시장보고서
상품코드
1835328

적외선 검출기 시장 : 기술, 파장 범위, 설치, 용도, 최종사용자 산업별 - 세계 예측(2025-2032년)

Infrared Detector Market by Technology, Wavelength Range, Installation, Application, End User Industry - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 188 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

적외선 검출기 시장은 2032년까지 CAGR 6.97%로 10억 7,298만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 6억 2,576만 달러
추정연도 2025 6억 6,908만 달러
예측연도 2032 10억 7,298만 달러
CAGR(%) 6.97%

적외선 감지 기술의 진화, 통합 과제, 국방 및 상업 생태계에서의 새로운 이용 사례에 대한 간략한 전략 개요

적외선 감지 기술은 국방, 산업 자동화, 의료 검진, 신흥 모빌리티 시스템에 걸친 전략적 역량으로 성숙했습니다. 지난 10년간 검출기 감도, 픽셀 밀도, 열 관리의 발전은 새로운 이용 사례를 창출하는 동시에 통합의 장벽을 낮추었습니다. 광학, 신호 처리, 엣지 컴퓨팅 등 지원 서브시스템의 동시 개선으로 원시 센서 성능이 작업자 및 자동화 시스템에 유용한 정보로 전환되었습니다.

채택이 확대됨에 따라 구매자와 시스템 통합사업자는 단일 지표뿐만 아니라 제조 가능성, 교정 요구 사항, 환경적 견고성, 기존 전자 아키텍처와의 호환성 등 수명주기을 고려하여 검출기를 평가했습니다. 이 소개에서는 상업 및 국방 분야의 조달 및 R&D 우선순위에 대한 정보를 제공하는 핵심 기술 구분, 공급망 특성 및 이용 사례 궤적 프레임워크를 제시합니다. 검출기 간의 상호 운용성과 고급 분석에 대한 중요성이 커지면서 업계는 부품 판매에서 측정 가능한 운영 성과를 제공하는 솔루션 지향적 제공으로 전환하고 있습니다.

기술 및 시스템 수준의 급격한 변화로 경쟁 차별화를 재구축하고, 적외선 감지 분야에서 센서와 소프트웨어의 통합 및 새로운 공급망 전략을 추진

적외선 감지 환경은 경쟁의 경계와 제품 로드맵을 재정의하는 몇 가지 혁신적인 변화로 인해 재편되고 있습니다. 광자 검출기 제조 및 포장의 발전으로 감도가 향상되고 노이즈 플로어가 감소하여 검출 거리가 길어지고 복잡한 환경에서도 보다 신뢰할 수 있는 표적 식별이 가능해졌습니다. 동시에 비냉각식 열 감지기의 성능과 비용 구조가 개선됨에 따라 기존에는 고가의 냉각식 센서에 의존하던 용도에서 비냉각식 열 감지기의 채택이 가속화되고 있으며, 상업 및 산업 분야에서의 활용이 확대되고 있습니다.

센서의 발전과 더불어 실시간 이미지 처리, AI를 활용한 장면 이해, 저전력 엣지 컴퓨팅과 같은 시스템 수준의 기능이 가치 제안에 변화를 가져오고 있습니다. 그 결과, 벤더들은 센서 하드웨어 위에 소프트웨어로 차별화를 거듭하고 있습니다. 부품 공급업체, 파운드리, 통합업체 간의 전략적 파트너십을 통해 제품화 시간을 단축하고 기밀성이 높은 국방 분야에서는 수직적 통합이 중요시되고 있습니다. 규제 압력과 데이터 프라이버시에 대한 관심은 제품 설계, 특히 모니터링 및 헬스케어 배포에 대한 제품 설계에 더 많은 영향을 미치고 있으며, 제조업체들은 프라이버시 바이 디자인 접근 방식을 채택하고 펌웨어 보안을 강화하도록 장려하고 있습니다.

지속적인 관세 조치와 무역 정책의 전환이 적외선 검출기 밸류체인 전반의 조달 결정, 공급망 현지화, 비용 관리 전략을 어떻게 변화시키고 있는가?

관세와 무역 조치의 발동은 직접적인 비용 상승에 그치지 않고 장기적인 조달, 기술 혁신, 파트너십 전략에 영향을 미치는 일련의 누적 효과를 낳고 있습니다. 적외선 검출기 제조업체와 공급망에 있으며, 관세는 지역 실적을 재평가하는 계기가 될 수 있습니다. 기업은 수입 비용 상승을 흡수하거나 고객에게 전가할 것인지, 아니면 관세 우대 지역공급업체를 우대하도록 조달을 재편할 것인지 선택해야 합니다. 이러한 재조정은 종종 최종 조립 이전, 대체 벤더 인증, 단기적 노출을 평준화하기 위한 국내 재고 보유량 증가 등 전술적 대응의 연쇄를 유발합니다.

관세 제도가 장기화되면 핵심 부품의 국산화 노력이 가속화되고, 고부가가치 검출기 서브시스템의 수직적 통합이 촉진되는 경향이 있습니다. 밸류체인을 더 많이 지배하는 기업은 갑작스러운 정책 변화로부터 스스로를 보호할 수 있지만, 이 길은 설비투자와 전문적인 제조 노하우에 대한 접근이 필요합니다. 동시에, 무역 마찰 증가는 규정 준수, 인증, 법적 위험 감소에 대한 긴밀한 협력을 촉진합니다. 시스템 통합사업자와 최종사용자들에게도 관세는 장기적인 공급업체와의 파트너십과 총 상륙 비용과 규제 복잡성을 관리하면서 공급의 연속성을 유지하도록 설계된 멀티소싱 전략으로 조달 계산을 전환할 수 있습니다.

검출기 기술, 스펙트럼 대역, 설치 형태, 용도, 최종사용자 산업을 전략적 제품 및 채널 선택로 연결하는 종합적인 세분화 분석

세분화에 대한 미묘한 견해는 기술적 속성, 설치 방식, 분광 감도, 최종 용도, 업계 최종사용자가 어떻게 상호 작용하여 배포 결정 및 제품 개발 우선 순위를 형성하는지를 보여줍니다. 광자 검출기는 특정 대역의 고성능을 발휘하는 양자 우물 적외선 검출기와 제조성과 집적도의 균형을 중시하는 반도체 기반 검출기로 구분되며, 열 검출기는 까다로운 이미징 작업에 뛰어난 감도를 제공하는 냉각형과 대량 도입을 위한 소형화 및 비용 절감을 우선시하는 비냉각형으로 나뉩니다. 비용 효율성을 우선시하는 비냉각형으로 나뉩니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 적외선 검출기 시장 : 기술별

  • 광자 검출기
    • 양자우물형 적외선 광검출기
    • 반도체
  • 열검출기
    • 냉각
    • 비냉각

제9장 적외선 검출기 시장 : 파장 범위별

  • 장파 적외선
  • 중파 적외선
  • 단파 적외선

제10장 적외선 검출기 시장 : 설비별

  • 고정
  • 핸드헬드
  • 휴대용

제11장 적외선 검출기 시장 : 용도별

  • 자동차
  • 상업용
    • 화재 감지
    • 가스 감지
    • 감시
  • 산업
    • 프로세스 감시
    • 품질 검사
  • 군과 방위

제12장 적외선 검출기 시장 최종사용자 업계별

  • 항공우주
  • 헬스케어
  • 제조업
  • 석유 및 가스

제13장 적외선 검출기 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 적외선 검출기 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 적외선 검출기 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Bourns, Inc.
    • Excelitas Technologies Corp
    • FATRI(Xiamen) Technologies Co., Ltd.
    • FLIR Systems Inc.
    • Global Sensor Technology Co., Ltd.
    • Hamamatsu Photonics K.K.
    • Heimann Sensor GmbH
    • Honeywell International Inc.
    • InfraTec GmbH
    • KADO Intelligent Technology(Shanghai) Co., Ltd.
    • LASER COMPONENTS GmbH
    • Lynred USA
    • Mahlo GmbH+Co. KG
    • MELEXIS group
    • Monarch Instrument
    • Ningbo VEZE Automatic Door Co., Ltd.
    • Nippon Ceramic Co., Ltd.
    • Omron Corporation
    • Pantron Automation, Inc.
    • Raytheon Technologies Corporation
    • Takex Europe Ltd.
    • TE Connectivity Ltd.
    • Teledyne Technologies Incorporated
    • Texas Instruments Inc.
    • VIGO Photonics S.A.
    • WoMaster
KSA

The Infrared Detector Market is projected to grow by USD 1,072.98 million at a CAGR of 6.97% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 625.76 million
Estimated Year [2025] USD 669.08 million
Forecast Year [2032] USD 1,072.98 million
CAGR (%) 6.97%

A concise strategic overview that frames infrared detector technology evolution, integration challenges, and emerging use cases across defense and commercial ecosystems

Infrared detection technologies have matured into a strategic capability that spans defense, industrial automation, healthcare screening, and emerging mobility systems. Over the past decade, advances in detector sensitivity, pixel density, and thermal management have unlocked new use cases while compressing barriers to integration. Concurrent improvements in supporting subsystems such as optics, signal processing, and edge compute have converted raw sensor performance into actionable information for operators and automated systems alike.

As adoption broadens, buyers and system integrators increasingly evaluate detectors not just on single metrics but on lifecycle considerations: manufacturability, calibration requirements, environmental robustness, and compatibility with existing electronic architectures. This introduction frames the core technical distinctions, supply chain characteristics, and use-case trajectories that inform procurement and R&D priorities across commercial and defense domains. By emphasizing the interoperability between detectors and higher-level analytics, the industry is shifting from component sales toward solution-oriented offerings that deliver measurable operational outcomes.

Rapid technological and systems-level shifts are reshaping competitive differentiation, driving sensor-software integration and new supply chain strategies across infrared detection

The landscape for infrared detection is being reshaped by several transformative shifts that are redefining competitive boundaries and product roadmaps. Advances in photon detector fabrication and packaging have elevated sensitivity and reduced noise floors, enabling longer detection ranges and more reliable target discrimination in complex environments. At the same time, improvements in uncooled thermal detector performance and cost structures have accelerated adoption in applications that previously relied on costlier cooled sensors, expanding access across commercial and industrial segments.

Complementing sensor advances, system-level capabilities such as real-time image processing, AI-enabled scene understanding, and low-power edge computing are changing value propositions. As a result, vendors are layering software-enabled differentiation on top of sensor hardware. Supply chain dynamics are also evolving: strategic partnerships between component suppliers, foundries, and integrators are shortening time to field and increasing emphasis on vertical integration for sensitive defense applications. Regulatory pressures and data privacy considerations are further influencing product design, particularly in surveillance and healthcare deployments, prompting manufacturers to adopt privacy-by-design approaches and strengthen firmware security.

How persistent tariff measures and trade policy shifts are reshaping sourcing decisions, supply chain localization, and cost management strategies across the infrared detector value chain

The imposition of tariffs and trade measures has produced a cumulative set of effects that extend beyond immediate cost uplifts to influence longer-term sourcing, innovation, and partnership strategies. For infrared detector manufacturers and their supply chains, tariffs act as a catalyst for re-evaluating geographic footprints. Companies face choices between absorbing import cost increases, passing them to customers, or restructuring procurement to favor suppliers in tariff-advantaged jurisdictions. This rebalancing often triggers a cascade of tactical responses, such as relocating final assembly, qualifying alternate vendors, or increasing onshore inventory holdings to smooth short-term exposure.

Over time, persistent tariff regimes tend to accelerate efforts to localize critical components and encourage vertical integration for high-value detector subsystems. Firms that control more of the value chain can insulate themselves from abrupt policy changes, but this path requires capital investment and access to specialized manufacturing expertise. Simultaneously, increased trade friction prompts closer collaboration on compliance, certification, and legal risk mitigation. For system integrators and end users, tariffs also shift procurement calculus toward longer-term supplier partnerships and multi-sourcing strategies designed to preserve continuity of supply while managing total landed cost and regulatory complexity.

Comprehensive segmentation analysis connecting detector technologies, spectral bands, installation formats, applications, and end user industries to strategic product and channel choices

A nuanced view of segmentation reveals how technical attributes, installation modalities, spectral sensitivity, end applications, and industry end users interact to shape deployment decisions and product development priorities. Based on technology, the landscape distinguishes photon detectors from thermal detectors; within photon detectors, there is a clear bifurcation between quantum well infrared photodetectors that provide high performance for specific band operations and semiconductor-based detectors that balance manufacturability and integration, while thermal detectors are further divided between cooled variants that offer superior sensitivity for demanding imaging tasks and uncooled options that prioritize compactness and cost-efficiency for mass deployment.

Based on wavelength range, product selection is heavily influenced by detection physics and application constraints, with long wave infrared enabling thermal contrast in low-visibility scenarios, mid wave infrared supporting high-speed target discrimination and longer-range imaging, and short wave infrared offering useful performance under certain reflective conditions and materials. Based on installation, choices span fixed installations for perimeter and infrastructure monitoring, handheld devices for inspection and first-responder use, and portable systems that strike a balance between mobility and sustained observation. Based on application, automotive demands emphasize integration with driver assistance and safety systems, commercial use cases include fire detection, gas detection, and surveillance with a premium on reliability and regulatory compliance, industrial deployments focus on process monitoring and quality inspection with repeatability and throughput in mind, and military and defense applications prioritize ruggedization, calibration stability, and classified capability sets. Based on end user industry, buyer requirements differ markedly: aerospace applications demand extreme qualification and reliability, healthcare emphasizes noninvasive diagnostics and regulatory clearances, manufacturing prioritizes inline inspection speed and traceability, and oil and gas requires explosion-proofing, long-range leak detection, and field maintainability. Together, these segmentation axes inform product roadmaps, channel strategies, and aftersales support models, creating differentiated competitive opportunities for firms that align technical capability with domain-specific operational requirements.

Regional dynamics and policy environments that shape adoption patterns, supplier ecosystems, procurement behavior, and deployment priorities across global infrared detection markets

Geographic dynamics are critical to understanding adoption patterns, supplier ecosystems, and regulatory constraints that influence detector development and deployment. In the Americas, a robust defense procurement pipeline and strong commercial demand for automotive and industrial automation have sustained investment in high-performance sensors and domestic integration capabilities, and the region's supply chain emphasizes advanced electronics, specialized foundries, and system integrators that support fast prototype-to-production cycles.

In Europe, the Middle East & Africa region, a mix of regulatory stringency, public safety initiatives, and defense modernization programs drives demand for certified, interoperable systems. European suppliers often focus on standards compliance, energy efficiency, and integration with national infrastructure projects, while certain Middle Eastern markets prioritize rapid deployment for security and surveillance. Africa's adoption is more heterogeneous, with pronounced interest in cost-effective thermal solutions for utilities and agriculture. In the Asia-Pacific region, manufacturing scale, component supply strength, and aggressive R&D investment have created an ecosystem that supports both high-volume, cost-sensitive uncooled detectors and advanced photon detectors. Regional policy incentives and industrial policy in several Asia-Pacific economies continue to encourage local capability-building, which affects global supplier strategies and partnership formation.

Competitive positioning and strategic alliances that define vendor success, combining intellectual property, manufacturing depth, systems integration, and aftermarket service differentiation

Competitive dynamics reflect a mix of established incumbents, specialized component suppliers, systems integrators, and a growing set of deep-tech startups advancing niche detector architectures. Companies that combine strong intellectual property portfolios in detector physics, mature manufacturing capabilities, and robust systems engineering are positioned to win complex, high-assurance programs. Meanwhile, firms that excel at software integration, calibration services, and aftermarket support can capture recurring revenue streams and differentiate on total cost of ownership.

Partnership strategies are increasingly important: collaborations between fab partners, optics houses, and algorithm providers accelerate time-to-field while managing capital intensity. Strategic moves such as licensing arrangements, co-development agreements, and targeted acquisitions enable rapid capability expansion without incurring the full cost of internal development. Additionally, the rise of cross-industry alliances-linking sensor vendors with automotive OEMs, aerospace primes, and industrial automation suppliers-reflects a shift toward solution bundles that reduce integration friction for end users. For companies competing in this space, the ability to demonstrate rigorous qualification data, long-term supply continuity, and cybersecurity-hardened telemetry is becoming as important as raw sensor performance.

Clear, implementable strategic moves industry leaders should take to build supply resilience, deepen system integration, and monetize software-enabled differentiation in sensor solutions

Industry leaders should adopt a multi-pronged strategy to navigate evolving technology, policy, and supply chain pressures while capturing growth opportunities across commercial and defense verticals. First, prioritize supplier diversification and dual-sourcing for critical detector components to reduce single-point exposure to trade policy or regional disruptions, and concurrently develop a staged localization plan for high-risk subsystems to preserve continuity and compliance. Second, accelerate investments in software, system calibration, and data analytics to move up the value chain; by coupling sensors with validated algorithms and lifecycle support, companies can command stronger customer relationships and recurring revenue.

Third, strengthen partnerships with specialized foundries, optics suppliers, and system integrators to compress development cycles and share risk on capital-intensive initiatives. Fourth, embed security and privacy controls from design inception through operational deployment to meet procurement standards in regulated sectors; this fosters trust and reduces downstream certification costs. Fifth, allocate resources to talent development in detector physics, sensor packaging, and edge AI to sustain innovation and avoid vendor lock-in. Finally, adopt phased scenario planning and financial stress-testing that account for tariff volatility and supply chain shocks, enabling rapid course corrections in procurement, pricing, and inventory management. Collectively, these actions will enhance resilience while positioning organizations to capture expanded use cases as sensor capability and systems integration continue to improve.

Robust mixed-methods research approach combining expert interviews, technical literature review, supply chain mapping, and scenario analysis to validate findings and implications

The research underpinning this study combined qualitative and quantitative approaches to generate a holistic view of technology, supply chain, and application trends. Primary inputs included structured interviews with system integrators, component suppliers, R&D engineers, and procurement leads to capture contemporary decision drivers and near-term operational constraints. These insights were complemented by a technical review of peer-reviewed literature, patent filings, and standards documentation to validate claims about detector performance, fabrication advances, and integration approaches.

Operational analysis incorporated supply chain mapping, vendor capability assessments, and scenario analysis to explore the implications of trade measures and regional policy shifts. Validation rounds with domain experts and technical reviewers ensured that conclusions about technology trajectories, integration challenges, and procurement responses were grounded in practitioner experience. Wherever possible, findings were triangulated across multiple data sources to minimize bias and to reflect a balanced, practical understanding of how detector technologies are adopted and sustained across diverse end users and operating environments.

Summary conclusions emphasizing the convergence of sensor advances, systems integration, and supply chain resilience as decisive factors for future competitive advantage

Infrared detector technology is at an inflection point where hardware advances, software maturation, and shifting procurement dynamics converge to create new opportunities and operational challenges. The interplay between photon and thermal detector capabilities, spectral selection, and installation form factors drives differentiated value propositions across automotive, commercial, industrial, and defense applications. At the same time, policy dynamics and trade measures are prompting companies to reassess supply chains and accelerate moves toward greater regional diversification and integration.

In summary, firms that combine technical depth in detector physics with systems integration expertise, robust supplier relationships, and a clear software value proposition will be best positioned to capture long-term opportunities. Building resilience through diversification, embedding security and privacy by design, and investing in talent and partnerships will be essential to navigate an increasingly complex and competitive environment. Decision-makers should treat detector choices as components of broader systems strategies that deliver measurable operational outcomes rather than as isolated component purchases.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising adoption of uncooled microbolometer sensors for cost-effective thermal imaging solutions in consumer electronics
  • 5.2. Integration of infrared detectors with advanced artificial intelligence algorithms for real-time predictive maintenance across industrial applications
  • 5.3. Development of high-sensitivity indium gallium arsenide detectors optimized for shortwave infrared imaging in aerospace surveillance
  • 5.4. Increasing demand for multispectral infrared detector arrays enabling enhanced environmental monitoring and agricultural analytics
  • 5.5. Implementation of low-power infrared photodetectors in battery-operated wearable health monitoring and fitness tracking devices
  • 5.6. Growth of quantum well infrared photodetector technology for military and defense thermal imaging with improved resolution and range
  • 5.7. Emergence of infrared detector modules with on-chip signal processing for autonomous vehicle obstacle detection and collision avoidance
  • 5.8. Adoption of graphene-based infrared detectors for ultra-fast broadband sensing in telecommunications and data security applications
  • 5.9. Expansion of miniaturized infrared sensors for integration into Internet of Things networks supporting smart building energy management
  • 5.10. Focus on ultraviolet to midwave infrared detector synergy for comprehensive gas leak detection in petrochemical and industrial safety applications

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Infrared Detector Market, by Technology

  • 8.1. Photon Detectors
    • 8.1.1. Quantum Well Infrared Photodetector
    • 8.1.2. Semiconductor
  • 8.2. Thermal Detectors
    • 8.2.1. Cooled
    • 8.2.2. Uncooled

9. Infrared Detector Market, by Wavelength Range

  • 9.1. Long Wave Infrared
  • 9.2. Mid Wave Infrared
  • 9.3. Short Wave Infrared

10. Infrared Detector Market, by Installation

  • 10.1. Fixed
  • 10.2. Handheld
  • 10.3. Portable

11. Infrared Detector Market, by Application

  • 11.1. Automotive
  • 11.2. Commercial
    • 11.2.1. Fire Detection
    • 11.2.2. Gas Detection
    • 11.2.3. Surveillance
  • 11.3. Industrial
    • 11.3.1. Process Monitoring
    • 11.3.2. Quality Inspection
  • 11.4. Military And Defense

12. Infrared Detector Market, by End User Industry

  • 12.1. Aerospace
  • 12.2. Healthcare
  • 12.3. Manufacturing
  • 12.4. Oil And Gas

13. Infrared Detector Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Infrared Detector Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Infrared Detector Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Bourns, Inc.
    • 16.3.2. Excelitas Technologies Corp
    • 16.3.3. FATRI (Xiamen) Technologies Co., Ltd.
    • 16.3.4. FLIR Systems Inc.
    • 16.3.5. Global Sensor Technology Co., Ltd.
    • 16.3.6. Hamamatsu Photonics K.K.
    • 16.3.7. Heimann Sensor GmbH
    • 16.3.8. Honeywell International Inc.
    • 16.3.9. InfraTec GmbH
    • 16.3.10. KADO Intelligent Technology (Shanghai) Co., Ltd.
    • 16.3.11. LASER COMPONENTS GmbH
    • 16.3.12. Lynred USA
    • 16.3.13. Mahlo GmbH + Co. KG
    • 16.3.14. MELEXIS group
    • 16.3.15. Monarch Instrument
    • 16.3.16. Ningbo VEZE Automatic Door Co., Ltd.
    • 16.3.17. Nippon Ceramic Co., Ltd.
    • 16.3.18. Omron Corporation
    • 16.3.19. Pantron Automation, Inc.
    • 16.3.20. Raytheon Technologies Corporation
    • 16.3.21. Takex Europe Ltd.
    • 16.3.22. TE Connectivity Ltd.
    • 16.3.23. Teledyne Technologies Incorporated
    • 16.3.24. Texas Instruments Inc.
    • 16.3.25. VIGO Photonics S.A.
    • 16.3.26. WoMaster
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제