for interoperability from the outset. Implement open integration standards and provide robust APIs so devices can feed into electronic health records, remote monitoring platforms, and hospital alarm systems. This reduces friction at the point of deployment and accelerates adoption across integrated care environments. Third, build flexible supply-chain strategies that incorporate alternative sourcing, localized manufacturing options, and inventory buffers to manage tariff and trade risks. Such resilience reduces operational disruption and supports reliable customer commitments.

Fourth, differentiate through service and support: complementary offerings such as training programs, implementation playbooks, and analytics dashboards increase the realized value of devices and strengthen long-term relationships. Finally, engage with regulators and payers early to align clinical evidence generation with approval pathways and reimbursement criteria. By executing these actions in concert, industry leaders will better align product capabilities with clinical needs and organizational procurement priorities.

A robust mixed-methods research framework integrating clinical literature, regulatory review, stakeholder interviews, and operational scenario analysis to support implementation-focused insights

The research approach combined a systematic review of peer-reviewed clinical literature, regulatory filings, and device technical specifications with stakeholder interviews across clinical, procurement, and manufacturing domains. Primary qualitative interviews included clinicians from hospital and home-health settings, device engineers, and supply-chain professionals to surface practical challenges and opportunities related to device usability, validation requirements, and production constraints. These insights were triangulated with analysis of regulatory guidance documents and post-market safety communications to ground recommendations in current compliance expectations.

Analytical techniques emphasized comparative device feature mapping, workflow alignment assessments, and scenario planning exercises to evaluate the operational implications of tariffs, supply-chain disruptions, and deployment models. Where applicable, human factors considerations were evaluated through task analyses and reported usability findings to assess the likelihood of adoption in high-volume clinical environments. Throughout the research, emphasis remained on evidence that informs implementation decisions rather than speculative forecasting, ensuring the outputs are directly actionable for product development, procurement, and clinical adoption stakeholders.

Synthesizing technological capability, clinical validation, and operational readiness to realize the full potential of temperature monitoring across care continuums

Temperature monitoring devices occupy a pivotal role in both acute and ambulatory care pathways, and their evolution will continue to be shaped by sensor innovation, digital integration, and operational resilience. The transition toward continuous, context-aware monitoring is enabling earlier detection of clinical deterioration and supporting remote care models, but this progress depends on rigorous validation, thoughtful workflow integration, and transparent supply-chain practices.

Organizations that align product development with explicit clinical use cases, invest in interoperability, and build resilient manufacturing strategies will be better equipped to meet clinician expectations and navigate regulatory complexities. Moreover, service-oriented commercialization that includes training, analytics, and implementation support amplifies device value in real-world settings and reduces barriers to sustained adoption. In sum, the convergence of technology and clinical workflows presents significant opportunity-but realizing that value requires disciplined evidence generation, collaborative partnerships, and operational foresight.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Adoption of wearable continuous temperature sensors integrated with telehealth solutions for remote patient monitoring
  • 5.2. Integration of infrared thermography and AI algorithms for rapid fever screening in public healthcare settings
  • 5.3. Emergence of multi-parameter IoT platforms combining temperature and vital signs for comprehensive chronic disease management
  • 5.4. FDA and CE regulatory clearances driving commercialization of novel non-contact medical grade thermometers in clinical use
  • 5.5. Use of blockchain-enabled temperature data logging to ensure tamper-proof tracking of cold chain pharmaceuticals and vaccines
  • 5.6. Development of sensor-embedded smart patches for real-time continuous monitoring of neonatal hypothermia risks in preterm infants
  • 5.7. Implementation of predictive analytics models within hospital temperature monitoring systems to forecast patient deterioration risks
  • 5.8. Rising demand for sustainable disposable probe materials in single-use temperature monitoring devices to reduce clinical waste
  • 5.9. Expansion of remote patient monitoring programs with multi-zone skin temperature sensors for home-based infection control management

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Healthcare Temperature Monitoring Devices Market, by Device Type

  • 8.1. Fixed
    • 8.1.1. Infrared Sensor
    • 8.1.2. Thermistor Probe
  • 8.2. Portable
    • 8.2.1. Handheld Thermometer
    • 8.2.2. Thermal Scanner
  • 8.3. Wearable
    • 8.3.1. Patch
    • 8.3.2. Smart Watch

9. Healthcare Temperature Monitoring Devices Market, by Monitoring Mode

  • 9.1. Continuous
  • 9.2. Intermittent

10. Healthcare Temperature Monitoring Devices Market, by Application

  • 10.1. General Ward
  • 10.2. Home Healthcare
  • 10.3. Intensive Care Unit
    • 10.3.1. Adult ICU
    • 10.3.2. Pediatric ICU

11. Healthcare Temperature Monitoring Devices Market, by Region

  • 11.1. Americas
    • 11.1.1. North America
    • 11.1.2. Latin America
  • 11.2. Europe, Middle East & Africa
    • 11.2.1. Europe
    • 11.2.2. Middle East
    • 11.2.3. Africa
  • 11.3. Asia-Pacific

12. Healthcare Temperature Monitoring Devices Market, by Group

  • 12.1. ASEAN
  • 12.2. GCC
  • 12.3. European Union
  • 12.4. BRICS
  • 12.5. G7
  • 12.6. NATO

13. Healthcare Temperature Monitoring Devices Market, by Country

  • 13.1. United States
  • 13.2. Canada
  • 13.3. Mexico
  • 13.4. Brazil
  • 13.5. United Kingdom
  • 13.6. Germany
  • 13.7. France
  • 13.8. Russia
  • 13.9. Italy
  • 13.10. Spain
  • 13.11. China
  • 13.12. India
  • 13.13. Japan
  • 13.14. Australia
  • 13.15. South Korea

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2024
  • 14.2. FPNV Positioning Matrix, 2024
  • 14.3. Competitive Analysis
    • 14.3.1. Honeywell International Inc.
    • 14.3.2. Emerson Electric Co.
    • 14.3.3. Fortive Corporation
    • 14.3.4. Dragerwerk AG & Co. KGaA
    • 14.3.5. Vaisala Oyj
    • 14.3.6. Testo SE & Co. KGaA
    • 14.3.7. Sensitech, Inc.
    • 14.3.8. T&D Corporation
    • 14.3.9. Onset Computer Corporation
    • 14.3.10. Monnit, LLC
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제