시장보고서
상품코드
1837259

조직공학 시장 : 제품 유형, 기술, 재료, 용도, 최종사용자별 - 세계 예측(2025-2032년)

Tissue Engineering Market by Product Type, Technology, Material, Application, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 195 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

조직공학 시장은 2032년까지 CAGR 19.36%로 2,110억 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 512억 1,000만 달러
추정 연도 2025년 613억 4,000만 달러
예측 연도 2032 2,110억 달러
CAGR(%) 19.36%

조직공학의 번역적 진보를 형성하는 기술적, 임상적, 조직적 힘의 수렴을 명확히 하는 종합적인 배경 설정

조직공학은 생물학, 재료과학, 공학의 교차점에 위치하며, 학문적 개념 증명에서 임상적으로 의미 있는 개입으로 빠르게 전환하고 있습니다. 비계 설계, 세포 조달 및 확대, 첨단 제조 기술의 발전은 손상된 인체 조직을 복구, 대체 및 강화할 수 있는 잠재력을 총체적으로 향상시키고 있습니다. 이 소개에서는 가까운 미래의 기회를 정의하는 기술적 구성요소와 번역적 장벽, 그리고 실험실의 돌파구를 신뢰할 수 있는 환자 치료 솔루션으로 전환하기 위해 조직이 취해야 할 전략적 선택에 대해 설명합니다.

이어진 서술은 기술적 성숙과 규제 진화가 어떻게 새로운 상업화의 길을 열어가고 있는지를 강조하는 한편, 재현성, 공정 확장성, 통합 품질 시스템과 같은 강력한 병목 현상도 강조하고 있습니다. 이 책에서는 안전하고 일관된 임상 결과를 지원하기 위해 의료기기 및 생물학적 제제 규제 프레임워크와 제조 관리를 조화시키는 것이 중요하다는 점을 강조합니다. 또한, 학술센터, 개발 및 제조 위탁기관, 임상 네트워크 간의 파트너십이 어떻게 혁신 파이프라인을 재구성하고, 복잡한 구조의 임상 진입 시간을 단축하며, 증거 창출을 위한 새로운 모델을 창출하고 있는지에 대한 소개도 함께 이루어집니다.에 대해서도 기대감을 나타내고 있습니다.

이 첫 번째 섹션은 어떤 기술이 일상적인 임상적 활용을 달성하고 어떤 기술이 탐색적 수준에 머물러 있는지를 결정하는 기술, 임상, 조직 등 수렴하는 힘을 밝혀냄으로써 독자를 현재 상황에 놓이게 합니다. 이 장에서는 다음 장에서 다룰 주제의 우선순위를 정하고, 이해관계자들이 당면한 번역 장벽과 광범위한 채택을 위해 필요한 전략적 투자를 모두 고려하도록 촉구합니다.

기술적, 재료적, 규제적, 상업적 변곡점이 조직공학의 혁신 속도를 가속화하고 있습니다.

최근 조직공학 분야에서 가능한 것을 재정의하는 몇 가지 혁신적인 변화가 일어나고 있습니다. 첫째, 첨단 제작법, 특히 정밀한 세포 배치를 수반하는 멀티 머티리얼 3D 바이오프린팅의 융합으로 원래의 조직 미세구조를 보다 충실하게 재현한 구조물이 가능해졌습니다. 이러한 기술적 진보는 기능적 생존력 향상, 면역원성 위험 감소, 세포 조달 개선, 세포은행 전략, 세포공학 접근법 등으로 보완되고 있습니다.

둘째, 재료과학은 불활성 스캐폴더를 넘어 능동적으로 세포의 거동에 영향을 미치고, 센싱 기능을 통합한 다기능성 구조물로 진화하고 있습니다. 스마트 바이오소재와 복합 구조물은 현재 조절 가능한 분해, 국소 생리활성 인자 전달, 혈관신생을 촉진하는 인터페이스 설계를 가능하게 하고 있습니다. 셋째, 규제와 상환제도가 적응의 조짐을 보이고 있습니다. 패스웨이 파일럿과 조건부 승인은 초기 임상 적용을 장려하는 한편, 장기적인 유용성과 안전성을 검증하기 위해 시판 후 엄격한 근거를 마련할 것을 요구하고 있습니다.

마지막으로, 제조업체, 임상 네트워크, 지불자가 제품, 시술, 애프터케어를 결합한 새로운 가치 기반 계약 및 서비스 지향적 제공을 모색하면서 비즈니스 모델이 변화하고 있습니다. 이러한 상업적 혁신은 이해관계자 간의 인센티브를 일치시킴으로써 도입 장벽을 낮추고 섹터 간 파트너십을 형성하는 것이 전략적으로 중요하다는 것을 강조합니다. 이러한 혁신적 변화로 인해 번역 속도가 증가하는 환경이 조성되고 있지만, 그 성공 여부는 기술 개발, 임상 검증, 상업적 출시에 걸친 통합적 사고에 달려 있습니다.

2025년 관세 조치가 조직 공학의 조달, 제조 거점 결정, 공급업체 다변화, 국경 간 협력 전략에 어떤 변화를 가져왔는지 증거에 근거하여 살펴봅니다.

미국이 2025년에 시행한 관세 조치는 조직공학의 가치사슬 전체에 파급되는 일련의 공급망과 조달 역학을 도입했습니다. 과거에는 비용 최적화를 우선시했던 조달 전략도 이제는 특정 핵심 부품 및 수입 자재의 수입 비용 상승을 고려하여 재조정할 필요가 있습니다. 조직은 공급업체 집중화 위험을 재평가하고, 대체 지역에서의 공급업체 인증 프로그램을 가속화하고, 연구 및 임상 제조 운영의 연속성을 유지하기 위해 재고 버퍼를 늘리는 방식으로 대응했습니다.

이러한 변화는 제조 거점 결정에도 영향을 미쳐 관세로 인한 비용 변동에 따른 영향을 최소화하기 위해 니어쇼어링과 전략적 이중 소싱이 다시금 강조되고 있습니다. 수직적으로 통합된 역량을 가진 기업들은 주요 공정을 내재화할 수 있는 기회를 찾았고, 외부 전문 공급업체에 의존하는 기업들은 보다 엄격한 계약 보호와 재고 계획을 추구했습니다. 이와 병행하여, 개발사는 가능한 한 현지에서 구할 수 있는 원료나 관세 면제 원료를 우선적으로 사용하는 원료 선택 전략을 취했으며, 규제 경로를 훼손하지 않고 기능적 동등성을 검증하기 위한 원료 대체 연구를 강화했습니다.

국경을 초월한 공동 연구는 상업적 조건의 재검토와 보다 명확한 공동 위험분담 구조를 통해 적응하여 번역 프로그램이 일정대로 진행될 수 있도록 했습니다. 투자자와 기업 개발팀은 변경된 비용 구조와 잠재적 타임라인에 미치는 영향을 반영하기 위해 실사 전제를 재조정했습니다. 그 결과, 조직공학 생태계는 점점 더 탄력적으로 변화하고 있으며, 공급업체 다변화, 제조 현지화, 무역 정책 변화에 따른 계약상 리스크 배분도 더욱 신중하게 이루어지고 있습니다.

제품 카테고리, 기술 플랫폼, 재료 등급, 응용 분야 배경, 최종사용자 역학, 실용적인 개발 및 상용화 경로, 고해상도 세분화별 인사이트를 제공합니다.

세분화는 기술 역량을 임상 및 상업 전략에 반영하기 위한 실용적인 렌즈를 제공하며, 각 축이 제품 개발 경로에 어떤 영향을 미치는지 이해하는 것이 필수적입니다. 제품 유형별로는 복잡한 혈역학 통합과 장기 내구성이 최우선인 심혈관계 구조물, 세포 구성과 미세환경 제어에 있어 매우 높은 정밀도가 요구되는 신경계 구조물, 중력 저항과 뼈 통합을 우선시하는 정형외과 및 뼈 솔루션, 장벽 회복과 심미적 및 기능적 결과의 균형을 이루는 피부 및 상처 치유 제품 등의 카테고리가 주목받고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 조직공학 시장 : 제품 유형별

  • 심혈관계
  • 뉴럴
  • 정형외과·뼈
  • 피부와 상처 치유

제9장 조직공학 시장 : 기술별

  • 3D 바이오프린팅
    • 압출
    • 잉크젯
    • 레이저 어시스트
  • 셀 기반 조직공학
  • 탈세포화

제10장 조직공학 시장 : 소재별

  • 세라믹 기반
  • 복합 기반
  • 폴리머 기반
    • 천연 폴리머
    • 합성 폴리머

제11장 조직공학 시장 : 용도별

  • 심혈관계
  • 뉴럴
  • 정형외과·뼈
  • 피부와 상처 치유

제12장 조직공학 시장 : 최종사용자별

  • 병원과 클리닉
  • OEM
  • 조사기관

제13장 조직공학 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 조직공학 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 조직공학 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Medtronic plc
    • Stryker Corporation
    • Terumo Corporation
    • Merck KGaA
    • Lonza Group AG
    • Corning Incorporated
    • Thermo Fisher Scientific Inc.
    • Integra LifeSciences Corporation
    • Biotime Inc.
    • CryoLife, Inc.
KSM

The Tissue Engineering Market is projected to grow by USD 211.00 billion at a CAGR of 19.36% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 51.21 billion
Estimated Year [2025] USD 61.34 billion
Forecast Year [2032] USD 211.00 billion
CAGR (%) 19.36%

Comprehensive context setting that clarifies the converging technological, clinical, and organizational forces shaping translational progress in tissue engineering

Tissue engineering sits at the intersection of biology, materials science, and engineering, and it is rapidly moving from academic proof-of-concept work toward clinically meaningful interventions. Advances in scaffold design, cell sourcing and expansion, and advanced fabrication techniques have collectively increased the plausibility of restoring, replacing, or enhancing damaged human tissues. This introduction frames the technical building blocks and translational barriers that define near-term opportunities and the strategic choices organizations must make to convert laboratory breakthroughs into reliable patient solutions.

The narrative that follows emphasizes how technological maturity and regulatory evolution are unlocking new commercialization pathways, while also underlining persistent bottlenecks such as reproducibility, process scalability, and integrated quality systems. It highlights the importance of harmonizing device and biologic regulatory frameworks with manufacturing controls to support safe and consistent clinical outcomes. In addition, the introduction sets expectations for how partnerships between academic centers, contract development and manufacturing organizations, and clinical networks are reshaping the innovation pipeline, reducing time-to-clinic for complex constructs, and creating new models for evidence generation.

Taken together, this opening section situates readers in the current landscape by clarifying the converging forces-technical, clinical, and organizational-that will determine which technologies achieve routine clinical use and which remain exploratory. It establishes the thematic priorities for subsequent sections and invites stakeholders to consider both the immediate translational barriers and the strategic investments required for broader adoption

A forward-looking synthesis of technological, materials, regulatory, and commercial inflection points that are collectively accelerating translational velocity in tissue engineering

The recent period has seen several transformative shifts that are redefining what is possible within tissue engineering, and these shifts are cumulative rather than isolated. First, the convergence of advanced fabrication methods, notably multi-material 3D bioprinting with precise cell placement, is enabling constructs that more closely replicate native tissue microarchitecture. These technical advances are complemented by improved cell sourcing, cell banking strategies, and cell engineering approaches that increase functional viability and reduce immunogenicity risks.

Second, materials science has evolved beyond inert scaffolding to multifunctional constructs that actively influence cell behavior and integrate sensing capabilities. Smart biomaterials and composite constructs now allow for tunable degradation, localized bioactive factor delivery, and interface designs that promote vascularization. Third, regulatory and reimbursement systems are showing signs of adaptation; pathway pilots and conditional approvals are encouraging earlier clinical exposure while demanding rigorous post-market evidence generation to validate long-term benefit and safety.

Finally, business models are shifting as manufacturers, clinical networks, and payers explore new value-based arrangements and service-oriented offerings that combine product, procedure, and follow-on care. These commercial innovations reduce barriers to adoption by aligning incentives across stakeholders, and they underscore the strategic importance of forming cross-sector partnerships. Together, these transformative shifts are creating an environment in which translational velocity increases but where success will hinge on integrated thinking across technology development, clinical validation, and commercial deployment

An evidence-driven exploration of how 2025 tariff measures have reshaped sourcing, manufacturing footprint decisions, supplier diversification, and cross-border collaboration strategies in tissue engineering

The United States' tariff actions implemented in 2025 introduced a set of supply chain and sourcing dynamics that reverberate across the tissue engineering value chain. Procurement strategies that previously favored cost optimization now require recalibration to account for elevated inbound costs on certain critical components and imported materials. Organizations responded by reassessing supplier concentration risks, accelerating supplier qualification programs in alternative geographies, and in many cases increasing inventory buffers to maintain continuity of research and clinical manufacturing operations.

These shifts have influenced decisions on manufacturing footprint, with a renewed emphasis on nearshoring and strategic dual-sourcing to minimize exposure to tariff-induced cost volatility. Firms with vertically integrated capabilities found opportunities to internalize key process steps, whereas those reliant on external specialty suppliers have pursued more rigorous contractual protections and inventory planning. In parallel, developers prioritized material selection strategies that favor locally available or tariff-exempt inputs where possible, and they intensified material substitution research to validate functional parity without compromising regulatory pathways.

Cross-border collaborations adapted through revised commercial terms and more explicit joint-risk sharing mechanisms to ensure that translational programs remained on schedule. Investors and corporate development teams recalibrated diligence assumptions to reflect altered cost structures and potential timeline impacts. The net effect is a tissue engineering ecosystem that is increasingly resilient but also more deliberate about supplier diversification, manufacturing localization, and contractual risk allocation in response to trade policy changes

High-resolution segmentation insights linking product categories, technological platforms, material classes, application contexts, and end user dynamics to practical development and commercialization pathways

Segmentation provides a practical lens to translate technological capability into clinical and commercial strategy, and it is vital to understand how each axis influences product development pathways. Based on product type, attention centers on categories such as cardiovascular constructs where complex hemodynamic integration and long-term durability are paramount, neural constructs that demand extreme precision in cellular composition and microenvironment control, orthopedic and bone solutions which prioritize load-bearing mechanics and osteointegration, and skin and wound healing products that balance barrier restoration with aesthetic and functional outcomes.

Based on technology, innovation trajectories differ markedly between 3D bioprinting, cell-based tissue engineering, and decellularization, with each approach bringing distinct validation, manufacturing, and regulatory implications. Within 3D bioprinting, submodalities such as extrusion, inkjet, and laser-assisted printing offer trade-offs between resolution, throughput, and bio-ink compatibility that directly inform process selection and scale-up strategy. Based on material, ceramic-based, composite-based, and polymer-based options drive construct performance at the interface of mechanics and biology, with polymer-based solutions further differentiated by natural polymers that offer biological mimicry and synthetic polymers that provide tunable mechanical and process characteristics.

Based on application, the clinical context-whether cardiovascular, neural, orthopedic and bone, or skin and wound healing-dictates endpoint selection, clinical trial design, and required post-market surveillance. Based on end user, adoption pathways vary across hospitals and clinics that focus on procedural integration and reimbursement, OEMs that concentrate on product standardization and supply chain integration, and research institutes that prioritize flexibility and open innovation. Understanding these segmentation axes enables decision-makers to align R&D roadmaps, manufacturing investments, and regulatory strategies with the specific technical and commercial constraints of their chosen pathway

Comparative regional perspectives that illuminate how distinctive regulatory, manufacturing, clinical, and investment landscapes influence strategy across the Americas, Europe Middle East & Africa, and Asia-Pacific

Regional dynamics shape where technologies are developed, validated, manufactured, and adopted, and understanding these differences is critical for strategic planning. In the Americas, concentrated clinical research capacity, robust private investment ecosystems, and established regenerative medicine regulatory frameworks support rapid translational activity, while supply chain integration with regional manufacturing hubs enables scalable process development. This environment favors partnerships that combine academic innovation with commercial development capabilities and highlights the importance of payer engagement strategies to secure procedural reimbursement pathways.

In Europe, Middle East & Africa, a mosaic of regulatory regimes and national reimbursement systems introduces both complexity and opportunity. European regulatory harmonization efforts and strong translational research networks support collaborative clinical studies, whereas regional disparities in manufacturing infrastructure and healthcare funding necessitate tailored go-to-market approaches. Policy incentives and public-private initiatives in select countries create favorable conditions for localized manufacturing and centers of excellence that can serve broader regional needs.

In Asia-Pacific, rapid investments in advanced manufacturing, favorable industrial policy frameworks, and a growing clinical trial capacity are accelerating adoption of novel regenerative therapies. Strong domestic demand, combined with an expanding pool of skilled technical talent and supportive incentives for biotech manufacturing, makes the region attractive for scaling production and establishing commercial operations. Across all regions, strategic entrants balance proximity to key clinical sites with considerations about regulatory alignment, intellectual property protection, and supply chain resilience to optimize pathway selection and timing

Strategic company behaviors and collaboration patterns that reveal how platform builders, therapeutic specialists, and integrated partnerships are competing to deliver reliable clinical-grade tissue engineering solutions

Leading companies and emerging organizations are shaping the competitive landscape through distinct strategic behaviors that reflect their technology focus and commercialization ambitions. Some entities prioritize platform technologies such as modular bioprinting systems or standardized cell expansion platforms, positioning themselves as technology enablers that serve multiple therapeutic applications. Others concentrate on end-to-end product development within a single therapeutic area, aligning deep clinical collaborations with targeted regulatory strategies to de-risk pivotal studies and accelerate adoption in specialized care pathways.

Partnership activity is a defining dynamic: alliances between device manufacturers, biologics developers, academic centers, and contract development and manufacturing organizations create integrated value chains capable of supporting complex product introductions. Licensing deals and co-development agreements are increasingly structured to share clinical and commercial risk while ensuring access to complementary capabilities. Mergers and acquisitions continue to reflect a preference for bolt-on acquisitions that expand platform capabilities, secure critical intellectual property, or provide scale in manufacturing and distribution.

Innovation investment patterns reveal a focus on technologies that address translational bottlenecks-scalable cell production, robust bio-inks, and validated quality control analytics. Competitive differentiation increasingly depends on demonstrated manufacturing reproducibility, clear regulatory pathways, and the ability to document clinical durability. Companies that successfully combine technical competence, clinical evidence generation, and commercial channel development are best positioned to convert early-stage promise into sustained clinical impact

Practical and prioritized strategic actions for leadership teams to de-risk development, strengthen supply chains, align clinical outcomes with reimbursement, and accelerate responsible commercial adoption

Industry leaders should adopt a set of prioritized actions to accelerate translation while managing technical, regulatory, and commercial risk. First, concentrate investments on de-risking core manufacturing processes and quality systems that are directly connected to clinical endpoints; establishing robust process characterization and scalable analytics early reduces downstream variability and simplifies regulatory dialogue. Second, pursue strategic supplier diversification and nearshoring options where tariff exposures or single-source dependencies create operational vulnerabilities; embedding dual-sourcing and qualified alternatives into procurement plans enhances resilience.

Third, align clinical development strategies with pragmatic reimbursement paths by engaging payers and health technology assessment bodies early to define meaningful outcome measures and acceptable evidence thresholds. Fourth, structure commercial models that blend product sales with service elements-technical training, procedural bundles, and patient monitoring-to lower adoption friction and create recurring revenue opportunities. Fifth, form targeted partnerships that combine complementary strengths: academic centers for early innovation, CDMOs for scale and regulatory know-how, and clinical networks for pragmatic evidence generation.

Finally, prioritize transparent regulatory engagement and invest in post-market evidence systems that capture long-term safety and performance. By emphasizing reproducible manufacturing, adaptive commercial models, and outcome-aligned evidence generation, leaders can accelerate responsible adoption and create defensible value propositions in a complex and fast-evolving field

Transparent research design and validation framework combining expert interviews, literature synthesis, technical performance triangulation, and scenario-driven risk assessment to underpin the study's conclusions

The research approach integrates structured primary interviews with domain experts, systematic review of peer-reviewed literature and regulatory guidance, and triangulation of technical performance data from validated experimental reports. Primary input was obtained through consultations with process engineers, translational clinicians, regulatory specialists, and manufacturing experts to ensure that practical operational constraints and clinical decision criteria were reflected in the analysis. Secondary sources were evaluated for methodological rigor and direct relevance to engineering variables that impact translational feasibility.

Analytical frameworks focused on value chain mapping, technology readiness assessments, and risk heat maps that prioritize technical, regulatory, and commercial hurdles. Validation protocols included cross-referencing interview insights with documented case studies and public regulatory precedents to verify interpretive claims. Where possible, detailed process metrics and quality control parameters were used to assess scalability and reproducibility risks, and counterfactual scenarios were modeled qualitatively to understand potential supply chain or policy shocks.

Limitations and scope boundaries were explicitly identified, including the evolving nature of regulatory pathways and the diversity of clinical endpoints across therapeutic areas. To strengthen credibility, external expert reviewers provided targeted feedback on assumptions related to manufacturability and clinical integration. The resulting methodology balances breadth and depth to produce findings that are actionable for decision-makers while remaining transparent about uncertainty and the need for ongoing evidence accumulation

Integrated synthesis of technological, regulatory, supply chain, and commercial implications that clarifies strategic priorities for converting tissue engineering innovation into durable clinical impact

The conclusion synthesizes the report's principal insights and distills their implications for developers, clinicians, investors, and policy-makers. Technological advances in fabrication, cell biology, and materials science are maturing into clinically relevant capabilities, but the transition from promising prototype to repeatable clinical product requires focused investments in manufacturing reproducibility, regulatory alignment, and pragmatic evidence generation. The interplay between technology choice, material selection, and application context determines the development pathway and the nature of clinical studies required to demonstrate meaningful patient benefit.

Regulatory evolution and payer engagement are essential complements to technical progress; conditional approvals and outcomes-based reimbursement models can accelerate access while maintaining safety oversight. Trade policy shifts and supply chain reconfigurations emphasize the need for strategic sourcing plans and manufacturing flexibility. Strategic partnerships that combine complementary technical, clinical, and manufacturing capabilities emerge as the most efficient route to de-risk complex development programs and to scale delivery to patients.

Ultimately, successful translation will depend on an integrated approach that aligns R&D priorities, manufacturing investments, clinical evidence strategies, and commercial models. Organizations that adopt systems thinking, invest in scalable processes, and engage early with regulators and payers will be best positioned to translate scientific advances into durable clinical solutions and long-term clinical impact

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Application of 3D bioprinting to create patient-specific vascularized tissue constructs
  • 5.2. Incorporation of decellularized extracellular matrix scaffolds for enhanced cell integration and tissue regeneration
  • 5.3. Development of bioresorbable electronic sensors for real-time monitoring of engineered tissue viability
  • 5.4. Utilization of induced pluripotent stem cells to generate personalized organoid models for drug screening
  • 5.5. Innovations in scaffold-free tissue assembly via cell self-organization and microcarrier techniques
  • 5.6. Implementation of machine learning algorithms to optimize tissue engineering scaffold design parameters
  • 5.7. Adoption of multi-omics approaches to accelerate biomaterial selection and tissue maturation
  • 5.8. Integration of organ-on-chip platforms for high-throughput in vitro disease modeling and toxicity testing

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Tissue Engineering Market, by Product Type

  • 8.1. Cardiovascular
  • 8.2. Neural
  • 8.3. Orthopedic & Bone
  • 8.4. Skin & Wound Healing

9. Tissue Engineering Market, by Technology

  • 9.1. 3D Bioprinting
    • 9.1.1. Extrusion
    • 9.1.2. Inkjet
    • 9.1.3. Laser Assisted
  • 9.2. Cell-Based Tissue Engineering
  • 9.3. Decellularization

10. Tissue Engineering Market, by Material

  • 10.1. Ceramic Based
  • 10.2. Composite Based
  • 10.3. Polymer Based
    • 10.3.1. Natural Polymer
    • 10.3.2. Synthetic Polymer

11. Tissue Engineering Market, by Application

  • 11.1. Cardiovascular
  • 11.2. Neural
  • 11.3. Orthopedic & Bone
  • 11.4. Skin & Wound Healing

12. Tissue Engineering Market, by End User

  • 12.1. Hospitals & Clinics
  • 12.2. Oems
  • 12.3. Research Institutes

13. Tissue Engineering Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Tissue Engineering Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Tissue Engineering Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Medtronic plc
    • 16.3.2. Stryker Corporation
    • 16.3.3. Terumo Corporation
    • 16.3.4. Merck KGaA
    • 16.3.5. Lonza Group AG
    • 16.3.6. Corning Incorporated
    • 16.3.7. Thermo Fisher Scientific Inc.
    • 16.3.8. Integra LifeSciences Corporation
    • 16.3.9. Biotime Inc.
    • 16.3.10. CryoLife, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제