시장보고서
상품코드
1837428

에틸렌 카보네이트 시장 : 등급, 용도, 최종사용자 산업별 - 세계 예측(2025-2032년)

Ethylene Carbonate Market by Grade, Application, End User Industry - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

에틸렌 카보네이트 시장은 2032년까지 CAGR 7.99%로 14억 1,974만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 7억 6,752만 달러
추정연도 2025 8억 2,842만 달러
예측연도 2032 14억 1,974만 달러
CAGR(%) 7.99%

기술적으로 중요한 공급망 및 산업 화학 물질에서 탄산 에틸렌의 전략적 역할을 명확히 하고, 이를 조달 및 R&D 우선순위에 반영

에틸렌 카보네이트는 극성 고리형 유기 탄산염으로 일부 산업 및 하이테크 공급망에 필수적인 물질입니다. 그 물리화학적 특성은 높은 유전율, 열 안정성 및 용매로서의 기능, 특히 이온 이동성과 전해질 안정성이 필수적인 경우에 유용합니다. 지난 10년간 전통적인 산업용에서 배터리 기술 분야로 용도가 확대되었고, 배합 화학 및 안전에 대한 고려로 인해 이 화합물의 전략적 중요성이 높아졌습니다.

용매로서의 역할과 중간체로서의 역할을 겸비한 이 제품은 농약, 코팅제, 가소제 등 다양한 공정 화학을 지원하고 있습니다. 따라서 조달팀과 R&D 부서는 비용과 가용성뿐만 아니라 특정 최종 용도와 관련된 품질 특성도 모니터링하고 있습니다. 예를 들어 배터리의 경우, 순도와 첨가제의 적합성은 셀의 성능과 수명주기에 직접적인 영향을 미칩니다. 따라서 화합물공급 역학, 규제 환경, 용도에 따른 품질 요구 사항을 이해하는 것은 운영 위험을 줄이고 용도에 맞는 가치를 창출하고자 하는 이해관계자에게 중요한 첫 번째 단계입니다.

탄산 에틸렌의 생산, 표준, 조달 방식을 변화시키는 기술, 규제, 공급 측면의 변화를 파악

에틸렌 탄산염을 둘러싼 환경은 급속한 전기화, 규제 강화, 제조 발자국의 진화를 배경으로 변화의 시기를 맞이하고 있습니다. 수요 측면의 변화는 배터리 생태계에서 가장 두드러지게 나타나고 있으며, 가전기기에서 전기 이동성 및 그리드 스케일 스토리지로의 전환으로 인해 일관된 불순물 프로파일을 가진 배터리 등급 배합에 대한 요구가 증가하고 있습니다. 동시에, 산업용 사용자들은 고성능 코팅제 및 특수 용매 시스템을 추구하고, 등급 사양 및 공급업체 인증 프로세스의 개선을 촉구하고 있습니다.

공급 측면에서는 제조업체들이 공정 최적화, 원료 다양화, 생산 능력 재배치에 투자하여 더 높은 가치의 배터리 등급에 대한 수요에 대응하고 있습니다. 이는 리밸런싱 효과를 불러일으켰고, 제조업체들은 정제 능력을 향상시키고 제품 라인을 세분화하여 배터리와 산업용 모두에서 경쟁력을 유지하고 있습니다. 화학물질 안전, 위험물 운송, 수명주기 배출에 초점을 맞춘 규제 변화도 물류 전략과 사업장 이전에 영향을 미치고 있습니다. 이를 종합하면 공급업체와 최종사용자 모두 조달 기준, 자본 배분, 시장 진출 전략을 재구축하고 있다는 것을 알 수 있습니다.

미국 관세 제도 변경에 따른 광범위한 운영 및 조달에 미치는 영향과 무역 리스크 증가에 대한 조달 팀의 조정 방법을 매핑

2025년에 예정된 미국의 관세 조정은 에틸렌 카보네이트 등 특수 화학제품의 세계 무역 역학에 영향을 미치는 새로운 차원의 상업적 복잡성을 도입했습니다. 관세의 누적 효과는 상륙 비용의 방정식을 바꾸고 있으며, 다운스트림 구매자와 공급업체가 조달 결정과 계약 조건을 재검토하도록 유도하고 있습니다. 그 결과, 기업은 관세 변동에 대비하고 한 지점에서의 조달 리스크를 피하기 위해 니어쇼어링, 멀티소싱, 장기적인 공급업체와의 관계를 중요시하게 되었습니다.

실제로 조달팀은 다양한 공급업체 패널에 대응할 수 있고, 물류 탄력성과 예측 가능한 컴플라이언스 관행을 입증할 수 있는 파트너를 우선적으로 고려합니다. 일부 제조업체는 제품 분류를 조정하고, 가능한 경우 특혜 무역 협정을 활용하기 위해 선적을 재구성하는 등 관세 엔지니어링 전략을 추구하고 있습니다. 동시에 공급망 관리자는 재고 계획 주기를 앞당기고 비용에 미치는 영향을 예측하기 위해 업스트림 원자재 경로에 대한 가시성을 높이고 있습니다. 그 결과, 시장은 더욱 신중해지고, 전략적으로 헤지하고, 상거래의 민첩성과 무역정책에 대한 전문성이 경쟁적 차별화 요소가 되고 있습니다.

등급, 용도, 최종사용자 산업의 요구 사항이 조달 및 기술 전략을 추진하는 방법을 명확히하고 실용적인 세분화 인텔리전스를 제공

에틸렌 카보네이트는 품질 계층, 이용 사례, 최종 용도 및 최종사용자 산업에 따라 부문별 역학이 크게 다르기 때문에 개별적인 상업적 및 기술적 전략이 필요합니다. 등급별 시장 조사에서는 배터리용 등급과 산업용 등급으로 나뉘며, 배터리용 등급 재료는 보다 엄격한 불순물 관리, 분석 추적성 강화, 전해질 화학물질과의 적합성 검증이 요구됩니다. 사양의 차이는 공급망에 따른 정제 장비 및 품질관리 시스템에 대한 설비 투자에 영향을 미칩니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 에틸렌 카보네이트 시장 : 등급별

  • 배터리 등급
  • 산업용 등급

제9장 에틸렌 카보네이트 시장 : 용도별

  • 농약
  • 코팅
  • 중간체
  • 리튬이온 배터리
    • 가전
    • 전기자동차
    • 에너지 저장 시스템
  • 가소제
  • 용제

제10장 에틸렌 카보네이트 시장 : 최종사용자 업계별

  • 자동차
  • 화학제품
  • 일렉트로닉스
  • 에너지

제11장 에틸렌 카보네이트 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제12장 에틸렌 카보네이트 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제13장 에틸렌 카보네이트 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제14장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Ube Industries, Ltd.
    • Kanto Chemical Co., Inc.
    • Mitsubishi Chemical Corporation
    • Huntsman International LLC
    • LG Chem Ltd.
    • Sanyo Chemical Industries, Ltd.
    • Shandong Shida Shenghua Chemical Co., Ltd.
    • Celanese Corporation
    • LyondellBasell Industries N.V.
    • Evonik Industries AG
KSA 25.10.22

The Ethylene Carbonate Market is projected to grow by USD 1,419.74 million at a CAGR of 7.99% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 767.52 million
Estimated Year [2025] USD 828.42 million
Forecast Year [2032] USD 1,419.74 million
CAGR (%) 7.99%

Clarifying the strategic role of ethylene carbonate across technology-critical supply chains and industrial chemistries to inform procurement and R&D priorities

Ethylene carbonate is a polar cyclic organic carbonate integral to several industrial and high-technology supply chains. Its physicochemical properties-high dielectric constant, thermal stability, and solvent capabilities-make it particularly valuable where ionic mobility and electrolyte stability are essential. Over the past decade, applications have expanded beyond traditional industrial uses into battery technologies, where formulation chemistry and safety considerations have elevated the compound's strategic importance.

The product's dual role as a solvent and as an intermediate underpins diverse process chemistries across agrochemicals, coatings, and plasticizers. Consequently, procurement teams and R&D functions monitor the compound not only for cost and availability but also for quality attributes tied to specific end uses. In batteries, for example, purity and additive compatibility directly influence cell performance and lifecycle. Therefore, understanding the compound's supply dynamics, regulatory environment, and application-driven quality requirements is a critical first step for stakeholders seeking to mitigate operational risk and capture application-driven value.

Identifying the converging technological, regulatory, and supply-side shifts reshaping how ethylene carbonate is produced, specified, and procured

The landscape for ethylene carbonate is undergoing transformative shifts driven by rapid electrification, tightening regulatory frameworks, and evolving manufacturing footprints. Demand-side transformation is most visible in battery ecosystems, where the transition from consumer electronics to electric mobility and grid-scale storage has amplified the need for battery-grade formulations with consistent impurity profiles. Simultaneously, industrial users are pursuing higher-performance coatings and specialty solvent systems, prompting refinements in grade specifications and supplier qualification processes.

On the supply side, manufacturers are investing in process optimization, feedstock diversification, and capacity reallocation to serve higher-value battery-grade demand. This has triggered a rebalancing effect: producers are upgrading purification capabilities or segmenting product lines to maintain competitiveness across both battery-grade and industrial-grade sectors. Regulatory shifts focused on chemical safety, transport of hazardous materials, and lifecycle emissions are also influencing logistics strategies and site relocations. Taken together, these forces are reshaping procurement criteria, capital allocation, and route-to-market strategies for suppliers and end users alike.

Mapping the broader operational and sourcing repercussions of US tariff regime changes and how procurement teams are adjusting to elevated trade risk

United States tariff adjustments scheduled for 2025 have introduced a new dimension of commercial complexity that impacts global trade dynamics for specialty chemicals including ethylene carbonate. The cumulative effect of tariffs has altered landed cost equations, prompting downstream buyers and suppliers to reassess sourcing decisions and contractual terms. As a result, companies have increased emphasis on nearshoring, multi-sourcing, and longer-term supplier relationships to buffer against tariff volatility and avoid single-point procurement risk.

In practice, procurement teams are responding with diversified supplier panels, prioritizing partners that can demonstrate logistical resilience and predictable compliance practices. Some manufacturers have pursued tariff engineering strategies, such as adjusting product classification or reconfiguring shipments to exploit preferential trade arrangements where feasible. At the same time, supply chain managers are accelerating inventory planning cycles and building greater visibility into upstream feedstock routes to anticipate cost impacts. The aggregate effect is a more cautious, strategically hedged market where commercial agility and trade policy expertise are becoming competitive differentiators.

Delivering actionable segmentation intelligence that clarifies how grade, application cohorts, and end-user industry requirements drive procurement and technical strategies

Segment-specific dynamics for ethylene carbonate differ substantially across quality tiers, application use-cases, and end-user industries, necessitating tailored commercial and technical strategies. Based on Grade, market studies separate Battery Grade from Industrial Grade, with battery-grade materials demanding tighter impurity control, enhanced analytical traceability, and compatibility validation with electrolyte chemistries. The differences in specification influence capital investment in purification equipment and quality management systems along the supply chain.

Based on Application, investigations recognize distinct pathways for Agrochemicals, Coatings, Intermediates, Lithium-Ion Batteries, Plasticizers, and Solvents. Within Lithium-Ion Batteries, further stratification occurs across Consumer Electronics, Electric Vehicles, and Energy Storage Systems, each with unique lifecycle, safety, and performance priorities that shape procurement tolerances and supplier selection. For example, consumer electronics favor compact form factors and high cycle stability, while electric vehicle OEMs prioritize high-energy, long-life formulations and supplier commitments to supply continuity.

Based on End User Industry, segmentation into Automotive, Chemical, Electronics, and Energy illuminates diverse value drivers and vulnerability points. Automotive and Electronics sectors place a premium on supplier qualification and long-term contracts to support stringent quality and safety protocols. Chemical manufacturers tend to emphasize feedstock flexibility and price stability, whereas the Energy sector focuses on durability and large-scale logistics for stationing storage systems. Consequently, firms must align manufacturing, QA/QC, and commercial approaches to the segment-specific expectations that determine procurement criteria and product differentiation.

Explaining regional demand and supply differentiators across the Americas, Europe, Middle East & Africa, and Asia-Pacific that dictate commercial and compliance priorities

Regional dynamics for ethylene carbonate reveal differentiated demand drivers, supply structures, and regulatory constraints across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, growth in electric vehicle adoption and energy storage deployments has generated heightened interest in battery-grade materials, with localized capacity investments and supply chain partnerships emerging to support EV supply chains. Meanwhile, regulatory scrutiny on transportation and storage has prompted manufacturers to invest in safer handling processes and contingency logistics.

Europe, Middle East & Africa present a complex regulatory and sustainability environment where circularity initiatives and stringent chemical safety standards increasingly shape product specifications and vendor approvals. Companies operating in this region often prioritize low-emissions production and chemical stewardship, influencing supplier selection and product development. In contrast, Asia-Pacific retains a dominant role in global production capacity, supported by integrated petrochemical complexes and extensive downstream manufacturing ecosystems. Consequently, Asia-Pacific serves both as a major supplier hub and as a rapidly growing consumption market, especially where EV adoption and electronics manufacturing continue to expand.

Taken together, regional variation necessitates differentiated go-to-market strategies: supply continuity and cost competitiveness are primary in Asia-Pacific, compliance and sustainability credentials matter most in Europe, and logistics resilience combined with scale-up support is critical across the Americas. Firms that align regional commercial models with local regulatory frameworks and customer expectations secure stronger positioning across global value chains.

Profiling how leading producers, mid-tier specialists, and strategic partners are transforming capabilities to serve high-value battery and specialty industrial applications

Key companies operating in the ethylene carbonate ecosystem are focusing on capability upgrades, vertical integration, and strategic partnerships to meet evolving technical and supply requirements. Leading producers are allocating capital toward advanced purification for battery-grade outputs, strengthening their laboratory analytics and traceability systems to meet OEM and tier-supplier standards. Concurrently, mid-sized manufacturers are pursuing niche differentiation through specialty formulations and responsive service offerings to capture segments that prize customization.

Several industry participants are also exploring downstream collaborations with electrolyte formulators, cell manufacturers, and synthetic feedstock providers to create tighter value chain alignment. These collaborations support faster validation cycles and co-developed specifications, which in turn shorten time-to-adoption for new battery technologies and specialty industrial applications. Moreover, companies increasingly emphasize sustainability initiatives-such as lower-emission process technologies and solvent recovery programs-to meet procurement policies and regulatory expectations, thereby enhancing their competitive positioning among environmentally focused customers.

Actionable strategic priorities for producers and buyers to secure quality, resilience, and collaborative advantage amid shifting trade and technology dynamics

Industry leaders should adopt a proactive, multi-pronged strategy that balances technical investment, supply chain resilience, and commercial agility. First, invest in analytical infrastructure and purification capabilities to support battery-grade specifications and enable rapid qualification with OEMs and cell manufacturers. Such investments reduce time-to-qualification risk and protect product integrity across higher-margin applications. Second, diversify sourcing and establish multi-regional supplier networks to mitigate tariff exposure and transport disruptions, while preserving the ability to scale quickly when demand patterns change.

Third, pursue closer integration with downstream partners through co-development agreements and joint validation programs. These collaborations accelerate adoption of new formulations and align supply capacity with product roadmaps. Fourth, embed sustainability into process upgrades by prioritizing energy-efficient unit operations, solvent recovery, and lower-emission feedstocks to meet buyer expectations and regional regulatory demands. Finally, enhance commercial terms to include flexible logistics solutions and inventory support for strategic customers; this will strengthen partnerships and reduce churn. Together, these measures create a resilient, differentiated commercial model capable of navigating policy shifts and technological transitions.

Describing a rigorous mixed-methods research framework that blends primary interviews, technical literature review, and trade analysis to validate practical insights

The research approach combines primary qualitative interviews, secondary literature synthesis, and technical specification analysis to produce an integrated view of the ethylene carbonate landscape. Primary inputs include structured discussions with industry executives, procurement leaders, technical R&D managers, and logistics specialists to capture real-world operational challenges, specification tolerances, and strategic priorities. These conversations are corroborated by examination of regulatory filings, public company disclosures, and industry association guidance to ensure a robust factual basis.

Secondary analysis synthesizes recent academic publications and peer-reviewed chemical engineering literature related to carbonate synthesis, purification methods, and electrolyte interactions, providing technical context for application-specific performance attributes. In addition, supply chain and trade data are analyzed qualitatively to identify patterns in sourcing, transport modalities, and tariff-related adjustments. Throughout, methodological rigor is maintained by cross-validating insights across independent sources, documenting analyst assumptions, and flagging areas where data gaps suggest the need for client-specific inquiries or supplemental testing.

Summarizing why aligning technical excellence, supply resilience, and sustainability credentials is essential for capturing strategic opportunities in this evolving chemical ecosystem

In summary, ethylene carbonate occupies a pivotal position at the intersection of industrial chemistry and electrification-driven demand. Its role as both a solvent and a high-performance electrolyte component creates distinct quality tiers and application-driven requirements that shape investment priorities across the supply chain. Meanwhile, trade policy shifts and regional regulatory landscapes are driving procurement teams to adopt hedging strategies, diversify suppliers, and demand clearer sustainability credentials.

Looking forward, stakeholders that align technical capabilities with customer-specific validation needs, invest in resilience across sourcing and logistics, and adopt sustainability-enhancing process technologies will be best positioned to capture strategic opportunities. Collaboration along the value chain-between producers, formulators, and end users-will accelerate product qualification cycles and reduce commercialization friction. Ultimately, a balanced emphasis on quality, commercial flexibility, and regulatory foresight will determine which organizations successfully navigate the emerging dynamics surrounding this critical chemical building block.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Surging demand for ethylene carbonate in lithium-ion battery electrolytes driven by electric vehicle proliferation
  • 5.2. Development of bio-based ethylene carbonate through carbon dioxide utilization processes for sustainable solvent production
  • 5.3. Regulatory shifts targeting volatile organic compounds boosting industrial adoption of ethylene carbonate as low-VOC solvent alternative
  • 5.4. Strategic alliances between chemical manufacturers and battery producers to secure stable ethylene carbonate supply chains
  • 5.5. Raw material cost fluctuations in ethylene oxide and carbon dioxide influencing ethylene carbonate pricing and market dynamics
  • 5.6. Expansion of ethylene carbonate production capacity in Asia-Pacific fueled by growing electronics and EV manufacturing investments
  • 5.7. Implementation of advanced catalytic processes to enhance ethylene carbonate yield and reduce greenhouse gas emissions in production

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Ethylene Carbonate Market, by Grade

  • 8.1. Battery Grade
  • 8.2. Industrial Grade

9. Ethylene Carbonate Market, by Application

  • 9.1. Agrochemicals
  • 9.2. Coatings
  • 9.3. Intermediates
  • 9.4. Lithium-Ion Batteries
    • 9.4.1. Consumer Electronics
    • 9.4.2. Electric Vehicles
    • 9.4.3. Energy Storage Systems
  • 9.5. Plasticizers
  • 9.6. Solvents

10. Ethylene Carbonate Market, by End User Industry

  • 10.1. Automotive
  • 10.2. Chemical
  • 10.3. Electronics
  • 10.4. Energy

11. Ethylene Carbonate Market, by Region

  • 11.1. Americas
    • 11.1.1. North America
    • 11.1.2. Latin America
  • 11.2. Europe, Middle East & Africa
    • 11.2.1. Europe
    • 11.2.2. Middle East
    • 11.2.3. Africa
  • 11.3. Asia-Pacific

12. Ethylene Carbonate Market, by Group

  • 12.1. ASEAN
  • 12.2. GCC
  • 12.3. European Union
  • 12.4. BRICS
  • 12.5. G7
  • 12.6. NATO

13. Ethylene Carbonate Market, by Country

  • 13.1. United States
  • 13.2. Canada
  • 13.3. Mexico
  • 13.4. Brazil
  • 13.5. United Kingdom
  • 13.6. Germany
  • 13.7. France
  • 13.8. Russia
  • 13.9. Italy
  • 13.10. Spain
  • 13.11. China
  • 13.12. India
  • 13.13. Japan
  • 13.14. Australia
  • 13.15. South Korea

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2024
  • 14.2. FPNV Positioning Matrix, 2024
  • 14.3. Competitive Analysis
    • 14.3.1. Ube Industries, Ltd.
    • 14.3.2. Kanto Chemical Co., Inc.
    • 14.3.3. Mitsubishi Chemical Corporation
    • 14.3.4. Huntsman International LLC
    • 14.3.5. LG Chem Ltd.
    • 14.3.6. Sanyo Chemical Industries, Ltd.
    • 14.3.7. Shandong Shida Shenghua Chemical Co., Ltd.
    • 14.3.8. Celanese Corporation
    • 14.3.9. LyondellBasell Industries N.V.
    • 14.3.10. Evonik Industries AG
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제