시장보고서
상품코드
1837345

리튬이온 배터리 재활용 시장 : 배터리 공급원, 배터리 화학, 재활용 프로세스, 재활용 가능 부품, 최종 용도별 - 세계 예측(2025-2032년)

Lithium-ion Battery Recycling Market by Battery Source, Battery Chemistry, Recycling Process, Recyclable Components, End-Use - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 189 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

리튬이온 배터리 재활용 시장은 2032년까지 CAGR 19.26%로 452억 1,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 110억 4,000만 달러
추정 연도 2025년 130억 1,000만 달러
예측 연도 2032 452억 1,000만 달러
CAGR(%) 19.26%

리튬이온 배터리 재활용이 공급망 복원력, 지속가능성, 산업 경쟁력에 필수적인 역량임을 보여주는 전략적 입문서

리튬이온 배터리의 재활용은 틈새 환경 문제 해결에서 제조사, 정책 입안자, 인프라 사업자의 전략적인 핵심 분야로 발전하고 있습니다. 전기 모빌리티, 휴대용 전자기기, 그리드 규모 에너지 저장의 규모가 확대됨에 따라 리튬이온 배터리의 사용기한 관리는 운영 및 규제 측면에서 시급한 과제가 되고 있습니다. 이 보고서는 먼저 재활용을 탄력적이고 경쟁력 있는 배터리 공급망에 필수적인 요소로 간주하고, 원료의 안전성, 배출량 감소, 비용 절감을 위해 폐쇄형 루프 개념이 왜 중요한지 설명합니다.

소개에서는 회수 물류, 재료 회수 기술, 규제 인센티브가 어떻게 발전하고 있으며, 재활용이 환경적 필수 사항일 뿐만 아니라 전략적 가치의 원천이 되고 있는지를 강조합니다. 서론에서는 기술적 성숙도와 제도적 인센티브의 상호관계를 강조하고, 가치사슬 전반의 이해관계자(OEM, 재활용업체, 재료 정제업체, 다운스트림 제조업체)가 회수된 재료의 가치를 얻기 위해 어떻게 상업적 모델을 조정해야 하는지를 설명합니다. 또한, 재활용을 보다 광범위한 순환 경제 목표와 기업 책임의 프레임워크에 배치하고, 효과적인 재활용 프로그램이 상품 가격 변동과 지정학적 공급 중단에 대한 탄력성을 강화하는 방법을 보여줍니다.

마지막으로, 서론에서는 이후 섹션에서 다룰 주요 주제, 즉 재활용 프로세스의 기술적 차별화, 세분화 중심의 수요 역학, 지역 정책의 추진력, 상업 및 공공 부문 이해관계자를 위한 전술적 제안에 대한 개요를 제시합니다. 이를 통해 독자들은 재활용을 단순한 컴플라이언스 이슈가 아닌 업무적, 환경적, 평판적 측면에서 측정 가능한 전략적 역량으로 평가할 수 있게 될 것입니다.

리튬이온 배터리 재활용 시스템의 변화를 가속화하는 기술적, 규제적, 상업적 변곡점에 대한 자세한 견해

업계는 이해관계자들이 사용 후 배터리 관리 방식을 재구성하는 변화의 시기를 맞이하고 있으며, 이러한 변화는 기술, 정책, 상업적 전략에 의해 주도되고 있습니다. 기술 혁신은 회수 경로의 폭을 넓히고 있습니다. 습식 야금 공정은 중요 금속의 선택적 회수를 향상시키면서 에너지 강도를 낮추고, 기계 공정은 이질적인 팩의 전처리를 보다 자동화하고 안전성을 높입니다. 이와 함께 양극 재료의 구조를 유지하는 것을 목표로 하는 새로운 직접 재활용 기술은 가치 회수를 개선하고 다운스트림 정제 요구 사항을 줄이는 수단으로 주목받고 있습니다.

정책과 규제의 진화도 큰 변곡점입니다. 각국 정부는 중요 광물의 순환 고리를 끊기 위해 더 높은 회수 목표, 생산자 책임 의무, 재료 추적성 요건을 설정하고 있습니다. 이러한 정책적 움직임은 현지 재활용 인프라에 대한 투자를 촉진하고, 국내 처리 능력을 강화하며, OEM과 재활용 업체 간의 상업적 계약을 재구축하고 있습니다. 동시에, 상업적 모델은 일회성 자재 회수에서 재활용을 위한 설계, 배터리 모듈 재제조, 계약에 의한 회수 보증을 포함한 통합적인 라이프사이클 파트너십으로 전환되고 있습니다.

시장 역학도 경쟁 역학을 변화시키고 있습니다. 자동차 및 배터리 제조업체의 재활용 역량에 대한 수직적 통합은 재활용업체와 재료 공급업체의 경계를 모호하게 만들었고, 전문 기술 기업들은 고유한 회수 화학제품과 공정 효율성으로 차별화를 꾀하고 있습니다. 한편, 순환형 기술에 대한 투자자들의 관심은 대규모 시설과 초기 단계의 혁신 모두에 대한 자본 투입을 가속화하고 있습니다. 이를 종합하면, 이러한 힘은 자산 배분, 인재 전략, 부문 간 협력에 영향을 미치는 핵심 산업 활동으로서 재활용의 탐색적 파일럿에서 전략적 자본화로의 전환을 암시합니다.

최근 관세 조치와 무역 정책 조정에 따른 배터리 재활용 생태계의 국경 간 자재 흐름, 자본 배분, 사업 전략이 어떻게 변화했는지

2025년 전후에 시행 된 관세 조치와 무역 정책 조정의 누적 영향은 국제 배터리 재료 흐름과 전체 재활용 경제에 새로운 역학을 도입했습니다. 배터리 부품 및 핵심 원자재에 대한 관세 조치는 육상 가공에 대한 인센티브를 증폭시키고, 업계 참여자들이 국경 간 공급 계약을 재평가하도록 유도했습니다. 그 결과, 주요 기업들은 해외 가공의 비용적 이점과 리드타임이 짧고 무역 마찰에 영향을 덜 받는 국내 재활용 능력의 전략적 이점을 비교 검토하고 있습니다.

이러한 정책 전환은 재활용 가치사슬 전반의 업무적 변화도 촉진하고 있습니다. 물류 전략은 관세 변동에 영향을 덜 받는 지역의 원료 집적 허브를 우선시하도록 재설계되었으며, 상업 계약은 관세 제도의 변화 속에서 장기적인 원료 공급을 보장하기 위해 업데이트되고 있습니다. 이에 따라, 재활용 시설의 자금 조달 모델에는 잠재적인 관세 인상이나 완화를 반영하는 정책 리스크 평가와 시나리오 기반 수익률을 반영하는 경우가 많아졌습니다. 이러한 재조정을 통해 투자 일정과 새로운 처리 시설의 지리적 배치가 형성되고 있습니다.

또한, 관세 환경은 파트너십과 M&A 활동에도 영향을 미치고 있습니다. 이해관계자들은 현지 기업과의 긴밀한 협력, 국경 간 위험을 내재화하는 합작 투자, 규정을 준수하는 공급처에 대한 접근을 제공하는 전략적 제휴를 모색하고 있습니다. 이러한 변화는 회수된 물질과 최종 전구체 제품의 국제 무역에 대한 계산을 바꾸고 있으며, 규제 준수와 상업적 탄력성 및 장기적인 자원 전략과 결합된 구조적 대응에 대한 동기를 부여하고 있습니다.

세분화 기반 분석을 통해 배터리 공급원, 화학제품, 재활용 공정, 회수 가능한 구성요소, 최종 용도 요건을 연결하여 전략적 재활용에 대한 의사결정을 내릴 수 있습니다.

시장을 이해하기 위해서는 재활용 수요를 정의하는 다양한 공급원, 화학제품, 공정, 부품, 최종 용도를 반영하는 세분화를 의식한 렌즈가 필요합니다. 배터리 공급원에 따라 노트북 배터리, 스마트폰 배터리 등 회수 복잡성이 높은 소형 팩터 흐름이 있는 가전제품용 배터리, 에너지 저장 시스템 및 중장비를 포함한 에너지 저장 시스템, 대량 처리에 적합한 대형 균질 팩의 산업용 배터리, 회수 계획에 레거시 화학 및 인프라에 대한 고려를 도입하는 수동 차량용 배터리 등이 포함됩니다. 회수 물류, 수명 말기 건강 상태, 전처리 요구 사항은 각각 크게 다르며 기술 선택과 상업 계약 설계에 영향을 미치기 때문에 이러한 공급원을 구분하는 것이 중요합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 리튬이온 배터리 재활용 시장 : 배터리 소스별

  • 가전제품용 배터리
    • 노트북용 배터리
    • 스마트폰 배터리
  • 산업용 배터리
    • 에너지 저장 시스템
    • 중기
  • 수동 차용 배터리

제9장 리튬이온 배터리 재활용 시장 : 배터리 화학별

  • 코발트산 리튬
  • 인산철리튬
  • 망간산 리튬
  • 리튬 니켈 코발트 알루미늄 산화물
  • 리튬 니켈 망간 코발트

제10장 리튬이온 배터리 재활용 시장 : 재활용 프로세스별

  • 습식 야금 프로세스
  • 기계 프로세스
  • 건식 야금 프로세스

제11장 리튬이온 배터리 재활용 시장 : 재활용 가능한 부품별

  • 양극 재료
  • 양극재료
  • 전해질

제12장 리튬이온 배터리 재활용 시장 : 최종 용도별

  • 자동차
  • 전자·전기
  • 산업

제13장 리튬이온 배터리 재활용 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 리튬이온 배터리 재활용 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 리튬이온 배터리 재활용 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • ACCUREC-Recycling GmbH
    • Akkuser Oy
    • American Battery Technology Company by Komatsu Ltd.
    • Aqua Metals, Inc.
    • Attero Recycling Pvt. Ltd.
    • Batrec Industrie AG
    • Battery Recyclers of America
    • Call2Recycle, Inc.
    • Cirba Solutions US, Inc
    • Contemporary Amperex Technology Co., Limited
    • Duesenfeld GmbH
    • Ecobat, LLC
    • Envirostream Australia Pty Ltd. by Lithium Australia NL
    • Fortum Corporation
    • Ganfeng Lithium Group Co., Ltd.
    • GEM Co., Ltd.
    • Li-Cycle Corp.
    • Lithion Technologies
    • Neometals Ltd.
    • OnTo Technology LLC
    • RecycLiCo Battery Materials Inc.
    • SMCI Group
    • Snam S.p.A.
    • Stena Metall Group
    • SUEZ Group
    • Sumitomo Corporation
    • Suny Group
    • take-e-way GmbH
    • Tata Group
    • Umicore N.V.
KSM

The Lithium-ion Battery Recycling Market is projected to grow by USD 45.21 billion at a CAGR of 19.26% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 11.04 billion
Estimated Year [2025] USD 13.01 billion
Forecast Year [2032] USD 45.21 billion
CAGR (%) 19.26%

A strategic primer that frames lithium-ion battery recycling as an essential capability for supply chain resilience, sustainability, and industrial competitiveness

The lithium-ion battery recycling landscape has evolved from a niche environmental initiative into a strategic pillar for manufacturers, policymakers, and infrastructure operators. As electric mobility, portable electronics, and grid-scale energy storage have scaled, the end-of-life management of lithium-ion cells has become a pressing operational and regulatory challenge. This report opens by framing recycling as an integral part of a resilient and competitive battery supply chain, clarifying why closed-loop thinking matters for raw material security, emissions reduction, and cost containment.

Throughout the introduction, the narrative emphasizes how advances in collection logistics, material recovery technologies, and regulatory incentives are converging to make recycling not only an environmental imperative but also a source of strategic value. The introduction highlights the interplay between technological maturity and institutional incentives, explaining how actors across the value chain-OEMs, recyclers, material refiners, and downstream manufacturers-must align commercial models to capture recovered material value. It also situates recycling within broader circular economy goals and corporate responsibility frameworks, demonstrating how effective recycling programs strengthen resilience against commodity price volatility and geopolitical supply disruptions.

Finally, the introduction outlines the key themes explored in the subsequent sections: technological differentiation in recycling processes, segmentation-driven demand dynamics, regional policy drivers, and tactical recommendations for commercial and public-sector stakeholders. By doing so, it primes the reader to evaluate recycling not as an isolated compliance task but as a strategic capability with measurable operational, environmental, and reputational returns

An in-depth view of the technological, regulatory, and commercial inflection points that are accelerating the transformation of lithium-ion battery recycling systems

The industry is undergoing transformative shifts that are reshaping how stakeholders approach end-of-life battery management, and these shifts are driven by technology, policy, and commercial strategy. Technological innovation is broadening the palette of recovery pathways: hydrometallurgical processes are reducing energy intensity while improving selective recovery of critical metals; mechanical processes are becoming more automated and safer for pre-processing heterogeneous packs; and pyrometallurgical routes continue to be used where robustness and throughput are paramount. In parallel, emerging direct recycling techniques that aim to preserve cathode material structure are attracting attention as a means to improve value recovery and reduce downstream refining requirements.

Policy and regulatory evolution is another major inflection point. Governments are increasingly setting higher collection targets, producer responsibility obligations, and material traceability requirements to close the loop on critical minerals. These policy moves are incentivizing investments in local recycling infrastructure, enhancing domestic processing capabilities, and reshaping commercial agreements between OEMs and recyclers. At the same time, commercial models are shifting from one-off material salvage to integrated lifecycle partnerships that include design-for-recycling, remanufacturing of battery modules, and contractual recovery guarantees.

Market-making forces are also altering competitive dynamics. Vertical integration by vehicle manufacturers and battery producers into recycling capabilities is blurring the line between recycler and material supplier, while specialized technology firms are differentiating through proprietary recovery chemistries and process efficiencies. Meanwhile, investor interest in circular technologies is accelerating capital deployment into both scale-oriented facilities and early-stage innovation. Taken together, these forces signal a transition from exploratory pilots to strategic capitalization of recycling as a core industrial activity, with implications for asset allocation, talent strategy, and cross-sector collaboration

How recent tariff measures and trade policy adjustments have reshaped cross-border material flows, capital allocation, and operational strategies in the battery recycling ecosystem

The cumulative impact of tariff actions and trade policy adjustments implemented in and around 2025 has introduced new dynamics across international battery material flows and recycling economics. Tariff measures targeting battery components and critical raw materials have amplified incentives for onshore processing and encouraged industry participants to re-evaluate cross-border supply agreements. As a result, companies are increasingly weighing the trade-offs between cost advantages of offshore processing and the strategic benefits of domestic recycling capabilities that offer shorter lead times and reduced exposure to trade frictions.

These policy shifts have also prompted operational changes across the recycling value chain. Logistics strategies are being redesigned to prioritize regional feedstock aggregation hubs that reduce exposure to tariff volatility, and commercial contracts are being updated to secure long-term feedstock availability under changing tariff regimes. In turn, financing models for recycling facilities now more frequently incorporate policy risk assessments and scenario-based returns that reflect potential tariff escalations or relaxations. This recalibration is shaping investment timelines and the geographic placement of new processing assets.

Moreover, the tariff environment is influencing partnerships and M&A activity. Stakeholders are exploring closer cooperation with local players, joint ventures that internalize cross-border risks, and strategic alliances that provide access to compliant supply streams. These shifts are altering the calculus of international trade for recovered materials and finished precursor products, motivating a structural response that blends regulatory compliance with commercial resilience and long-term resource strategy

A segmentation-driven analysis that connects battery source, chemistry, recycling processes, recoverable components, and end-use requirements to inform strategic recycling decisions

Understanding the market requires a segmentation-aware lens that reflects the diverse sources, chemistries, processes, components, and end-uses that define recycling demand. Based on battery source, the landscape encompasses Consumer Electronics Batteries-where laptop batteries and smartphone batteries present small-form-factor streams with high collection complexity-Industrial Batteries that include energy storage systems and heavy machinery with larger, more homogeneous packs suitable for bulk processing, and Manual Vehicle Batteries that introduce legacy chemistries and infrastructure considerations into recovery planning. These source distinctions matter because collection logistics, state-of-health at end of life, and pre-processing requirements vary significantly across them, influencing technology choice and commercial contract design.

Based on battery chemistry, the market is segmented across lithium cobalt oxide, lithium iron phosphate, lithium manganese oxide, lithium nickel cobalt aluminum oxide, and lithium nickel manganese cobalt. Each chemistry has distinct value drivers and recovery challenges: some chemistries prioritize high nickel or cobalt content that commands focused recovery pathways, while others emphasize iron-based compositions that demand different hydrometallurgical approaches. Process selection is therefore tightly coupled to chemistry composition and expected material value.

Based on recycling process, the principal pathways are hydrometallurgical, mechanical, and pyrometallurgical processes. Hydrometallurgy is increasingly used for selective recovery and lower-temperature operations, mechanical pre-processing enables safer and more precise disassembly of complex packs, and pyrometallurgy provides throughput and robustness for mixed feedstocks. Based on recyclable components, recovery efforts target anode materials, cathode materials, and electrolytes, each of which requires tailored handling and refining approaches to preserve contained value. Finally, based on end-use, recycled materials feed back into automotive, electronics & electrical, and industrial markets, with each end-use imposing different purity, certification, and form-factor requirements that influence the economics of material recovery and qualification

A regional synthesis of policy, industrial capability, and infrastructure trends across the Americas, Europe Middle East & Africa, and Asia-Pacific that influence recycling strategy

Regional dynamics shape both the pace and the modality of recycling adoption, with policy frameworks, industrial ecosystems, and demand centers diverging across geographies. In the Americas, the policy conversation emphasizes domestic capacity building, incentives for reshoring critical material processing, and collaboration between vehicle manufacturers and recyclers to internalize circularity. This region shows strong interest in integrating recycling into industrial strategy as a hedge against global supply disruptions and as a mechanism to meet corporate sustainability commitments.

In Europe, Middle East & Africa, regulatory frameworks are tightening around producer responsibility, traceability, and emissions associated with recycling processes. Europe in particular is pursuing harmonized standards and certification regimes that influence cross-border movement of end-of-life batteries and recovered materials, encouraging investment in compliant regional processing facilities. Meanwhile, parts of the Middle East and Africa are focusing on developing feedstock aggregation and export strategies while evaluating local processing options as downstream demand evolves.

In the Asia-Pacific region, high concentrations of battery manufacturing and raw material refining create an integrated ecosystem with both advantages and vulnerabilities. While established manufacturing hubs offer economies of scale for processing and refining, concentrated supply chains can be exposed to geopolitical and trade-policy shifts. Across all regions, the interplay between public policy, private investment, and infrastructure development determines where recycling capacity is sited, how feedstock is aggregated, and the extent to which recovered materials can be qualified for reuse in high-value applications

An assessment of company-level strategies showing how vertical integration, specialized technology leadership, and downstream partnerships are redefining competitive advantage in recycling

Key company dynamics within the recycling sector are defined by a mix of vertically integrated industrial players, technology-focused innovators, and large downstream consumers seeking secure material streams. Vertically integrated firms are pursuing end-to-end models that link collection, material recovery, and feedstock supply to cell and component manufacturers, enabling tighter control over quality and traceability. Technology-focused firms differentiate through proprietary recovery chemistries, advanced sorting and automation capabilities, and process innovations that enhance yields or reduce environmental footprint. Their competitive advantage often rests on the ability to scale pilot processes into reliable, regulated industrial operations.

At the same time, OEMs and large industrial end-users are forming strategic partnerships with recyclers to lock in circular supply chains and to co-develop qualification pathways for recovered materials. Financial sponsors and industrial investors are increasingly involved, bringing capital for facility build-outs and commercial deployments while also emphasizing governance, compliance, and performance metrics. Collectively, these company-level strategies reflect a maturing market where quality, traceability, and scalable operations are key differentiators. Firms that can demonstrate robust safety protocols, cost-effective logistics, and verifiable material provenance are positioned to capture long-term contracts and to support industrial users seeking to meet sustainability and security objectives

Actionable strategic moves for executives to build flexible processing capacity, formalize cross-sector partnerships, and embed policy scenario planning into investment decisions

Industry leaders must act decisively to translate policy signals and technological opportunity into durable competitive positions. First, companies should prioritize investments in modular processing capacity that allow for flexible handling of diverse feedstocks and enable iterative scaling as regulatory and commercial conditions evolve. Parallel to capacity investments, organizations should invest in design-for-recycling practices and supplier engagement to improve material recoverability and to reduce downstream sorting burdens. This combination of upstream design changes and downstream processing flexibility reduces overall cost-to-recycle and improves recovered material quality.

Second, firms should pursue multi-stakeholder partnerships that align OEMs, recyclers, refiners, and regulators around certification, traceability, and quality standards. Collaborative initiatives that standardize material passports and qualification protocols accelerate reuse pathways and lower market friction for recovered cathode and anode materials. Third, companies should integrate trade and policy scenario planning into capital allocation and supply-chain design to mitigate tariff exposures and to identify regional hubs that balance cost efficiency with regulatory compliance. Lastly, leadership teams must embed rigorous safety and environmental performance metrics into operational KPIs, demonstrating compliance while unlocking reputational and commercial benefits. These actions collectively position industry players to capture strategic value from recycling as the circular transition deepens

A transparent, multi-method research design combining interviews, technical validation, policy analysis, and supply-chain mapping to ensure robust and actionable insights

The research methodology underpinning this analysis uses a multi-disciplinary approach combining technology assessment, policy review, stakeholder interviews, and supply-chain mapping. Primary qualitative inputs were gathered through interviews with battery lifecycle operators, material refiners, technology providers, and procurement leaders across manufacturing and utilities sectors to surface operational constraints, technology adoption barriers, and partnership models. These insights were triangulated with public regulatory documents, technical whitepapers, and verified company disclosures to ensure accuracy and to capture emerging policy and commercial trends.

Technical evaluation of recycling pathways drew on process-level literature, pilot program reports, and independent lab validations to compare energy intensity, recovery specificity, and scalability of hydrometallurgical, mechanical, and pyrometallurgical approaches. Regional assessments combined policy scanning with industrial asset mapping to identify where collection networks, logistics hubs, and processing capacity align. The methodology emphasizes cross-validation: assertions were tested against multiple sources and grounded in documented operational practices, while scenario analysis explored the implications of policy shifts, tariff changes, and technology maturation. This layered approach ensures a balanced view that integrates empirical observation with forward-looking analysis

A conclusive synthesis emphasizing how integrated strategies across technology, policy engagement, and partnerships will determine leadership in the recycling-driven circular economy

In conclusion, lithium-ion battery recycling has moved from experimental programs to a strategic industrial agenda that intersects sustainability, supply-chain security, and commercial opportunity. Technological advances in recovery processes, coupled with evolving regulatory frameworks and shifting trade dynamics, are creating both challenges and openings for stakeholders across the value chain. Companies that adopt integrative strategies-combining design-for-recycling, flexible processing capabilities, and strategic partnerships-will be better positioned to capture the operational and reputational benefits of circular material flows.

As the market matures, success will be determined by an ability to operationalize traceability, to qualify recovered materials for high-value reuse, and to align capital deployment with policy and commercial realities. Stakeholders that proactively engage with regulators, standard-setting bodies, and supply-chain partners can accelerate the transition to efficient and verifiable recycling systems. Ultimately, recycling will be judged not only by its environmental outcomes but also by its capacity to deliver resilient supply chains and sustained industrial competitiveness

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Expansion of closed-loop recycling partnerships between automakers and battery recyclers to secure sustainable raw materials
  • 5.2. Advances in direct recycling technologies enabling recovery of cathode materials with minimal chemical processing
  • 5.3. Growth of modular battery disassembly systems leveraging robotics and AI vision for improved sorting efficiencies
  • 5.4. Emergence of battery-to-grid second-life programs integrating repurposed cells into renewable energy storage networks
  • 5.5. Development of standardized battery collection and labeling regulations across major EV markets to streamline recycling
  • 5.6. Investment surge in local recycling facilities driven by domestic supply chain security initiatives and EV mandates
  • 5.7. Adoption of novel supercritical fluid extraction methods to reduce chemical waste in lithium-ion battery recycling

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Lithium-ion Battery Recycling Market, by Battery Source

  • 8.1. Consumer Electronics Batteries
    • 8.1.1. Laptop Batteries
    • 8.1.2. Smartphone Batteries
  • 8.2. Industrial Batteries
    • 8.2.1. Energy Storage Systems
    • 8.2.2. Heavy Machinery
  • 8.3. Manual Vehicle Batteries

9. Lithium-ion Battery Recycling Market, by Battery Chemistry

  • 9.1. Lithium Cobalt Oxide
  • 9.2. Lithium Iron Phosphate
  • 9.3. Lithium Manganese Oxide
  • 9.4. Lithium Nickel Cobalt Aluminum Oxide
  • 9.5. Lithium Nickel Manganese Cobalt

10. Lithium-ion Battery Recycling Market, by Recycling Process

  • 10.1. Hydrometallurgical Process
  • 10.2. Mechanical Process
  • 10.3. Pyrometallurgical Process

11. Lithium-ion Battery Recycling Market, by Recyclable Components

  • 11.1. Anode Materials
  • 11.2. Cathode Materials
  • 11.3. Electrolytes

12. Lithium-ion Battery Recycling Market, by End-Use

  • 12.1. Automotive
  • 12.2. Electronics & Electrical
  • 12.3. Industrial

13. Lithium-ion Battery Recycling Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Lithium-ion Battery Recycling Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Lithium-ion Battery Recycling Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. ACCUREC-Recycling GmbH
    • 16.3.2. Akkuser Oy
    • 16.3.3. American Battery Technology Company by Komatsu Ltd.
    • 16.3.4. Aqua Metals, Inc.
    • 16.3.5. Attero Recycling Pvt. Ltd.
    • 16.3.6. Batrec Industrie AG
    • 16.3.7. Battery Recyclers of America
    • 16.3.8. Call2Recycle, Inc.
    • 16.3.9. Cirba Solutions US, Inc
    • 16.3.10. Contemporary Amperex Technology Co., Limited
    • 16.3.11. Duesenfeld GmbH
    • 16.3.12. Ecobat, LLC
    • 16.3.13. Envirostream Australia Pty Ltd. by Lithium Australia NL
    • 16.3.14. Fortum Corporation
    • 16.3.15. Ganfeng Lithium Group Co., Ltd.
    • 16.3.16. GEM Co., Ltd.
    • 16.3.17. Li-Cycle Corp.
    • 16.3.18. Lithion Technologies
    • 16.3.19. Neometals Ltd.
    • 16.3.20. OnTo Technology LLC
    • 16.3.21. RecycLiCo Battery Materials Inc.
    • 16.3.22. SMCI Group
    • 16.3.23. Snam S.p.A.
    • 16.3.24. Stena Metall Group
    • 16.3.25. SUEZ Group
    • 16.3.26. Sumitomo Corporation
    • 16.3.27. Suny Group
    • 16.3.28. take-e-way GmbH
    • 16.3.29. Tata Group
    • 16.3.30. Umicore N.V.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제