시장보고서
상품코드
1837511

인프라용 AI 시장 : 구성 요소, 인프라 유형, 최종 사용자 산업, 배포 모델별 세계 예측(2025-2032년)

Artificial Intelligence in Infrastructure Market by Component, Infrastructure Type, End User Industry, Deployment Model - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 185 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

인프라용 AI 시장은 2032년까지 연평균 복합 성장률(CAGR) 22.15%를 나타내 1,779억 달러의 성장이 예측되고 있습니다.

주요 시장 통계
기준 연도(2024년) 358억 9,000만 달러
추정 연도(2025년) 440억 1,000만 달러
예측 연도(2032년) 1,779억 달러
CAGR(%) 22.15%

인프라용 AI 채택이 가속화됨에 따라 기업은 디지털 서비스를 지원하는 기반 기술의 설계, 도입, 관리 방법을 재구축하고 있습니다. 기업이 실험적인 파일럿에서 프로덕션 레벨 배포로 전환함에 따라 인프라 우선순위는 탄력성, 관측 가능성, 안전한 자동화를 중시하도록 진화하고 있습니다. AI는 더 이상 부가 기능이 아니며 아키텍처 의사 결정의 핵심 원동력이 되어 사설 환경과 하이브리드 환경에서 하드웨어 선택, 소프트웨어 스택 및 서비스 계약에 영향을 미칩니다.

결과적으로 인프라팀은 AI 워크로드를 지원하기 위한 고성능 컴퓨팅 및 전용 프로세서의 필요성, 분산 토폴로지를 가로지르는 데이터 흐름의 안전성 확보, 레거시 시스템과 최신 플랫폼의 통합 요구사항 등 상반되는 요구사항의 균형을 맞추어야 합니다. 이러한 역학은 예측 가능한 성능을 제공하고 수명 주기 운영을 간소화할 수 있는 모듈형 네트워킹, 엣지 컴퓨팅 및 플랫폼 미들웨어에 대한 투자를 가속화합니다. 이와 병행하여, 기술의 격차를 메우고, AI 주도 워크플로우를 운영하고, 전략, 통합 및 지속적인 지원에 대한 모범 사례를 통합하기 위해 전문 서비스가 점점 더 중요해지고 있습니다.

앞으로 리더는 인프라를 AI 주도의 비즈니스 성과를 지원하는 전략적 자산으로 취급해야 합니다. 이는 서비스 속도, 비용 효율성 및 위험 완화에서 측정 가능한 개선을 달성하기 위해 조달, 아키텍처 및 운영 모델을 조정하는 것을 의미합니다. 그렇게 함으로써 조직은 인프라의 현대화를 기술적 부담이 아니라 경쟁 우위로 바꿀 수 있어 업계 전반의 혁신의 새로운 잠재력을 이끌어 낼 수 있습니다.

인프라 제공 모델 및 운영 거버넌스를 재정의하는 컴퓨팅, 네트워킹, 스토리지 및 서비스의 혁신적인 변화

인프라 상황은 공급업체의 전략, 전개 패턴, 조직 능력을 변화시키는 몇 가지 요인에 힘입어 변화의 시기를 맞이하고 있습니다. 첫째, 컴퓨팅 아키텍처의 단편화가 진행되고 있습니다. 중앙 집중식 데이터센터와 대기 시간에 민감한 AI 용도를 가능하게 하는 에지 노드와 특수 처리 장치의 급증이 공존하고 있습니다. 이 단편화는 이기종 환경 간의 일관된 성능을 보장하기 위해 오케스트레이션, 수명주기 관리 및 관측 가능성에 대한 새로운 접근이 필요합니다.

둘째, 네트워킹 패러다임은 제어 플레인과 데이터 플레인을 분리하고 보다 동적 정책 적용 및 자동화된 트래픽 조향을 가능하게 하는 소프트웨어 정의 모델 및 인텐트 기반 모델로 진화하고 있습니다. AI 워크로드가 예측 불가능하고 버스트적인 트래픽 패턴을 생성하고 기존의 정적 구성에서는 효율적으로 처리할 수 없기 때문에 이러한 기능은 필수적입니다. 동시에 스토리지 전략은 지속적인 모델을 학습하고 추론하는 높은 처리량, 낮은 대기 시간의 데이터 파이프라인에 대응하도록 변화하고 있습니다.

셋째, 서비스의 전략적 중요성이 높아지고 있습니다. 컨설팅 업무는 순수한 권고의 역할에서 통합 팀이 용도, 시스템 및 운영의 각 영역에 걸쳐 엔드 투 엔드 솔루션을 제공하는 성과 기반 계약으로 축 발을 옮기고 있습니다. 지원 모델도 마찬가지로 변화하고 있습니다. 리모트 진단, AI를 활용한 예지 보전, 자동 수복에 의해 평균 수리 시간이 단축되는 한편, 이상 감지나 모델 거버넌스에 있어서의 새로운 능력이 요구되고 있습니다. 오케스트레이션과 거버넌스의 복잡성과 성능, 신뢰성, 안전한 운영을 통해 차별화된 가치를 제공하는 기회입니다.

2025년 시행되는 미국 관세로 인한 인프라 조달 및 공급업체 전략에 대한 누적 운영 및 전략적 영향

2025년 미국 관세의 부과 및 조정은 세계 인프라 공급망, 조달 전략 및 공급업체 로드맵에 중요한 고려사항을 제공합니다. 관세와 관련된 비용 압력은 조직에 조달 결정을 검토하고 대체 부품 공급자를 검토하며 제조 및 조립의 지리적 배분을 재평가하도록 촉구합니다. 경우에 따라 조달 팀은 프로젝트 일정을 유지하면서 투입 비용을 안정시키기 위해 계약을 재협상하거나 위험 회피 전략을 고려합니다.

이러한 움직임은 공급업체의 제품 전략에도 영향을 미칩니다. 하드웨어 제조업체는 관세의 영향을 받는 부품에 대한 의존도를 낮추고 업그레이드 경로를 명확히 하여 자본 교체를 최소화하기 위해 설계 통합과 모듈화를 가속화하고 있습니다. 한편, 소프트웨어 및 서비스 제공업체는 구독 및 성과 기반 가격 모델을 중시하고 고객 가치를 하드웨어 선행 취득에서 분리함으로써 관세로 인한 가격 변동이 예산에 미치는 직접적인 영향을 완화하려고 합니다.

운영 측면에서는 혼란 완화를 위한 시나리오 계획 및 공급망 가시성을 강화해야 합니다. 이를 위해서는 조달, 아키텍처 및 공급업체의 각 관리 팀이 보다 긴밀하게 협력하여 긴급 재고, 이중 조달 계약 및 현지화된 지원 모델을 필요할 때 시작할 수 있어야 합니다. 중요한 것은 관세 관련 조정은 성과와 규정 준수를 유지하면서 국경을 넘어 노출을 줄이는 에지 현지화 및 지역 배포 전략의 추진을 가속화한다는 것입니다.

요약을 요약하면, 2025년 관세의 누적 영향은 단일 비용 차이보다는 지정학적/무역 불확실성 속에서 연속성을 제공하기 위해 조직이 공급업체와의 관계를 어떻게 관리하고, 모듈화를 어떻게 설계하고, 가격 모델을 어떻게 조정하는지에 대한 구조적 전환을 가져옵니다.

구성 요소, 인프라 유형, 산업 및 배포 모델을 전략적 배포 및 조달 의사 결정에 연결하는 종합적인 세분화 인사이트

인사이트이 있는 세분화를 통해 이해관계자는 가치가 창출되는 곳과 통합 리스크가 집중되는 곳을 밝혀내어 이용 사례, 조달 주기, 기술 투자에 역량을 정합시킬 수 있습니다. 하드웨어는 네트워크 장비, 프로세서, 저장 장치, 서비스는 컨설팅, 통합, 지원 및 유지 보수의 각 분야에서 컨설팅은 전략 컨설팅 및 기술 컨설팅, 통합은 애플리케이션 통합 및 시스템 통합, 지원 및 유지 보수는 현장 지원 및 원격 지원의 각 분야에서 소프트웨어는 미들웨어, 플랫폼 이 다층적 관점은 하드웨어 선택이 기준 성능을 촉진하고, 소프트웨어 계층이 오케스트레이션과 개발자의 생산성을 가능하게 하고, 서비스가 전략적 지침과 통합 노력을 통해 가치 실현까지의 시간을 가속화한다는 것을 명확히 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

  • 인공지능 기반 예측 보전 플랫폼은 센서 데이터를 분석하여 예기치 않은 인프라 다운타임 감소
  • 엣지 컴퓨팅을 활용한 AI에 의한 교량이나 고가의 구조 건전성 실시간 감시
  • 동적 소비 패턴을 기반으로 스마트 그리드의 에너지 배분을 최적화하는 머신러닝 모델
  • 정밀 토목 공사와 현장 조사를 위한 컴퓨터 비전을 통합한 자율 건설용 로봇
  • 음향 센서 융합에 의한 수도관 누수 검출을 위한 AI 강화 예측 분석
  • 시설 유지보수 요청 및 워크플로우 관리를 자동화하는 자연 언어 처리 채팅봇
  • 교통 정체를 예측하고 도시 도로 인프라 계획을 최적화하는 딥러닝 알고리즘
  • AI를 활용한 지진 활동 해석에 의해 내진 기초 설계와 내진 보강 전략을 지원
  • 내구성과 지속가능성의 지표를 향상시키기 위해 건축 재료의 구성을 최적화하는 생성형 AI
  • 철도 네트워크의 스케줄링과 선로 보수의 효율을 개선하는 강화 학습 프레임워크

제6장 미국 관세의 누적 영향(2025년)

제7장 AI의 누적 영향(2025년)

제8장 인프라용 AI 시장 : 구성 요소별

  • 하드웨어
    • 네트워크 장비
    • 프로세서
    • 저장장치
  • 서비스
    • 컨설팅
      • 전략 컨설팅
      • 기술 컨설팅
    • 통합
      • 애플리케이션 통합
      • 시스템 통합
    • 지원 및 유지 보수
      • 현장 지원
      • 원격 지원
  • 소프트웨어
    • 미들웨어
    • 플랫폼
    • 도구

제9장 인프라용 AI 시장 : 인프라 유형별

  • 컴퓨팅
    • 엣지 디바이스
      • 게이트웨이
      • IoT 디바이스
    • 서버
      • 블레이드 서버
      • 랙 서버
      • 타워 서버
  • 네트워킹
    • 라우터 및 스위치
      • 라우터
      • 스위치
    • 소프트웨어 정의 네트워크
  • 스토리지

제10장 인프라용 AI 시장 : 최종 사용자 업계별

  • BFSI
  • 에너지
    • 석유 및 가스
    • 재생 에너지
    • 유틸리티
  • 정부
    • 국방
    • 공공 안전
    • 스마트 시티
  • 제조업
    • 자동차
    • 일렉트로닉스
    • FMCG(일용소비재)
  • 통신
    • 광대역
    • 모바일

제11장 인프라용 AI 시장 : 배포 모델별

  • 클라우드
  • On-Premise

제12장 인프라용 AI 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 인프라용 AI 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 인프라용 AI 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석(2024년)
  • FPNV 포지셔닝 매트릭스(2024년)
  • 경쟁 분석
    • NVIDIA Corporation
    • Intel Corporation
    • Amazon.com, Inc.
    • Microsoft Corporation
    • Alphabet Inc.
    • International Business Machines Corporation
    • Advanced Micro Devices, Inc.
    • Dell Technologies Inc.
    • Hewlett Packard Enterprise Company
    • Cisco Systems, Inc.
KTH

The Artificial Intelligence in Infrastructure Market is projected to grow by USD 177.90 billion at a CAGR of 22.15% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 35.89 billion
Estimated Year [2025] USD 44.01 billion
Forecast Year [2032] USD 177.90 billion
CAGR (%) 22.15%

The accelerating adoption of artificial intelligence within infrastructure is reshaping how organizations design, deploy, and manage the foundational technology that powers digital services. As enterprises shift from experimental pilots to production-grade deployments, infrastructure priorities are evolving to emphasize resilience, observability, and secure automation. AI is no longer an add-on capability but a core driver of architectural decisions, influencing hardware selection, software stacks, and service engagements across private and hybrid environments.

Consequently, infrastructure teams are balancing competing imperatives: the need for high-performance compute and specialized processors to support AI workloads, the imperative to secure data flows across distributed topologies, and the requirement to integrate legacy systems with modern platforms. These dynamics are accelerating investments in modular networking, edge compute, and platform middleware that can deliver predictable performance and streamline lifecycle operations. In parallel, professional services are increasingly essential to bridge skills gaps and to operationalize AI-driven workflows, embedding best practices in strategy, integration, and ongoing support.

Looking ahead, leaders must treat infrastructure as a strategic asset that underpins AI-driven business outcomes. This means aligning procurement, architecture, and operational models to achieve measurable improvements in service velocity, cost-efficiency, and risk mitigation. By doing so, organizations can convert infrastructure modernization into a competitive advantage rather than a technical burden, thereby unlocking new possibilities for innovation across industries.

Transformative shifts in compute, networking, storage, and services that are redefining infrastructure delivery models and operational governance

The landscape of infrastructure is undergoing transformative shifts propelled by several converging forces that alter vendor strategies, deployment patterns, and organizational capabilities. First, compute architectures are fragmenting; centralized data centers now coexist with proliferating edge nodes and specialized processing units that enable latency-sensitive AI applications. This fragmentation necessitates new approaches to orchestration, lifecycle management, and observability to ensure consistent performance across heterogeneous environments.

Second, networking paradigms are evolving toward software-defined and intent-driven models that decouple control and data planes, enabling more dynamic policy enforcement and automated traffic steering. These capabilities are becoming essential as AI workloads create unpredictable and bursty traffic patterns that traditional static configurations cannot efficiently handle. At the same time, storage strategies are shifting to accommodate high-throughput, low-latency data pipelines that feed continuous model training and inferencing.

Third, services are rising in strategic importance. Consulting practices are pivoting from purely advisory roles to outcome-based engagements where integration teams deliver end-to-end solutions that span application, system, and operational domains. Support models are likewise transforming; remote diagnostics, predictive maintenance powered by AI, and automated remediation reduce mean time to repair while requiring new competencies in anomaly detection and model governance. Taken together, these shifts create both complexity and opportunity: complexity in orchestration and governance, and opportunity in delivering differentiated value through performance, reliability, and secure operations.

Cumulative operational and strategic impacts for infrastructure procurement and vendor strategies arising from United States tariffs enacted in 2025

The imposition and adjustment of United States tariffs in 2025 introduce material considerations for global infrastructure supply chains, procurement strategies, and vendor roadmaps. Tariff-related cost pressures are prompting organizations to reassess sourcing decisions, consider alternative component suppliers, and reevaluate the geographic distribution of manufacturing and assembly. In some cases, procurement teams are renegotiating contracts and exploring hedging strategies to stabilize input costs while preserving project timelines.

These dynamics also influence vendor product strategies. Hardware manufacturers are accelerating design consolidations and modularization to reduce dependency on tariff-affected components and to create clearer upgrade paths that minimize capital churn. Software and services providers, meanwhile, are emphasizing subscription and outcome-based pricing models that decouple customer value from upfront hardware acquisition, thereby softening the immediate budgetary impact of tariff-driven price volatility.

Operationally, organizations must enhance their scenario planning and supply chain visibility to mitigate disruption. This requires deeper collaboration between procurement, architecture, and vendor management teams so that contingency inventories, dual-sourcing arrangements, and localized support models can be activated when needed. Importantly, tariff-related adjustments also accelerate the drive to edge localization and regional deployment strategies that reduce cross-border exposure while preserving performance and compliance.

In summary, the cumulative impact of 2025 tariffs is less about a single cost delta and more about a structural shift in how organizations manage supplier relationships, design for modularity, and align pricing models to provide continuity amid geopolitical and trade-related uncertainty.

Comprehensive segmentation insights tying components, infrastructure types, industry verticals, and deployment models to strategic deployment and procurement decisions

Insightful segmentation helps stakeholders align capabilities with use cases, procurement cycles, and skills investments by illuminating where value is created and where integration risk concentrates. Based on Component, the market is studied across Hardware, Services, and Software; Hardware is further studied across Networking Equipment, Processors, and Storage Devices; Services is further studied across Consulting, Integration, and Support & Maintenance, with Consulting further studied across Strategy Consulting and Technical Consulting, Integration further studied across Application Integration and System Integration, and Support & Maintenance further studied across Onsite Support and Remote Support; Software is further studied across Middleware, Platforms, and Tools. This multi-layered view clarifies that hardware choices drive baseline performance, software layers enable orchestration and developer productivity, and services accelerate time-to-value through strategic guidance and integration efforts.

Based on Infrastructure Type, the market is studied across Compute, Networking, and Storage; Compute is further studied across Edge Devices and Servers, with Edge Devices further studied across Gateways and IoT Devices, and Servers further studied across Blade Servers, Rack Servers, and Tower Servers; Networking is further studied across Routers & Switches and Software Defined Networking, with Routers & Switches further studied across Routers and Switches. This segmentation emphasizes that edge compute and modular servers are central for latency-sensitive AI applications, while software-defined networking is critical to enable dynamic policies and traffic optimization across dispersed topologies.

Based on End User Industry, the market is studied across BFSI, Energy, Government, Manufacturing, and Telecom; Energy is further studied across Oil & Gas, Renewable, and Utilities; Government is further studied across Defense, Public Safety, and Smart City; Manufacturing is further studied across Automotive, Electronics, and FMCG; Telecom is further studied across Broadband and Mobile. Viewing segmentation through an industry lens highlights differentiated regulatory constraints and operational priorities that shape deployment patterns and service-level expectations. Finally, based on Deployment Model, the market is studied across Cloud and On Premise, underscoring that hybrid approaches are prevalent where compliance, latency, and cost considerations drive mixed architectures. Together, these segmentation perspectives allow decision-makers to map technical choices to commercial outcomes and to prioritize investments where they yield the greatest operational impact.

Regional dynamics and regulatory influences across the Americas, Europe, Middle East & Africa, and Asia-Pacific that inform localized infrastructure strategies

Regional dynamics shape technology priorities, supplier selection, and regulatory compliance in distinct ways, requiring tailored go-to-market strategies and implementation approaches. In the Americas, demand is shaped by large-scale enterprise modernization programs, strong private sector investment in AI-enabled services, and an emphasis on edge use cases that reduce latency for customer-facing applications. This region also features active regulatory dialogue on data privacy and cross-border data flows, which affects how organizations design data residency and sovereignty controls.

In Europe, Middle East & Africa, the landscape is characterized by divergent adoption cycles across markets, with regulatory frameworks and public-sector initiatives playing a pivotal role. Policymakers in parts of Europe are advancing stringent compliance standards that necessitate robust governance and explainability for AI-driven infrastructure operations, while several markets in the Middle East and Africa are rapidly investing in digital infrastructure to support national transformation agendas. These regional differences mean that vendors must provide flexible deployment options and compliance-aware services to address heterogeneous requirements.

Asia-Pacific presents a mosaic of high-growth markets where edge compute, telecommunications modernization, and localized manufacturing capacities are accelerating infrastructure renewal. The region's emphasis on rapid deployment and scalable software platforms supports a thriving ecosystem for middleware and platform providers. Moreover, strategic partnerships between global vendors and local systems integrators often determine success, as they offer the combination of scale and regional presence necessary to execute complex, multi-site rollouts. Across all regions, resilience, supply chain agility, and compliance remain core considerations that influence architecture, vendor selection, and operational models.

Competitive landscape dynamics, partnership models, and capability-driven differentiation that determine long-term leadership in AI-enabled infrastructure

The competitive fabric of the infrastructure market is shaped by a mix of established hardware vendors, agile software providers, and specialized services firms that together form integrated solutions. Leading hardware manufacturers compete on performance, component modularity, and long-term support commitments, while software vendors differentiate through middleware capabilities, platform APIs, and developer ecosystems that accelerate application modernization. Services firms, including strategy consultancies and systems integrators, play a pivotal role in reducing implementation risk through proven frameworks and repeatable integration patterns.

Partnerships and alliances are central to delivering end-to-end offerings; successful companies often combine proprietary hardware components with open platform software and tightly coordinated services to deliver predictable outcomes. Strategic moves such as vertical integration of key components, open standards adoption for interoperability, and investments in automation tools for lifecycle management are common among market leaders seeking to lock in enterprise-grade customers.

Talent and intellectual property are also key competitive levers. Firms that invest in domain-specific engineering teams, model governance frameworks, and continuous training for field engineers are better positioned to translate research into repeatable deployments. Finally, the ability to offer flexible commercial models-such as consumption-based pricing, managed services, and performance guarantees-distinguishes those companies that can both attract and retain large-scale enterprise customers while mitigating the procurement friction often associated with infrastructure transformations.

Actionable and pragmatic strategic recommendations for leaders to align procurement, architecture, supply chain resilience, and workforce capabilities for AI-enabled infrastructure

Industry leaders should adopt a set of pragmatic actions to convert the disruptive potential of AI into sustainable infrastructure advantage. First, align procurement and architecture roadmaps to prioritize modular, vendor-agnostic components that facilitate upgrades and reduce single-source risk. By emphasizing interoperability and open interfaces, organizations can preserve flexibility while accelerating innovation cycles. Second, invest in cross-functional capabilities that blend strategy consulting with technical implementation; establishing integrated teams reduces translation loss between business objectives and operational execution.

Third, strengthen supply chain resilience through dual-sourcing, localized inventory planning, and long-term collaboration with strategic suppliers. This approach mitigates exposure to tariff volatility and geopolitical disruption while enabling predictable deployment timelines. Fourth, modernize networking and observability stacks to support AI-driven automation; implementing intent-based networking and telemetry-led incident management enables rapid response to dynamic workload behavior. Fifth, adopt outcome-based commercial agreements that align incentives with performance and uptime goals, which can lower adoption barriers and create predictable operational expenses.

Finally, prioritize workforce development and governance around model lifecycle management. Upskilling operations teams in AI observability, model validation, and explainability reduces operational risk and reinforces trust. Taken together, these actions create a pragmatic roadmap for leaders to deploy AI-enabled infrastructure that delivers measurable business outcomes, operational resilience, and sustained competitive differentiation.

Transparent mixed-methods research methodology combining expert interviews, technical analysis, and policy review to ensure reproducible and actionable findings

This research employed a mixed-methods approach combining qualitative expert interviews, vendor product analysis, and synthesis of publicly available policy and technical literature to ensure a holistic view of infrastructure trends. Primary insights were validated through structured interviews with infrastructure architects, procurement leads, and integration specialists across multiple industries, while vendor roadmaps and product specifications were analyzed to identify technological inflection points and interoperability trends.

Secondary research encompassed technical white papers, standards body publications, and regulatory guidance to contextualize how compliance and governance influence deployment choices. Triangulation of data sources ensured that conclusions reflect both market intent and operational realities. Trend signals were analyzed for consistency across regions and industry verticals, and scenario analysis was used to examine the implications of supply chain disruptions, tariff adjustments, and rapid uptake of edge compute patterns.

Throughout the research, emphasis was placed on reproducibility and transparency of methodology. Assumptions and limitations were documented to clarify the scope of findings, and recommendations are framed to be actionable across a range of organizational sizes and maturity levels. This methodology balances depth and practicability, delivering insights that are both evidence-based and directly applicable to strategic decision-making.

Concluding synthesis on converting infrastructure modernization investments into sustained business advantage through strategic alignment and operational governance

Artificial intelligence is transforming infrastructure from a utility into a strategic enabler that demands new approaches to design, procurement, and operations. The convergence of edge compute, intent-driven networking, and modular storage is creating a new architecture paradigm that supports resilient, high-performance AI workloads while opening opportunities for differentiated services and commercial models. Organizations that proactively align their technology roadmaps, supply chain strategies, and talent development efforts will be better poised to capture these benefits.

In addition, geopolitical and trade developments add a layer of complexity that requires enhanced scenario planning and supplier collaboration. By focusing on interoperability, modularity, and outcomes-based engagements, enterprises can mitigate risk while preserving innovation velocity. The shift toward outcome-oriented services and subscription models also reduces short-term capital intensity and aligns vendor incentives with operational success.

Ultimately, infrastructure modernization for AI is not a one-time project but an iterative capability-building process. Leaders who treat it as an ongoing strategic program-one that harmonizes architecture, governance, and commercial practices-will convert technological change into lasting business value and sustained competitive advantage.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. AI-driven predictive maintenance platform reducing unexpected infrastructure downtime by analyzing sensor data
  • 5.2. Edge computing powered AI for real-time structural health monitoring of bridges and overpasses
  • 5.3. Machine learning models optimizing smart grid energy distribution based on dynamic consumption patterns
  • 5.4. Autonomous construction robotics integrating computer vision for precision earthmoving and site surveying
  • 5.5. AI-enhanced predictive analytics for water pipeline leak detection through acoustic sensor fusion
  • 5.6. Natural language processing chatbots automating facility maintenance requests and workflow management
  • 5.7. Deep learning algorithms forecasting traffic congestion to optimize urban road infrastructure planning
  • 5.8. AI-driven seismic activity analysis informing earthquake-resistant foundation design and retrofitting strategies
  • 5.9. Generative AI optimizing building materials composition for enhanced durability and sustainability metrics
  • 5.10. Reinforcement learning frameworks improving railway network scheduling and track maintenance efficiency

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Artificial Intelligence in Infrastructure Market, by Component

  • 8.1. Hardware
    • 8.1.1. Networking Equipment
    • 8.1.2. Processors
    • 8.1.3. Storage Devices
  • 8.2. Services
    • 8.2.1. Consulting
      • 8.2.1.1. Strategy Consulting
      • 8.2.1.2. Technical Consulting
    • 8.2.2. Integration
      • 8.2.2.1. Application Integration
      • 8.2.2.2. System Integration
    • 8.2.3. Support & Maintenance
      • 8.2.3.1. Onsite Support
      • 8.2.3.2. Remote Support
  • 8.3. Software
    • 8.3.1. Middleware
    • 8.3.2. Platforms
    • 8.3.3. Tools

9. Artificial Intelligence in Infrastructure Market, by Infrastructure Type

  • 9.1. Compute
    • 9.1.1. Edge Devices
      • 9.1.1.1. Gateways
      • 9.1.1.2. Iot Devices
    • 9.1.2. Servers
      • 9.1.2.1. Blade Servers
      • 9.1.2.2. Rack Servers
      • 9.1.2.3. Tower Servers
  • 9.2. Networking
    • 9.2.1. Routers & Switches
      • 9.2.1.1. Routers
      • 9.2.1.2. Switches
    • 9.2.2. Software Defined Networking
  • 9.3. Storage

10. Artificial Intelligence in Infrastructure Market, by End User Industry

  • 10.1. BFSI
  • 10.2. Energy
    • 10.2.1. Oil & Gas
    • 10.2.2. Renewable
    • 10.2.3. Utilities
  • 10.3. Government
    • 10.3.1. Defense
    • 10.3.2. Public Safety
    • 10.3.3. Smart City
  • 10.4. Manufacturing
    • 10.4.1. Automotive
    • 10.4.2. Electronics
    • 10.4.3. Fmcg
  • 10.5. Telecom
    • 10.5.1. Broadband
    • 10.5.2. Mobile

11. Artificial Intelligence in Infrastructure Market, by Deployment Model

  • 11.1. Cloud
  • 11.2. On Premise

12. Artificial Intelligence in Infrastructure Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Artificial Intelligence in Infrastructure Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Artificial Intelligence in Infrastructure Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. NVIDIA Corporation
    • 15.3.2. Intel Corporation
    • 15.3.3. Amazon.com, Inc.
    • 15.3.4. Microsoft Corporation
    • 15.3.5. Alphabet Inc.
    • 15.3.6. International Business Machines Corporation
    • 15.3.7. Advanced Micro Devices, Inc.
    • 15.3.8. Dell Technologies Inc.
    • 15.3.9. Hewlett Packard Enterprise Company
    • 15.3.10. Cisco Systems, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제