시장보고서
상품코드
1837100

스테아린산 시장 : 공급원, 용도, 형태별 - 세계 예측(2025-2032년)

Stearic Acid Market by Source, Application, Form - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 190 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

스테아린산 시장은 2032년까지 CAGR 10.26%로 1,034억 1,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 473억 3,000만 달러
추정 연도 2025년 521억 6,000만 달러
예측 연도 2032 1,034억 1,000만 달러
CAGR(%) 10.26%

스테아린산의 화학, 생산 경로, 산업 및 소비자 채택을 지원하는 응용 기초에 대해 명확하고 권위있는 방향을 제시합니다.

스테아린산은 계면활성제, 증점제, 유화제, 안정제 등 다양한 기능적 다양성으로 인해 다양한 산업 및 소비자 응용 분야에서 중요한 위치를 차지하고 있습니다. 화학적으로는 포화 장쇄 지방산으로 특징지어지며, 다양한 원료로 제조되고 온도와 수소화 상태에 따라 고체 또는 액체 형태로 공급되는 것이 일반적입니다. 이 화합물의 물리화학적 특성(융점, 다른 지방 원료와의 호환성, 제형화 용이성)은 화장품 및 퍼스널케어, 비누 및 세제 제조, 특정 식품 용도, 의약품 제형에 특히 유용합니다.

생산 경로는 다양하며, 동물성 지방으로부터의 전통적인 조달, 식물성 오일의 사용 확대, 대체 성능 특성을 제공하는 완전 합성 경로 등이 있습니다. 각 경로에는 동물성 원료에 대한 윤리적, 규제적 감시, 식물성 원료에 대한 지속가능성 및 추적가능성에 대한 압력, 합성 제조에 대한 자본 및 에너지 집약도와 같은 분명한 운영상의 고려사항이 있습니다. 이러한 트레이드오프는 모든 분야에서 제조사와 배합사의 조달 전략과 제품 포지셔닝을 형성하고 있습니다.

성분의 출처, 제품 안전성, 환경 발자국에 대한 관심이 높아짐에 따라 스테아린산의 역할은 계속 진화하고 있습니다. 가공 기술과 공급망 조직이 동시에 변화함에 따라 안정성, 일관된 품질, 특정 최종 용도의 성능 요구 사항에 맞는 등급을 제조할 수 있는 능력이 더욱 중요해지고 있습니다. 이에 따라 업계 관계자들은 규제 강화와 소비자 선호도 변화에 대응하기 위해 기존 생산 모델과 기술 혁신의 균형을 맞추고 있습니다.

지속가능성, 규제, 기술이 어떻게 융합되어 스테아린산 가치사슬에서 원료 선택, 생산 방식, 상업적 관계를 재구성하고 있는지

스테아린산을 둘러싼 환경은 지속가능성, 규제, 기술 혁신에 따른 압력의 수렴으로 인해 변화하고 있습니다. 더 깨끗한 라벨과 윤리적으로 조달된 원재료에 대한 소비자의 요구는 원산지에 대한 감시의 눈을 높이고, 제조업체가 추적 시스템에 투자하고, 환경에 미치는 영향을 줄이는 대안을 찾도록 유도하고 있습니다. 한편, 여러 관할권의 규제 기관이 공급망 투명성 및 삼림파괴와 관련된 상품 조달에 대한 모니터링을 강화하고 있으며, 이는 배합을 재검토하고 공급업체를 통합하도록 유도하고 있습니다.

촉매, 수소화 기술, 공정 강화의 기술 발전은 스테아린산 등급을 조정하는 능력을 향상시키고, 가공 발자국을 줄이고, 논란의 여지가 있는 원료를 우회하는 합성 경로에 대한 접근을 확대했습니다. 이러한 기술 혁신은 조달 및 품질 관리의 디지털화로 보완되어 수요 변동에 대한 신속한 대응과 재고 최적화를 강화할 수 있습니다.

동시에, 다운스트림 고객들은 특히 촉감, 안정성, 규제 준수가 가장 중요한 화장품과 의약품에서 더 높은 성능의 특수한 등급을 요구하고 있습니다. 이러한 차별화 요구는 제조업체가 배합사와 더욱 긴밀하게 협력하여 기술 지원 및 용도 개발 서비스를 제공하도록 유도합니다. 그 결과, 전략적 우선순위는 단순히 생산량을 늘리는 것에서 지속가능성 증명, 특수 등급 제공, 공급 위험을 줄이고 부가가치를 높이는 업스트림부터 다운스트림까지 긴밀한 관계 구축으로 이동하고 있습니다.

2025년까지 누적된 미국 관세가 스테아린산 조달 및 가치사슬의 회복력에 미치는 업무적, 상업적 영향에 대해 증거에 근거하여 종합적으로 검토합니다.

미국의 2025년 관세 도입은 세계 스테아린산 공급망에 일련의 누적적인 영향을 미쳐 조달 전략, 계약 구조, 재고 계획의 재평가를 촉구하고 있습니다. 무역 조치는 국경을 넘는 흐름의 비용과 복잡성을 증가시키고, 일부 바이어가 가능한 경우 국내 공급업체로 전환하거나, 기존 파트너와의 조건을 재협상하거나, 미국 이외의 무역 경로를 모색하도록 유도할 수 있습니다. 이러한 반응은 리드타임, 원자재 호환성, 현물 구매와 장기 계약의 균형에 영향을 미칩니다.

관세는 또한 기업이 이윤을 확보하고 예측 불가능한 관세에 노출될 기회를 줄이기 위해 수직 통합과 니어쇼어링에 대한 논의를 가속화하는 경향이 있습니다. 국내 원료가 제한적이거나 특정 등급 요건과 호환되지 않는 경우, 기업은 역내 가공의 실행 가능성을 평가하거나 수입 중간 원료와 현지 마무리 가공을 결합한 혼합 조달 접근 방식을 개발하기도 합니다. 한편, 조달팀은 패스스루 조항 및 지수 가격 책정 메커니즘과 같은 계약상 보호 장치를 검토하여 상업적 계약의 예측가능성을 유지합니다.

경영 측면에서는 관세의 영향과 연료비, 운송 제약, 규제 준수와 같은 다른 거시적 요인이 복합적으로 영향을 미치면서 조직은 시나리오 계획을 강화하고 탄력성을 우선시하게 되었습니다. 공급망 리스크 평가가 더욱 세분화되고, 이해관계자들은 공급업체 다변화, 중요 품종의 완충 재고, 주요 고객과의 예측 협력 개선에 투자하여 가장 큰 피해를 입을 수 있는 노출을 줄이기 위해 노력하고 있습니다.

배합 경로, 조달 트레이드오프, 공급업체 선택 결정, 공급원, 용도 복잡성, 물리적 형태가 어떻게 교차하는지 파악, 심층 세분화 인사이트 제공

스테아린산의 상황을 이해하려면 시장이 공급원, 용도, 물리적 형태에 따라 시장이 어떻게 구분되는지, 그리고 이러한 구분이 제품 개발 및 조달 선택에 어떤 영향을 미치는지 명확하게 파악해야 합니다. 공급원에 따라 업계는 동물성 지방, 합성 생산 경로, 식물성 기름에서 유래한 공급원을 구분하며, 각각은 추적성, 지속가능성 증명, 가공 경로에 대한 명확한 고려를 의미합니다. 동물성 스테아린산은 일부 관할권에서 윤리적 조사 및 규제 제약에 직면하는 경우가 많으며, 식물성 원료는 책임감 있는 토지 이용을 보장하고 지속가능한 조달에 대한 소비자의 기대에 부응하기 위해 공급업체에 대한 철저한 감사가 필요합니다. 합성 루트는 구성을 제어할 수 있지만, 자본과 에너지 집약도가 높을 수 있으며, 비용 구조와 라이프사이클 풋프린트에 영향을 미칠 수 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 스테아린산 시장 : 소스별

  • 동물
  • 합성
  • 채소

제9장 스테아린산 시장 : 용도별

  • 화장품·퍼스널케어
    • 헤어케어
      • 컨디셔너
      • 샴푸
    • 스킨케어
      • 크림
      • 로션
  • 음식
    • 유화제
      • 베이킹
      • 유제품
    • 텍스처라이저
      • 제빵 제품
      • 제과
  • 의약품
    • 경구제
      • 캡슐
      • 태블릿
    • 국소 제제
      • 연고
  • 비누와 세제
    • 고형 비누
      • 세탁 비누
      • 화장실 비누
    • 액체 세제
      • 홈케어
      • 산업

제10장 스테아린산 시장 : 형태별

  • 액체
  • 고체

제11장 스테아린산 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제12장 스테아린산 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제13장 스테아린산 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제14장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Emery Oleochemicals GmbH
    • BASF SE
    • Wilmar International Limited
    • Croda International Plc
    • KLK OLEO Sdn Bhd
    • Oleon NV
    • Nouryon Surface Chemistry B.V.
    • Godrej Industries Limited
    • Kao Corporation
    • NOF Corporation
KSM 25.10.21

The Stearic Acid Market is projected to grow by USD 103.41 billion at a CAGR of 10.26% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 47.33 billion
Estimated Year [2025] USD 52.16 billion
Forecast Year [2032] USD 103.41 billion
CAGR (%) 10.26%

A clear and authoritative orientation to stearic acid chemistry, production pathways, and the application fundamentals that underpin industrial and consumer adoption

Stearic acid occupies an essential position across a range of industrial and consumer applications due to its functional versatility as a surfactant, thickening agent, emulsifier, and stabilizer. Chemically characterized as a saturated long-chain fatty acid, it is produced from a variety of feedstocks and is commonly supplied in either solid or liquid forms depending on temperature and hydrogenation state. The compound's physicochemical attributes-melting point, compatibility with other fatty materials, and ease of formulation-make it particularly valuable for cosmetics and personal care, soap and detergent production, certain food applications, and pharmaceutical preparations.

Production pathways vary, with traditional sourcing from animal fats, expanded use of vegetable-derived oils, and fully synthetic routes that provide alternative performance characteristics. Each pathway carries distinct operational considerations: ethical and regulatory scrutiny for animal-derived inputs, sustainability and traceability pressures for vegetable feedstocks, and capital and energy intensity for synthetic manufacture. These trade-offs shape procurement strategies and product positioning for manufacturers and formulators across sectors.

As attention to ingredient provenance, product safety, and environmental footprint intensifies, stearic acid's role continues to evolve. Parallel shifts in processing technology and supply chain organization have increased the emphasis on stability, consistent quality, and the ability to produce grades tailored to specific end-use performance requirements. Consequently, industry participants are balancing legacy production models with innovations designed to meet tightening regulatory expectations and shifting consumer preferences.

How sustainability, regulation, and technology are converging to reshape feedstock choices, production methods, and commercial relationships in the stearic acid value chain

The stearic acid landscape is undergoing transformative shifts driven by converging pressures from sustainability, regulation, and technological innovation. Consumer demand for cleaner labels and ethically sourced ingredients has elevated scrutiny of feedstock origins, prompting manufacturers to invest in traceability systems and to seek alternatives that reduce environmental impact. Meanwhile, regulatory bodies in multiple jurisdictions are intensifying oversight on supply chain transparency and deforestation-linked commodity sourcing, which is catalyzing reformulations and supplier consolidation.

Technological advances in catalysis, hydrogenation techniques, and process intensification have improved the ability to tailor stearic acid grades, reduce processing footprints, and expand access to synthetic routes that bypass contentious feedstocks. These innovations are complemented by digitalization across procurement and quality control, enabling more rapid response to demand fluctuations and enhanced inventory optimization.

At the same time, downstream customers are specifying higher-performance and specialty grades, particularly in cosmetics and pharmaceuticals where texture, stability, and regulatory compliance are paramount. This demand for differentiation encourages producers to collaborate more closely with formulators and to offer technical support and application development services. As a result, strategic priorities are shifting from simply scaling volume to demonstrating sustainability credentials, delivering specialized grades, and creating closer upstream-downstream relationships that de-risk supply and add value.

An evidence-based synthesis of the operational and commercial consequences that cumulative 2025 United States tariffs impose on stearic acid sourcing and value chain resilience

The introduction of tariffs by the United States in 2025 has created a set of cumulative effects across global stearic acid supply chains, prompting reassessment of sourcing strategies, contract structures, and inventory planning. Trade measures increase the cost and complexity of cross-border flows, encouraging some buyers to pivot toward domestic suppliers where available, to renegotiate terms with existing partners, or to explore non-U.S. trade lanes. These responses have implications for lead times, raw material compatibility, and the balance between spot purchases and longer-term agreements.

Tariffs also tend to accelerate conversations about vertical integration and nearshoring as companies seek to secure margins and reduce exposure to unpredictable duties. Where domestic feedstocks are limited or incompatible with specific grade requirements, firms are assessing the viability of in-region processing or developing blended sourcing approaches that combine imported intermediates with local finishing operations. Meanwhile, procurement teams are exploring contractual protections such as pass-through clauses and indexed pricing mechanisms to maintain predictability in commercial arrangements.

Operationally, the combined impact of tariffs with other macro drivers-fuel costs, shipping constraints, and regulatory compliance-has pushed organisations to strengthen scenario planning and to prioritize resilience. Supply chain risk assessments have become more granular, and stakeholders are investing in supplier diversification, buffer inventories for critical grades, and improved forecasting collaboration with key customers to mitigate the most damaging exposures.

Deep segmentation insights exposing how source, application complexity, and physical form intersect to determine formulation pathways, sourcing trade-offs, and supplier selection

Understanding the stearic acid landscape requires a clear view of how the market is segmented by source, application, and physical form, and how those divisions influence product development and procurement choices. Based on source, the industry differentiates supplies originating from animal fats, synthetic production routes, and vegetable oils, each of which implies distinct considerations for traceability, sustainability credentials, and processing pathways. Animal-derived stearic acid often faces ethical scrutiny and regulatory constraints in some jurisdictions, while vegetable-derived inputs call for robust supplier audits to ensure responsible land use and to meet consumer expectations for sustainable sourcing. Synthetic routes provide control over composition but can involve higher capital and energy intensity, affecting cost structures and lifecycle footprints.

Based on application, stearic acid serves diverse roles across cosmetics and personal care, food, pharmaceuticals, and soap and detergent segments. Within cosmetics and personal care, there is further refinement between hair care and skin care applications; hair care formulations split into conditioners and shampoos, and skin care formulations are developed for creams and lotions where texture and sensory properties are critical. Food applications include functions as an emulsifier and texturizer, with emulsification use cases subdivided into baking and dairy contexts and texturizing roles found in baked goods and confectionery. Pharmaceuticals demand stringent purity and regulatory compliance, with oral medications divided into capsules and tablets and topical preparations classified into gels and ointments. Soap and detergent formats are distinguished between bar soap and liquid detergent, with bar soap branching into laundry and toilet variants and liquid detergent further distinguished by home care and industrial formulations. Based on form, products are supplied as liquid or solid grades, influencing storage, handling, and compatibility with processing equipment.

This layered segmentation drives how producers prioritize grade development, allocate technical service resources, and position sustainability claims for different customer segments. It also affects how procurement teams evaluate substitute options when feedstock constraints or trade barriers alter availability of desired grades.

A regional lens on supply, regulation, and demand dynamics that clarifies strategic priorities across the Americas, Europe, Middle East & Africa, and Asia-Pacific

Regional dynamics exert a powerful influence on the stearic acid value chain, and appreciating these differences is essential for effective strategy. In the Americas, feedstock availability, established oleochemical infrastructure, and proximity to major consumer markets shape procurement strategies and foster innovation in specialty grades. North and South American supply networks can vary significantly in feedstock mix and regulatory environment, with logistics and trade relationships dictating competitive positioning.

In Europe, Middle East & Africa, regulatory intensity and sustainability expectations are often heightened, prompting rigorous traceability systems and certification schemes. This region's regulatory frameworks and consumer preferences encourage the adoption of low-deforestation supply chains and heightened labeling transparency, which in turn influence supplier selection and product premiuming. Diverse geographies within the region also create differentiated demand patterns, from high-value personal care formulations to industrial applications requiring consistent commodity-grade inputs.

Asia-Pacific's role is defined by both large-scale raw material production and rapidly growing downstream consumption. The region's abundant vegetable oil feedstocks, expansive manufacturing capacity, and dynamic consumer markets support a broad spectrum of stearic acid grades. However, regulatory regimes, tariff structures, and regional trade agreements can produce complex sourcing calculations for global players. Across all regions, the interplay of local regulations, feedstock ecosystems, and end-user demand profiles requires companies to adopt region-specific strategies while maintaining overarching global consistency in quality and sustainability practices.

How producers and suppliers are structuring portfolios, partnerships, and technical capabilities to differentiate offerings and secure resilient value chain positions

Company strategies in the stearic acid ecosystem increasingly revolve around capturing differentiated value through product grade specialization, sustainability commitments, and tighter collaboration with downstream customers. Leading producers balance investments in process efficiency with targeted R&D to develop grades that address emerging formulation needs in cosmetics, pharmaceuticals, and specialty detergents. At the same time, firms are pursuing partnerships with feedstock suppliers to enhance traceability and to secure preferential access to sustainable vegetable oils or to certified animal-sourced inputs where permitted.

Operational excellence programs focusing on yield improvement, energy efficiency, and waste reduction are core levers for maintaining competitiveness, particularly where synthetic production carries higher costs. Some companies are experimenting with circular approaches, valorizing by-products and integrating waste minimization strategies into manufacturing footprints. Commercially, manufacturers that can offer application development support, regulatory documentation, and co-innovation services with strategic customers tend to capture premium positioning.

Strategic transactions and joint ventures have been used to diversify capabilities, enter new regional markets, and obtain feedstock security. However, effective execution depends on integrating technical competencies, aligning quality systems, and communicating sustainability credentials consistently across markets. For suppliers and buyers alike, these corporate choices influence negotiation leverage, lead-time reliability, and the capacity to respond quickly to shifts in end-use demand.

Action-oriented strategies for senior executives to enhance feedstock resilience, capture product premium, and operationalize sustainability commitments across the stearic acid chain

Industry leaders can take a series of practical steps to strengthen resilience, improve sustainability performance, and capture higher margins across the stearic acid value chain. First, diversifying feedstock sources and developing flexible processing lines will reduce exposure to trade disruptions and tariff impacts while enabling rapid reformulation in response to customer requirements. Equally important is investing in traceability systems and supplier audits that provide credible sustainability credentials and support claims made to consumers and regulators.

Second, prioritizing R&D to create specialty and application-specific grades-such as low-iodine pharmaceutical grades or texturizers optimized for clean-label food formulations-can open higher-value channels. Pairing technical support services with product offerings deepens customer relationships and protects against commoditization. Third, enhancing operational efficiency through energy-saving process improvements, improved catalyst utilization, and waste minimization will lower cost curves and reduce lifecycle environmental impacts.

Fourth, commercial teams should renegotiate contracts to include flexible pricing clauses and to formalize contingency arrangements for tariff-related cost shocks. Scenario planning and stress testing of supplier networks should be institutionalized to ensure rapid response capability. Finally, engagement with regulators and industry associations will help shape pragmatic compliance pathways and ensure that policy changes are anticipated and incorporated into strategic planning.

A transparent and mixed-method research framework combining expert interviews, technical review, and data triangulation to ensure credible and actionable stearic acid insights

The research underpinning these insights combined primary and secondary approaches designed to ensure robustness and relevance. Primary research comprised structured interviews with technical leaders, procurement heads, and formulation specialists across multiple downstream end uses, supplemented by site visits to production and finishing facilities where possible. These engagements provided qualitative depth on grade requirements, processing constraints, and customer service expectations.

Secondary analysis included technical literature reviews, regulatory filings, and company disclosures to validate claims about processing technologies, sustainability initiatives, and certification frameworks. Data triangulation was performed by cross-referencing primary interview findings with publicly available manufacturing and regulatory information, ensuring that narrative conclusions reflected observed practices rather than single-source assertions.

Methodological safeguards included transparent documentation of interview protocols, the use of checklists for assessing supplier traceability claims, and peer review of analytical outputs by subject-matter experts. Limitations are acknowledged where certain proprietary operational metrics were unavailable; in such cases, the analysis relied on representative comparable practices and conservative inference. The approach prioritized actionable insight and practitioner relevance, favoring clarity and replicability in how conclusions were reached.

A concise synthesis of the critical takeaways linking feedstock dynamics, regulatory drivers, and application trends to strategic priorities for stakeholders in the stearic acid ecosystem

In summary, stearic acid remains a critical industrial ingredient whose role is evolving under the influence of sustainability expectations, regulatory change, and technological progress. The interplay between feedstock provenance, product grade differentiation, and end-use requirements determines commercial outcomes and supplier selection. Companies that align operational efficiency with transparent sourcing practices and that invest in application-specific innovation will be best positioned to meet tightening regulatory demands and shifting consumer preferences.

Trade measures and tariff shifts have heightened the importance of flexible sourcing strategies and robust contingency planning. Firms that proactively diversify suppliers, pursue nearshoring where practical, and secure contractual protections can more effectively manage cost volatility and lead-time disruption. Meanwhile, the growing demand for specialized grades in cosmetics and pharmaceuticals underscores the value of pairing technical service with product offerings to sustain margin resilience.

Ultimately, stakeholders that combine rigorous traceability, targeted R&D, and pragmatic commercial practices will navigate the current period of change more successfully. The conclusions here are intended to guide strategic prioritization and to inform operational adjustments that translate industry dynamics into concrete, executable plans.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Growing adoption of bio-based stearic acid from palm oil mill effluent refining processes for sustainable supply chains
  • 5.2. Integration of stearic acid as a functional additive in high-performance lithium-ion battery separators for energy storage innovations
  • 5.3. Rising use of stearic acid derived biodegradable lubricants in automotive greases to meet stringent emission regulations
  • 5.4. Advances in microencapsulation techniques employing stearic acid for controlled release in pharmaceutical and nutraceutical formulations
  • 5.5. Increasing demand for stearic acid based slip agents in biodegradable plastic film manufacturing to improve processing efficiency
  • 5.6. Development of stearic acid stabilized nanoparticle emulsions for enhanced delivery in cosmetic and personal care applications
  • 5.7. Strategic vertical integration by major stearic acid producers to secure feedstock from upstream fatty acid processing plants

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Stearic Acid Market, by Source

  • 8.1. Animal
  • 8.2. Synthetic
  • 8.3. Vegetable

9. Stearic Acid Market, by Application

  • 9.1. Cosmetics & Personal Care
    • 9.1.1. Hair Care
      • 9.1.1.1. Conditioners
      • 9.1.1.2. Shampoos
    • 9.1.2. Skin Care
      • 9.1.2.1. Creams
      • 9.1.2.2. Lotions
  • 9.2. Food
    • 9.2.1. Emulsifier
      • 9.2.1.1. Baking
      • 9.2.1.2. Dairy
    • 9.2.2. Texturizer
      • 9.2.2.1. Baked Goods
      • 9.2.2.2. Confectionery
  • 9.3. Pharmaceuticals
    • 9.3.1. Oral Medications
      • 9.3.1.1. Capsules
      • 9.3.1.2. Tablets
    • 9.3.2. Topical Preparations
      • 9.3.2.1. Gels
      • 9.3.2.2. Ointments
  • 9.4. Soap & Detergent
    • 9.4.1. Bar Soap
      • 9.4.1.1. Laundry Soap
      • 9.4.1.2. Toilet Soap
    • 9.4.2. Liquid Detergent
      • 9.4.2.1. Home Care
      • 9.4.2.2. Industrial

10. Stearic Acid Market, by Form

  • 10.1. Liquid
  • 10.2. Solid

11. Stearic Acid Market, by Region

  • 11.1. Americas
    • 11.1.1. North America
    • 11.1.2. Latin America
  • 11.2. Europe, Middle East & Africa
    • 11.2.1. Europe
    • 11.2.2. Middle East
    • 11.2.3. Africa
  • 11.3. Asia-Pacific

12. Stearic Acid Market, by Group

  • 12.1. ASEAN
  • 12.2. GCC
  • 12.3. European Union
  • 12.4. BRICS
  • 12.5. G7
  • 12.6. NATO

13. Stearic Acid Market, by Country

  • 13.1. United States
  • 13.2. Canada
  • 13.3. Mexico
  • 13.4. Brazil
  • 13.5. United Kingdom
  • 13.6. Germany
  • 13.7. France
  • 13.8. Russia
  • 13.9. Italy
  • 13.10. Spain
  • 13.11. China
  • 13.12. India
  • 13.13. Japan
  • 13.14. Australia
  • 13.15. South Korea

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2024
  • 14.2. FPNV Positioning Matrix, 2024
  • 14.3. Competitive Analysis
    • 14.3.1. Emery Oleochemicals GmbH
    • 14.3.2. BASF SE
    • 14.3.3. Wilmar International Limited
    • 14.3.4. Croda International Plc
    • 14.3.5. KLK OLEO Sdn Bhd
    • 14.3.6. Oleon NV
    • 14.3.7. Nouryon Surface Chemistry B.V.
    • 14.3.8. Godrej Industries Limited
    • 14.3.9. Kao Corporation
    • 14.3.10. NOF Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제