시장보고서
상품코드
1835372

수술중 방사선 요법 시장 : 용도, 기술, 최종사용자별 - 세계 예측(2025-2032년)

Intraoperative Radiation Therapy Market by Application, Technology, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

수술중 방사선 요법 시장은 2032년까지 CAGR 12.18%로 5억 6,367만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 2억 2,459만 달러
추정연도 2025 2억 5,177만 달러
예측연도 2032 5억 6,367만 달러
CAGR(%) 12.18%

수술 중 방사선 치료는 수술의 정확성과 방사선 치료의 표적화를 융합하여 한 번의 치료로 주변 정상 조직에 대한 방사선 피폭을 줄이고 치료 경로를 통합하는 치료 패러다임을 제공합니다. 지난 10년간 소형 방사선 조사 시스템의 발전과 임상 프로토콜의 개선으로 IORT를 고려할 수 있는 적응증과 설정의 폭이 넓어졌습니다. 휴대용 플랫폼과 저에너지 장비의 혁신이 진행됨에 따라 IORT는 고도로 전문화된 3차 시설에서 암 치료 네트워크 전반에 걸쳐 보다 광범위하게 채택되는 방향으로 전환되고 있습니다.

임상팀은 IORT를 수술 전후의 워크플로우를 간소화하고 특정 환자 집단에서 장시간의 외부 방사선 조사 필요성을 감소시킬 수 있는 수단으로 간주하고 있습니다. 이러한 추세는 외과의사, 방사선종양학자, 의학물리학자, 간호사의 다학제적 협력에 의해 지원되고 있습니다. 동시에 장비 제조업체는 인체공학, 차폐 효율, 통합의 용이성에 중점을 두어 시술의 복잡성을 줄이고 더 많은 임상 도입을 돕고 있습니다.

규제 당국과 전문 학회는 환자 선택, 방사선 안전 및 교육 기준에 대한 지침을 개선하여 일관된 양질의 실행을 보장하기 위해 노력해 왔습니다. 이와 병행하여, 의료 시스템은 선행 투자와 잠재적 운영 효율성 및 환자 중심적 결과의 균형을 맞추기 위해 상환 프레임워크와 진료 제공 모델을 평가했습니다. 이러한 역학을 종합하면 현대 종양학 치료에서 IORT의 역할을 평가하고자 하는 임상 프로그램 리더, 장비 제조업체 및 지불자가 전략적 결정을 내릴 수 있는 여건이 마련된 것을 알 수 있습니다.

의료 시스템 전반에 걸쳐 수술 중 방사선 치료를 광범위하게 검토하고 통합하여 임상, 기술, 의료 서비스 제공의 혁신적 변화를 촉진

수술 중 방사선 치료의 상황은 기술적 소형화, 시술의 표준화, 의료 제공 환경의 변화로 인해 크게 변화하고 있습니다. 장비의 기술 혁신은 선량 적합성 향상, 차폐 요구 사항 감소, 이동성 실현에 중점을 두어 외래 및 시내 병원에서의 도입 장벽을 낮추는 데 중점을 두고 있습니다. 그 결과, 임상팀은 이전 세대의 장비보다 더 정확하게, 더 적은 물류 제약으로 종양 절제 시점에 방사선 치료를 할 수 있게 되었습니다.

동시에, 증거를 통합하고 실제 치료 결과를 보고함으로써 환자 선택에 대한 명확성을 높이고, 어떤 코호트가 한 번의 수술 중 접근법에서 가장 의미 있는 혜택을 얻을 수 있는지에 대한 보다 세밀한 판단을 내릴 수 있게 되었습니다. 이러한 임상적 개선은 다학제적 협력, 안전 문화, 재현 가능한 시술 워크플로우를 강조하는 진화한 교육 프레임워크에 의해 보완됩니다. 이러한 발전으로 인해, 과거에는 운영의 복잡성을 이유로 도입을 미뤄왔던 시설들도 전략을 재평가하고 부서 간 지원을 받아 IORT 프로그램을 시범적으로 도입하고 있습니다.

재정적, 정책적 환경 또한 변화하고 있으며, 가치 기반 케어 모델과 케어의 통합에 대한 관심이 높아지고 있습니다. 이해관계자들은 IORT가 치료를 수술 에피소드로 압축함으로써 환자의 전반적인 치료 부담을 줄이고 환자 경험과 순응도를 향상시킬 수 있다는 점을 높이 평가했습니다. 이러한 힘을 종합하면 국소 관리 전략을 수술 에피소드에 통합하는 방법에 대한 구조적 전환을 의미하며, 의료 프로바이더와 제조업체 모두에게 해당 상품화, 교육 및 서비스 모델의 적응을 촉구하고 있습니다.

최근 관세 및 무역 역학이 수술 중 방사선 치료 시스템의 조달 결정, 공급망 복원력 및 배치 전략을 어떻게 변화시키는지 평가

의료기기 수입에 영향을 미치는 관세 정책은 공급망, 조달 전략, 첨단 수술 중 방사선 치료 시스템 구축의 경제성까지 파급될 수 있습니다. 관세 인상과 무역 제한으로 인해 수입 장비 및 부품의 상륙 비용이 상승하고, 이로 인해 구매 조직은 구매 시기, 자금 조달 방식, 공급업체 선정 등을 재검토해야 하는 상황에 처하게 됩니다. 조달팀이 수입 비용의 변동을 예상하는 경우, 그 위험을 줄이기 위해 지역적 제조 거점을 가진 공급업체나 다양한 조달 전략을 가진 공급업체를 선호하는 경향을 종종 볼 수 있습니다.

또한 관세는 장비 제조업체 간의 경쟁 역학에 영향을 미칠 수 있습니다. 국내 생산 능력이 확립된 기업이나 현지 조립을 하는 기업은 안정적인 가격과 경쟁력 있는 리드 타임을 유지하는 데 유리할 수 있지만, 국경을 넘는 부품 흐름에 의존하는 기업은 비용을 흡수하거나 구매자에게 전가할 가능성이 있습니다. 관세는 직접적인 가격 효과 외에도 교체 부품 및 소모품에 추가 관세가 부과되면 서비스 및 유지보수 경제성에도 영향을 미쳐 IORT에 대한 투자를 평가하는 의료 시스템의 총 소유 비용에 영향을 미칠 수 있습니다.

임상 운영의 관점에서 볼 때, 조달 지연과 장비 비용 상승은 의료 기관이 프로그램 배포 일정을 늦추거나, 단계적 도입, 공유 서비스 모델 또는 자본 투입을 분산시키는 파트너십을 우선시하도록 유도할 수 있습니다. 또한 이러한 적응은 IORT 서비스가 제공되는 장소와 방법을 변화시킬 수 있으며, 지역 사회에서의 접근과 학술 센터에서의 접근에 영향을 미칠 수 있습니다. 결국, 무역 정책의 변화는 수술 중 방사선 치료 구상의 실행 모멘텀을 유지하기 위해 탄력적인 공급망 계획, 투명한 비용 모델, 전략적 공급업체 참여의 중요성을 강조하고 있습니다.

세분화 분석을 통해 임상 적용, 의료 제공 기술, 의료 환경이 도입 경로와 시술 설계의 선택을 결정하는 방법을 밝혀냈습니다.

세분화 분석을 통해 용도, 기술, 최종사용자 차원에 걸쳐 도입과 임상적 가치의 미묘한 촉진요인이 밝혀졌습니다. 이 기술은 뇌종양, 유방암, 부인과 암에 적용되어 각각 다른 수술 워크 플로우, 선량 요구 사항 및 장비 선택 및 프로토콜 설계에 영향을 미치는 다학제적 조정의 필요성을 제시합니다. 유방암의 경우 유방 보존 전략과 연계된 단분할 접근의 기회를 제공하고, 부인과 악성 종양은 마진 조절이 중요한 복잡한 골반 절제술에서 수술 중 부스팅을 활용할 수 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 수술중 방사선 요법 시장 : 용도별

  • 뇌종양
  • 유방암
  • 부인과암

제9장 수술중 방사선 요법 시장 : 기술별

  • 전자
  • 저에너지 X선
  • 휴대용 X선

제10장 수술중 방사선 요법 시장 : 최종사용자별

  • 외래 수술 센터
  • 암센터
  • 병원

제11장 수술중 방사선 요법 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제12장 수술중 방사선 요법 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제13장 수술중 방사선 요법 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제14장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Carl Zeiss Meditec AG
    • Ion Beam Applications SA
    • iCAD, Inc.
    • Sensus Healthcare, Inc.
    • IntraOp Medical, LLC
    • InfoMedics AG
    • Varian Medical Systems, Inc.
    • Accuray Incorporated
KSA 25.10.21

The Intraoperative Radiation Therapy Market is projected to grow by USD 563.67 million at a CAGR of 12.18% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 224.59 million
Estimated Year [2025] USD 251.77 million
Forecast Year [2032] USD 563.67 million
CAGR (%) 12.18%

Intraoperative radiation therapy represents a convergence of surgical precision and targeted radiotherapeutic delivery, offering a single-encounter treatment paradigm that reduces radiation exposure to surrounding healthy tissue while consolidating care pathways. Over the past decade, advancements in compact radiation delivery systems and refinements in clinical protocols have expanded the range of indications and settings in which IORT can be considered. With ongoing innovation in portable platforms and low-energy devices, IORT is transitioning from highly specialized tertiary centers toward broader adoption across cancer care networks.

Clinical teams increasingly view IORT as a means to streamline perioperative workflows, potentially reducing the need for prolonged external beam radiotherapy in selected patient cohorts. This trend is supported by multidisciplinary collaboration among surgeons, radiation oncologists, medical physicists, and nursing staff, which is essential to integrate IORT into existing surgical and oncologic pathways. Concurrently, device makers have focused on ergonomics, shielding efficiency, and ease of integration to lower procedural complexity and support wider clinical uptake.

Regulatory authorities and professional societies have been refining guidance around patient selection, radiation safety, and training standards to ensure consistent, high-quality implementation. In parallel, health systems are evaluating reimbursement frameworks and care delivery models to balance upfront capital investment with potential operational efficiencies and patient-centric outcomes. Taken together, these dynamics set the stage for strategic decisions by clinical program leaders, device manufacturers, and payers seeking to evaluate the role of IORT within contemporary oncologic care.

Transformative clinical, technological, and care-delivery shifts driving broader consideration and operational integration of intraoperative radiation therapy across health systems

The landscape of intraoperative radiation therapy is undergoing transformative shifts driven by technological miniaturization, procedural standardization, and shifts in care delivery settings. Device innovation has focused on improving dose conformity, reducing shielding requirements, and enabling mobility, which collectively lower barriers to adoption in ambulatory and community hospital environments. As a result, clinical teams can contemplate delivering radiotherapy at the point of tumor resection with greater precision and fewer logistical constraints than in earlier generations of equipment.

Concurrently, evidence synthesis and real-world outcomes reporting have improved clarity around patient selection, enabling more nuanced decisions about which cohorts may derive the most meaningful benefit from a single-session intraoperative approach. These clinical refinements are complemented by evolving training frameworks that emphasize interdisciplinary coordination, safety culture, and reproducible procedural workflows. Because of these developments, institutions that once deferred adoption due to operational complexity are re-evaluating their strategies and piloting IORT programs with cross-functional support.

Financial and policy environments are also shifting, with greater attention to value-based care models and care consolidation. Stakeholders are assessing how IORT might reduce the overall treatment burden for patients by compressing therapy into the operative episode, potentially enhancing patient experience and adherence. Taken together, these forces represent a structural shift in how local control strategies can be integrated into the surgical episode, prompting both providers and manufacturers to adapt commercialization, training, and service models in response.

Assessing how recent tariff and trade dynamics can alter procurement decisions, supply chain resilience, and deployment strategies for intraoperative radiation therapy systems

Tariff policies affecting medical device imports can reverberate across supply chains, procurement strategies, and the economics of deploying advanced intraoperative radiation therapy systems. Increased duties or trade restrictions raise landed costs for imported equipment and components, which in turn can prompt purchasing organizations to re-evaluate acquisition timing, financing arrangements, and vendor selection. When procurement teams anticipate variable import costs, there is often a tendency to prefer suppliers with regional manufacturing footprints or diversified sourcing strategies to mitigate exposure.

Moreover, tariffs can influence the competitive dynamics among device manufacturers. Firms with established domestic production capabilities or localized assembly may be better positioned to maintain stable pricing and competitive lead times, while those reliant on cross-border component flows may absorb costs or pass them on to buyers. In addition to direct price effects, tariffs can affect service and maintenance economics if replacement parts and consumables become subject to additional duties, thereby influencing total cost of ownership considerations for health systems assessing IORT investments.

From a clinical operations perspective, procurement delays or higher equipment costs may slow program rollout timelines, prompting institutions to prioritize phased implementations, shared-service models, or partnerships that spread capital commitments. In turn, these adaptations can change where and how IORT services are offered, with potential implications for access in community settings versus academic centers. Ultimately, trade policy shifts underscore the importance of resilient supply chain planning, transparent cost modeling, and strategic vendor engagement to preserve implementation momentum for intraoperative radiation therapy initiatives.

Key segmentation insights revealing how clinical application, delivery technology, and care setting jointly determine adoption pathways and procedural design choices

Segmentation analysis reveals nuanced drivers of adoption and clinical value across application, technology, and end-user dimensions. Based on Application, the technology is applied across Brain Tumors, Breast Cancer, and Gynecological Cancer, each presenting distinct surgical workflows, dosimetric requirements, and multidisciplinary coordination needs that influence device selection and protocol design. Brain tumor procedures often demand high precision and specialized shielding considerations; breast cancer cases offer opportunities for single-fraction approaches tied to breast conservation strategies; gynecologic malignancies can leverage intraoperative boosts in complex pelvic resections where margin control is critical.

Based on Technology, offerings fall into categories including Electron, Low Energy X Ray, and Portable X Ray, with each modality presenting trade-offs in penetration depth, shielding infrastructure, and operating room integration. Electron-based systems deliver deeper tissue penetration suitable for certain tumor beds but often require more extensive shielding. Low energy X-ray platforms provide surface-weighted dose distributions favorable for select indications and may reduce shielding burdens. Portable X-ray devices prioritize mobility and streamlined workflows, enabling adoption in a wider range of surgical settings but with distinct clinical and dosimetric implications.

Based on End User, typical settings include Ambulatory Surgery Center, Cancer Center, and Hospital, each of which has different capital investment tolerance, staffing models, and patient throughput expectations that shape program feasibility. Ambulatory surgery centers may prioritize compact, low-footprint solutions that minimize capital and operational overhead, while cancer centers and hospitals can invest in more comprehensive infrastructure and multidisciplinary programs. Recognizing these segmentation dimensions helps stakeholders align technology choice, clinical protocols, and service delivery models to institutional capabilities and patient population needs.

Regional dynamics and adoption patterns that influence clinical program development, reimbursement alignment, and distribution strategies across global health markets

Regional perspectives on intraoperative radiation therapy highlight distinct drivers and barriers across major geographies. In the Americas, clinical networks and tertiary centers have been early adopters, supported by robust surgical oncology programs and a focus on consolidating perioperative care; however, variations in reimbursement practices and capital cycles influence where programs scale beyond major metropolitan centers. Transitional initiatives in community hospitals and selected ambulatory settings are increasingly visible as institutions seek to enhance local access to advanced oncologic therapies.

In Europe, Middle East & Africa, heterogeneous healthcare systems produce a mosaic of adoption patterns. High-resource centers in Western Europe have integrated IORT into specialized pathways, while some regions prioritize centralized delivery in referral institutions to concentrate expertise and manage resource utilization. Regulatory harmonization efforts and cross-border clinical collaborations play a role in knowledge dissemination and training, enabling centers of excellence to catalyze broader regional capability building.

In Asia-Pacific, rapid growth of surgical oncology services, investments in cancer infrastructure, and interest in portable and low-footprint devices are driving exploratory programs across both urban and peri-urban hospitals. Diverse payer models and evolving clinical guidelines shape adoption, and partnerships between local distributors and technology providers often determine the feasibility of expanding access. Across all regions, workforce training, radiation safety infrastructure, and alignment of clinical pathways remain central to sustainable program development.

Strategic competitive positioning and service-driven differentiators shaping supplier selection, clinical adoption, and long-term program sustainability in intraoperative radiation therapy

The competitive environment for intraoperative radiation therapy comprises established medical device firms, specialist radiation companies, and emerging entrants focused on novel delivery platforms and services. Players are differentiating through technological advancements such as compact generators, optimized applicators, and integrated imaging or navigation aids that enhance targeting and procedural efficiency. Strategic priorities include reducing shielding burdens, shortening setup times, and enabling seamless integration into the surgical workflow to lower operational friction and improve throughput.

Partnerships and service models are increasingly central to commercial strategies. Suppliers are offering bundled solutions that combine equipment with training programs, clinical support, and maintenance services to help healthcare providers achieve predictable implementation outcomes. Additionally, clinical evidence generation and post-market registries are becoming important competitive levers; firms that can demonstrate reproducible outcomes, procedural efficiency, and safety across diverse practice settings gain credibility with institutional purchasers and clinical champions.

Investment in after-sales support and regional service networks also affects adoption, particularly where uptime and rapid technical response are critical to surgical scheduling. As a result, companies that align product design with practical clinical workflows and offer robust education and service infrastructure are better positioned to influence program design decisions and long-term purchasing relationships.

Actionable recommendations for healthcare executives and clinical leaders to implement intraoperative radiation therapy programs with operational rigor and measurable outcomes

Leaders considering IORT adoption should prioritize actionable steps that align clinical value with operational feasibility. First, establish multidisciplinary governance that includes surgical, radiation oncology, medical physics, nursing, and administrative stakeholders to create reproducible protocols, define safety checklists, and manage training pathways. Early engagement across these groups accelerates consensus on patient selection criteria and procedural responsibilities, reducing implementation risk and ensuring consistent quality of care.

Second, evaluate procurement options that balance device capabilities with institutional workflow constraints. Consider total lifecycle implications including consumables, service contracts, and supply chain resilience. Where trade policy or sourcing risks exist, prioritize vendors with local assembly or diversified supply chains to preserve operational continuity. Pilot programs with phased scale-up can validate clinical and economic assumptions while providing necessary data to refine protocols.

Third, invest in outcome measurement and knowledge dissemination by establishing registries or participating in collaborative data initiatives. Transparent reporting on clinical outcomes, complication rates, and patient experience supports internal decision-making and external stakeholder confidence. Finally, align reimbursement and financial planning with clinical objectives by engaging payers early to articulate the potential patient-centric benefits and to explore case-based or bundled payment approaches that reflect the procedural consolidation enabled by intraoperative radiotherapy.

Transparent research methodology combining primary expert interviews, secondary clinical and regulatory analysis, and triangulated validation to ensure actionable and reliable insights

The research approach underpinning this analysis blended qualitative and quantitative techniques to produce a comprehensive view of intraoperative radiation therapy adoption, supply dynamics, and clinical practice patterns. Primary research included interviews with surgical oncologists, radiation oncologists, medical physicists, procurement leads, and device specialists to capture frontline operational insights and to identify barriers and enablers observed in real-world implementations. Secondary analysis comprised peer-reviewed clinical literature, regulatory documentation, health system reports, and publicly available technical specifications to corroborate clinical and technical assertions.

Triangulation methods were applied to reconcile differing perspectives and to ensure findings reflect both clinical evidence and operational realities. This included cross-referencing interview findings with device specifications and training frameworks, and validating regional adoption narratives against institutional case studies. In addition, scenario analysis was used to explore how supply chain disruptions, policy changes, or technological shifts could influence procurement and deployment choices, with an emphasis on practical implications rather than numerical forecasting.

Finally, quality controls included expert review of draft findings by clinicians and health system administrators to ensure accuracy, relevance, and applicability. The resulting synthesis emphasizes actionable insights, readiness considerations, and strategic options designed to support decision-making for clinical program leaders and commercial stakeholders.

Concluding synthesis on how technological progress and operational readiness together determine the sustainable integration of intraoperative radiation therapy within oncologic care pathways

Intraoperative radiation therapy stands at an inflection point where technological maturity, clinical evidence, and service model innovation converge to offer new pathways for perioperative oncologic care. Devices that reduce operational complexity and shielding requirements, coupled with standardized training and multidisciplinary governance, create realistic pathways for expanded adoption beyond early adopter institutions. This evolution promises improved integration of local control strategies into single-encounter surgical care while also demanding careful attention to implementation logistics and long-term service commitments.

As care delivery and procurement landscapes evolve, stakeholders should approach IORT adoption with a balanced view that weighs clinical potential against operational, regulatory, and supply chain realities. Effective programs will be those that plan comprehensively: defining clinical indications clearly, investing in multidisciplinary training, ensuring device selection aligns with institutional workflows, and establishing mechanisms for outcome measurement and continual improvement. When these elements are combined, IORT can become a reliable component of contemporary oncologic practice, improving the patient experience while fitting into broader strategic objectives for surgical and radiation oncology services.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of real-time intraoperative imaging guidance to optimize radiation targeting and minimize normal tissue exposure
  • 5.2. Adoption of portable intraoperative radiation systems enabling direct tumor bed treatment within operating rooms
  • 5.3. Emergence of low-energy x-ray sources and electronic brachytherapy for precision intraoperative radiation delivery
  • 5.4. Rising clinical evidence supporting combined intraoperative radiation therapy and immunotherapy to improve patient outcomes
  • 5.5. Expanded reimbursement policies and regulatory approvals driving adoption of intraoperative radiation across global markets

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Intraoperative Radiation Therapy Market, by Application

  • 8.1. Brain Tumors
  • 8.2. Breast Cancer
  • 8.3. Gynecological Cancer

9. Intraoperative Radiation Therapy Market, by Technology

  • 9.1. Electron
  • 9.2. Low Energy X Ray
  • 9.3. Portable X Ray

10. Intraoperative Radiation Therapy Market, by End User

  • 10.1. Ambulatory Surgery Center
  • 10.2. Cancer Center
  • 10.3. Hospital

11. Intraoperative Radiation Therapy Market, by Region

  • 11.1. Americas
    • 11.1.1. North America
    • 11.1.2. Latin America
  • 11.2. Europe, Middle East & Africa
    • 11.2.1. Europe
    • 11.2.2. Middle East
    • 11.2.3. Africa
  • 11.3. Asia-Pacific

12. Intraoperative Radiation Therapy Market, by Group

  • 12.1. ASEAN
  • 12.2. GCC
  • 12.3. European Union
  • 12.4. BRICS
  • 12.5. G7
  • 12.6. NATO

13. Intraoperative Radiation Therapy Market, by Country

  • 13.1. United States
  • 13.2. Canada
  • 13.3. Mexico
  • 13.4. Brazil
  • 13.5. United Kingdom
  • 13.6. Germany
  • 13.7. France
  • 13.8. Russia
  • 13.9. Italy
  • 13.10. Spain
  • 13.11. China
  • 13.12. India
  • 13.13. Japan
  • 13.14. Australia
  • 13.15. South Korea

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2024
  • 14.2. FPNV Positioning Matrix, 2024
  • 14.3. Competitive Analysis
    • 14.3.1. Carl Zeiss Meditec AG
    • 14.3.2. Ion Beam Applications SA
    • 14.3.3. iCAD, Inc.
    • 14.3.4. Sensus Healthcare, Inc.
    • 14.3.5. IntraOp Medical, LLC
    • 14.3.6. InfoMedics AG
    • 14.3.7. Varian Medical Systems, Inc.
    • 14.3.8. Accuray Incorporated
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제