시장보고서
상품코드
1838915

원자 분광법 시장 : 기술별, 용도별 - 세계 예측(2025-2032년)

Atomic Spectroscopy Market by Technique, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 182 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

원자 분광법 시장은 2032년까지 연평균 복합 성장률(CAGR) 6.09%로 85억 4,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 53억 2,000만 달러
추정 연도 : 2025년 56억 2,000만 달러
예측 연도 : 2032년 85억 4,000만 달러
CAGR(%) 6.09%

기술 발전, 규제 영향, 연구실 및 조달 리더의 업무에 미치는 영향에 대한 원자 분광학에 대한 종합적인 방향성 제시

원자 분광학은 분석의 정확성과 운영상의 필요성이 교차하는 지점에 위치하여 환경, 산업, 생명과학 분야의 실험실에서 의사결정을 지원합니다. 이 분야의 장비와 분석 방법은 규제 압력, 재료 혁신, 데이터 기반 품질 보증 관행에 따라 계속 진화하고 있습니다. 실험실이 더 엄격한 검출 한계, 복잡한 매트릭스, 더 빠른 처리 요구 사항에 직면함에 따라 리더 팀은 분석 능력뿐만 아니라 총 소유 비용, 통합 가능성 및 장기적인 유지 보수성 측면에서 기술 선택을 평가해야 합니다.

지난 10년간 선원의 안정성, 검출기 감도, 소프트웨어 중심의 워크플로우가 발전하면서 신뢰성과 처리량에 대한 기대치가 재구성되었습니다. 한편, 연구소 네트워크는 중앙 집중식 고처리량 시설과 더 작은 설치 공간의 장비와 간소화된 운영 프로토콜을 필요로 하는 필요한 지점에 분산된 배치의 균형을 맞추고 있습니다. 조달 담당자는 벤더의 라이프사이클과 서비스 실적를 고려하고, 실험실 관리자는 방법론의 견고성과 검증 경로를 우선시하며, 경영진 이해관계자는 공급망 탄력성과 자본 배분을 고려합니다.

따라서 원자분광법을 종합적으로 파악하기 위해서는 기술적 역량, 규제와의 정합성, 업무의 통합을 고려해야 합니다. 이 경영진 요약은 이러한 차원을 통합하여 장비 선택, 실험실 현대화, 경쟁 차별화 등을 담당하는 의사 결정권자를 위해 기술 동향을 실행 가능한 정보로 변환합니다.

기술 수렴, 서비스 기반 상업 모델, 규제 및 지속가능성에 대한 요구 강화가 원자 분광학 생태계를 어떻게 재구성하고 있는가?

원자 분광학의 환경은 기술적, 규제적, 상업적 힘의 수렴에 의해 변모하고 있습니다. 보다 민감한 검출기, 하이브리드화된 분석 플랫폼, 모듈식 설계를 통해 실험실은 더 적은 샘플에서 더 많은 정보를 얻을 수 있으며, 소모품 및 유지 보수에 대한 부담은 줄일 수 있습니다. 동시에 소프트웨어는 이제 전략적 차별화 요소입니다. 임베디드 분석, 클라우드 지원 데이터 관리, AI 지원 스펙트럼 해석은 분석법 개발 주기를 단축하고 재현성을 향상시키고 있습니다.

운영 모델도 병행하여 변화하고 있습니다. 원격 진단, 예지보전, 성과 기반 계약 등을 포함한 서비스 중심의 제공은 제조업체와 최종 사용자 간의 관계를 변화시키고 있습니다. 이러한 서비스화로의 전환은 자본 효율성과 함께 연속성과 가동 시간을 중시하는 실험실 아웃소싱 및 매니지드 서비스의 광범위한 트렌드와 일치합니다. 또한, 소형화와 휴대성이 새로운 응용 분야를 개척하여 일부 분석이 중앙 집중식 실험실에서 현장 및 환자 근처 환경으로 이동하고 있습니다.

규제와 지속가능성에 대한 압력도 영향을 미칩니다. 더 엄격한 오염물질 규제와 모니터링 의무화는 더 높은 성능과 검증된 방법에 대한 수요를 촉진하고, 환경에 대한 우려로 인해 공급업체들은 위험한 시약과 에너지 소비를 줄이려고 노력하고 있습니다. 이러한 변화를 종합하면, 조달, 컴플라이언스, R&D가 협력하여 분석 성능과 복원력 및 수명주기 경제성의 균형을 맞추는 솔루션을 선택하기 위해 보다 통합적인 전략적 접근이 필요합니다.

장비 부품, 소모품, 물류에 영향을 미치는 2025년 미국 관세 개정 이후 공급망 변동과 조달 전략 재편에 대응하는 방법

최근 미국의 관세 정책 동향은 원자 분광학 분야의 조달, 공급망 설계, 전략적 조달에 새로운 고려 사항을 도입했습니다. 2025년 수입 관세 및 무역 조치의 변경은 특수 검출기, 진공 펌프, 전자 모듈 등 주요 장비 부품 및 소모품, 예비 부품의 유통에 영향을 미쳤습니다. 이러한 조정으로 인해 실험실 운영자와 공급업체는 가동 시간과 방법론의 연속성을 유지하기 위해 조달 전략, 재고 정책, 지역 제조 발자국을 재검토해야 하는 상황에 처해 있습니다.

이에 대응하기 위해 많은 공급업체들은 공급업체 기반의 다변화를 가속화하고 국경 간 비용 변동에 대한 노출을 줄이기 위해 니어쇼어링과 지역 조립을 추구하고 있습니다. 이러한 움직임으로 인해 공급업체 인증, 품질관리의 조화, 물류의 이중화가 중요하게 여겨지게 되었습니다. 또한, 조달팀은 운영 리스크를 줄이기 위해 응답 시간 보장 및 중요 예비 부품 재고를 포함한 서비스 계약에 더 많은 우선순위를 두게 되었습니다.

정책 주도의 수입 규제 또한 라이프사이클 경제성에 대한 주의를 환기시켰습니다. 조직은 새로운 장비에 대한 자본 지출과 부품의 가용성이 제한된 오래된 장비에 의존하는 운영 위험 사이의 균형을 평가했습니다. 동시에, 제조업체들은 보다 보호주의적인 환경에서 고객과의 관계를 유지하기 위해 계약 모델에 장기 유지보수 패키지와 지역 밀착형 지원 네트워크를 포함하도록 계약 모델을 조정해 왔습니다. 의사결정자는 무역 정책 시나리오를 조달 계획에 통합하고, 공급망 민첩성과 종합적인 애프터 서비스를 입증한 공급업체를 우선순위에 두어야 합니다.

분석 기술을 용도에 맞게 조정할 수 있는 정확한 지침을 통해 연구소는 장비 선택, 검증 요구 사항 및 서비스 전략을 비즈니스 우선순위에 맞게 조정할 수 있습니다.

세분화된 세분화는 기술을 선택하고 다양한 이용 사례에 대한 분석 역량을 전개할 수 있는 미묘한 렌즈를 제공합니다. 기술별로는 원자흡광분석, 원소분석, 유도결합플라즈마 질량분석, 유도결합플라즈마 발광분광분석, X-선 회절, 형광 X-선 분석이 있으며, 각각 민감도, 매트릭스 내성, 처리량, 운영의 복잡성 등의 트레이드오프가 있습니다. 한편, ICP-MS는 초미량 감도와 동위원소 기능을 제공하여 까다로운 환경 및 제약 매트릭스에 필수적입니다. ICP-OES는 강력한 선형 동적 범위로 다원소 프로파일링의 중간 영역을 차지하며, 원소 분석기는 연소 기반 정량을 신속하게 수행합니다. XRD 및 XRF와 같은 X선 기반 양상은 고체상 특성 평가 및 비파괴 조성 분석으로 기능을 확장하여 지구화학 및 재료 응용 분야를 위한 실험실 포트폴리오를 확장합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 원자 분광법 시장 : 기술별

  • 원자 흡광 분광법
  • 원소 분석 장비
  • 유도 결합 플라즈마 질량 분석
  • 유도 결합 플라즈마 발광 분광법
  • X선 회절
  • X선 형광

제9장 원자 분광법 시장 : 용도별

  • 환경 시험
  • 식품 및 음료 검사
  • 지구화학 및 광업
  • 공업 화학
  • 석유화학
  • 의약품 및 바이오테크놀러지

제10장 원자 분광법 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제11장 원자 분광법 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제12장 원자 분광법 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제13장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Agilent Technologies, Inc.
    • Analytik Jena GmbH+Co. KG by Endress+Hauser AG
    • Anhui Wanyi Science and Technology Co., Ltd.
    • Aurora Biomed Inc
    • Avantor, Inc.
    • Bruker Corporation
    • Buck Scientific Instruments LLC
    • Danaher Corporation
    • GBC Scientific Equipment Pty Ltd
    • Hitachi Ltd.
    • HORIBA, Ltd.
    • JEOL Ltd.
    • LabGeni by LABFREEZ INSTRUMENTS GROUP & RAYSKY INSTRUMENTS
    • Malvern analytical Ltd by Spectris plc
    • Merck KGaA
    • Oxford Instruments
    • PerkinElmer Inc.
    • Rigaku Holdings Corporation
    • SAFAS Corporation
    • Shimadzu Corporation
    • Skyray Instruments USA, Inc.
    • Teledyne Technologies, Inc.
    • Thermo Fisher Scientific, Inc.
    • Wuxi Jiebo Instrument Technology Co.,Ltd.
    • Xiangyi Instrument(Xiangtan) Limited
LSH 25.10.22

The Atomic Spectroscopy Market is projected to grow by USD 8.54 billion at a CAGR of 6.09% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 5.32 billion
Estimated Year [2025] USD 5.62 billion
Forecast Year [2032] USD 8.54 billion
CAGR (%) 6.09%

A comprehensive orientation to atomic spectroscopy that clarifies technical progress, regulatory drivers, and operational implications for laboratory and procurement leaders

Atomic spectroscopy sits at the crossroads of analytical precision and operational necessity, underpinning laboratory decisions across environmental, industrial, and life-science sectors. The discipline's instruments and analytical methods continue to evolve in step with regulatory pressures, materials innovation, and data-driven quality assurance practices. As laboratories confront tighter detection limits, complex matrices, and faster turnaround demands, leadership teams must evaluate technology choices not only for analytical capability but for total cost of ownership, integration potential, and long-term serviceability.

Over the past decade, advances in source stability, detector sensitivity, and software-led workflows have reshaped expectations for reliability and throughput. Meanwhile, laboratory networks are balancing centralized, high-throughput facilities against decentralized, point-of-need deployments that require smaller footprint instruments and simplified operating protocols. These dynamics create a layered strategic environment: procurement officers weigh vendor lifecycles and service footprints; laboratory managers prioritize method robustness and validation pathways; and C-suite stakeholders consider supply-chain resilience and capital allocation.

Consequently, a rounded view of atomic spectroscopy must account for technological capability, regulatory alignment, and operational integration. This executive summary synthesizes those dimensions, translating technical trends into actionable intelligence for decision-makers tasked with instrument selection, laboratory modernization, and competitive differentiation.

How technological convergence, service-based commercial models, and tightening regulatory and sustainability demands are reshaping the atomic spectroscopy ecosystem

The landscape of atomic spectroscopy is experiencing transformative shifts driven by converging technological, regulatory, and commercial forces. Instrumentation has moved beyond incremental refinement toward systemic change: higher-sensitivity detectors, hybridized analytical platforms, and modular designs are enabling laboratories to extract more information from smaller samples while reducing consumables and maintenance windows. At the same time, software is now a strategic differentiator; embedded analytics, cloud-enabled data management, and AI-assisted spectral interpretation are shortening method development cycles and improving reproducibility.

Operational models are transforming in parallel. Service-centric offerings, encompassing remote diagnostics, predictive maintenance, and outcome-based contracts, are changing relationships between manufacturers and end users. This transition toward servitization aligns with broader trends in laboratory outsourcing and managed services, where continuity and uptime are valued alongside capital efficiency. Furthermore, miniaturization and portability are opening new application domains, shifting some analyses from centralized labs to field or near-patient settings.

Regulatory and sustainability pressures are also influential. Stricter contaminant limits and expanded monitoring mandates are driving demand for higher performance and validated methods, while environmental concerns push suppliers to reduce hazardous reagents and energy consumption. Taken together, these shifts require a more integrated strategic approach, where procurement, compliance, and R&D collaborate to select solutions that balance analytical performance with resilience and lifecycle economics.

Navigating supply-chain volatility and procurement strategy realignment after the 2025 United States tariff changes that affected instrument components, consumables, and logistics

Recent tariff policy developments in the United States have introduced new considerations for procurement, supply chain design, and strategic sourcing in the atomic spectroscopy sector. Changes to import duties and trade measures in 2025 have affected the flow of key instrument components, such as specialized detectors, vacuum pumps, and electronic modules, as well as consumables and spare parts. These adjustments have prompted laboratory operators and vendors to reassess sourcing strategies, inventory policies, and regional manufacturing footprints to preserve uptime and method continuity.

In response, many suppliers accelerated diversification of supplier bases and pursued nearshoring or regional assembly to mitigate exposure to cross-border cost volatility. These moves increased emphasis on supplier qualification, quality control harmonization, and logistical redundancy. Additionally, procurement teams have placed greater priority on service agreements that include guaranteed response times and stocked critical spares to reduce operational risk.

Policy-driven import constraints also sharpened attention to lifecycle economics. Organizations are evaluating tradeoffs between capital outlays for new instruments and the operational risk of relying on older equipment with limited parts availability. At the same time, manufacturers have adapted contract models to include longer-term maintenance packages and localized support networks to maintain customer relationships in a more protectionist environment. For decision-makers, the practical takeaway is the need to integrate trade-policy scenarios into procurement planning and to prioritize vendors with demonstrated supply-chain agility and comprehensive aftermarket services.

Precise guidance on matching analytical techniques to applications so laboratories can align instrument selection, validation needs, and service strategies with operational priorities

Disaggregate segmentation offers a nuanced lens for selecting technologies and deploying analytical capacity across varied use cases. Based on technique, the market encompasses Atomic Absorption Spectroscopy, Elemental Analyzers, Inductively Coupled Plasma-Mass Spectrometry, Inductively Coupled Plasma-Optical Emission Spectroscopy, X-Ray Diffraction, and X-Ray Fluorescence, each presenting distinct tradeoffs between sensitivity, matrix tolerance, throughput, and operational complexity. Atomic absorption remains a reliable, cost-effective option for targeted elemental analysis, whereas ICP-MS delivers ultra-trace sensitivity and isotopic capabilities that are essential for demanding environmental and pharmaceutical matrices. ICP-OES occupies a middle ground for multi-element profiling with robust linear dynamic ranges, and elemental analyzers provide rapid quantitation for combustion-based determinations. X-ray based modalities such as XRD and XRF extend capabilities into solid-phase characterization and non-destructive compositional analysis, broadening laboratory portfolios for geochemical and materials applications.

Based on application, laboratories address Environmental Testing, Food & Beverage Testing, Geochemical/Mining, Industrial Chemistry, Petrochemical, and Pharmaceuticals & Biotechnology needs, each driving different instrument and service priorities. Environmental monitoring emphasizes detection limits, regulatory traceability, and robust QA/QC workflows. Food and beverage analysis prioritizes matrix-specific methods and throughput to support safety and compliance. Geochemical and mining applications demand rugged instrumentation and field-portable solutions, while industrial chemistry and petrochemical sectors value high-throughput, automated workflows for process control. The pharmaceuticals and biotechnology space places the highest premium on validated methods, traceability, and integration with quality management systems. Understanding the intersection of technique and application enables stakeholders to align procurement, method development, and lifecycle service strategies with operational goals and regulatory mandates.

Assessing regional variations in technology adoption, service ecosystems, and regulatory drivers to inform differentiated go-to-market and support strategies

Regional dynamics significantly influence technology adoption rates, service availability, and regulatory pressures across the atomic spectroscopy landscape. In the Americas, established laboratory networks and strong environmental and pharmaceutical regulatory frameworks drive sustained demand for high-sensitivity platforms and integrated data management. The region also exhibits a mature aftermarket for preventive maintenance and service contracts, supporting longer equipment lifecycles and predictable uptime for enterprise laboratories.

Europe, the Middle East & Africa present a varied tapestry of needs and capacities. Western Europe tends to lead in early adoption of advanced instrumentation, integrated laboratory informatics, and sustainability-driven procurement, while emerging markets within the region are focused on capacity building, standardization, and field-deployable solutions. Regulatory harmonization efforts and cross-border environmental initiatives influence procurement cycles and validation requirements, creating opportunities for vendors that can deliver localized support and compliance expertise.

Asia-Pacific is characterized by rapid expansion of laboratory infrastructure, strong investment in both centralized and decentralized testing capability, and a dynamic mix of domestic manufacturing and international supply relationships. Growth in industrial chemistry, mining, and food safety testing has accelerated demand for both high-end research instruments and cost-effective routine analyzers. Additionally, the rise of digital laboratory initiatives and increased emphasis on automation and remote servicing are shaping vendor engagement models across the region. Together, these regional differences necessitate tailored go-to-market strategies and differentiated support models for global vendors and regional service providers.

Insight into how integrated hardware, software, and service strategies are redefining competitive advantage and vendor selection in the atomic spectroscopy sector

Competitive dynamics in the atomic spectroscopy landscape are increasingly defined by convergence between instrument performance, software ecosystems, and service capabilities. Leading firms are expanding beyond hardware to offer integrated solutions that pair analytical platforms with instrument diagnostics, method libraries, and cloud-enabled data management. This integration strengthens customer lock-in by simplifying validation, automating routine analyses, and enabling predictive service interventions that reduce unscheduled downtime.

Strategic partnerships and targeted acquisitions have accelerated the bundling of capabilities such as sample preparation automation, laboratory informatics, and remote monitoring. These moves create more complete value propositions for laboratories seeking turn-key pathways to higher throughput and enhanced data integrity. Meanwhile, specialist vendors and contract service providers are carving out niches by delivering domain-specific expertise, modular solutions, and localized support that address sectoral needs like geochemical robustness or pharmaceutical compliance.

Aftermarket service excellence has emerged as a crucial differentiator. Organizations evaluate vendors not only on instrument performance but on service response times, spare-part availability, and training offerings. Consequently, successful companies combine robust R&D pipelines with scalable service networks and transparent validation documentation. For laboratory managers, the emphasis should be on identifying partners that demonstrate both technical competence and operational readiness to support evolving method and regulatory requirements.

Practical strategic measures for laboratory and procurement leaders to enhance resilience, accelerate validation, and optimize total operational performance

Industry leaders should adopt a proactive and multi-dimensional strategy to capitalize on technological advances while minimizing operational risk. First, prioritize vendor selection criteria that weigh service coverage, spare-parts logistics, and demonstrated supply-chain resilience as heavily as analytical performance. This approach reduces exposure to component shortages and ensures continuity of validated methods. Second, invest in modular and software-enabled platforms that facilitate method portability and integration with laboratory information systems to accelerate validation and support remote troubleshooting.

Third, cultivate strategic supplier relationships that include outcome-based service agreements or extended maintenance packages to align vendor incentives with uptime and data quality. Fourth, develop internal competencies in method transfer and validation to shorten onboarding cycles for new instruments and to maintain in-house expertise that complements vendor services. Fifth, incorporate trade-policy scenario planning into procurement cycles and capital allocation decisions, ensuring that sourcing strategies can pivot rapidly in response to tariff or logistics disruptions.

Finally, embed sustainability and regulatory foresight into procurement decisions by selecting technologies that reduce hazardous consumables, improve energy efficiency, and support digital recordkeeping for compliance. By implementing these measures, organizations can achieve greater operational resilience, accelerate time-to-insight, and maintain regulatory alignment while navigating a rapidly evolving technological and policy environment.

A transparent mixed-methods research approach combining expert interviews, technical validation, and cross-referenced secondary analysis to ensure robust and actionable insights

The research underpinning this executive summary synthesizes insights from a mixed-methods approach that combines primary qualitative engagement and rigorous secondary analysis. Primary inputs included structured interviews with laboratory managers, procurement specialists, regulatory affairs professionals, and instrument service leads across multiple industries to surface real-world operational constraints and vendor performance perceptions. These conversations were supplemented by technical consultations with application scientists to validate method suitability, sample-matrix challenges, and validation pathways.

Secondary analysis entailed comprehensive review of peer-reviewed literature, regulatory guidance documents, standards publications, and vendor technical documentation to ensure alignment between field observations and documented best practices. The methodology emphasized triangulation, cross-referencing primary observations with secondary sources to identify consistent themes and to highlight divergence where regional or sectoral conditions create distinct outcomes. Additionally, the research incorporated technology readiness assessments and comparative evaluations of instrument architectures to contextualize adoption barriers and lifecycle considerations.

Quality control for the research process included iterative expert review cycles, validation of key claims through independent technical review, and careful documentation of assumptions. The resulting analysis is therefore grounded in both operational experience and authoritative technical references, making it actionable for decision-makers responsible for procurement, laboratory modernization, and regulatory compliance.

Concluding synthesis that underscores the necessity of integrated procurement, service resilience, and software-enabled workflows for future-ready analytical operations

Atomic spectroscopy remains a cornerstone of analytical capability across a wide range of industries, yet the sector is in the midst of meaningful transition. Technological innovations, evolving service models, and shifting trade dynamics are creating both opportunities and complexity for laboratories and vendors alike. The imperative for decision-makers is to translate these changes into concrete actions: select instruments that align with application-specific requirements, secure service and spare-part strategies that reduce operational risk, and embrace software-enabled workflows that increase reproducibility and throughput.

Adopting a strategic posture that integrates procurement, operations, and regulatory planning will allow organizations to navigate volatility while benefiting from improved analytical performance and efficiency. Vendors that invest in integrated solutions, localized service networks, and transparent validation support are best positioned to meet the nuanced needs of modern laboratories. Ultimately, success will be measured not only by analytical capability but by the reliability, adaptability, and total lifecycle value delivered to end users.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising integration of femtosecond laser ablation with ICP-MS for spatially resolved elemental imaging
  • 5.2. Development of AI driven spectral deconvolution software for rapid multielement analysis in complex matrices
  • 5.3. Increasing demand for corrosion monitoring using portable XRF and LIBS handheld spectrometers in oil and gas
  • 5.4. Advancements in ultraviolet laser sources to enhance sensitivity and resolution in atomic absorption spectrometers
  • 5.5. Emerging regulatory requirements for ultra trace lead and heavy metal detection in drinking water supplies
  • 5.6. Growing utilization of cloud based spectral libraries and remote instrument maintenance for cross site standardization
  • 5.7. Rising focus on green sample preparation techniques to minimize acid usage in ICP OES environmental analyses

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Atomic Spectroscopy Market, by Technique

  • 8.1. Atomic Absorption Spectroscopy
  • 8.2. Elemental Analyzers
  • 8.3. Inductively Coupled Plasma-Mass Spectrometry
  • 8.4. Inductively Coupled Plasma-Optical Emission Spectroscopy
  • 8.5. X-Ray Diffraction
  • 8.6. X-Ray Fluorescence

9. Atomic Spectroscopy Market, by Application

  • 9.1. Environmental Testing
  • 9.2. Food & Beverage Testing
  • 9.3. Geochemical/Mining
  • 9.4. Industrial Chemistry
  • 9.5. Petrochemical
  • 9.6. Pharmaceuticals & Biotechnology

10. Atomic Spectroscopy Market, by Region

  • 10.1. Americas
    • 10.1.1. North America
    • 10.1.2. Latin America
  • 10.2. Europe, Middle East & Africa
    • 10.2.1. Europe
    • 10.2.2. Middle East
    • 10.2.3. Africa
  • 10.3. Asia-Pacific

11. Atomic Spectroscopy Market, by Group

  • 11.1. ASEAN
  • 11.2. GCC
  • 11.3. European Union
  • 11.4. BRICS
  • 11.5. G7
  • 11.6. NATO

12. Atomic Spectroscopy Market, by Country

  • 12.1. United States
  • 12.2. Canada
  • 12.3. Mexico
  • 12.4. Brazil
  • 12.5. United Kingdom
  • 12.6. Germany
  • 12.7. France
  • 12.8. Russia
  • 12.9. Italy
  • 12.10. Spain
  • 12.11. China
  • 12.12. India
  • 12.13. Japan
  • 12.14. Australia
  • 12.15. South Korea

13. Competitive Landscape

  • 13.1. Market Share Analysis, 2024
  • 13.2. FPNV Positioning Matrix, 2024
  • 13.3. Competitive Analysis
    • 13.3.1. Agilent Technologies, Inc.
    • 13.3.2. Analytik Jena GmbH+Co. KG by Endress+Hauser AG
    • 13.3.3. Anhui Wanyi Science and Technology Co., Ltd.
    • 13.3.4. Aurora Biomed Inc
    • 13.3.5. Avantor, Inc.
    • 13.3.6. Bruker Corporation
    • 13.3.7. Buck Scientific Instruments LLC
    • 13.3.8. Danaher Corporation
    • 13.3.9. GBC Scientific Equipment Pty Ltd
    • 13.3.10. Hitachi Ltd.
    • 13.3.11. HORIBA, Ltd.
    • 13.3.12. JEOL Ltd.
    • 13.3.13. LabGeni by LABFREEZ INSTRUMENTS GROUP & RAYSKY INSTRUMENTS
    • 13.3.14. Malvern analytical Ltd by Spectris plc
    • 13.3.15. Merck KGaA
    • 13.3.16. Oxford Instruments
    • 13.3.17. PerkinElmer Inc.
    • 13.3.18. Rigaku Holdings Corporation
    • 13.3.19. SAFAS Corporation
    • 13.3.20. Shimadzu Corporation
    • 13.3.21. Skyray Instruments USA, Inc.
    • 13.3.22. Teledyne Technologies, Inc.
    • 13.3.23. Thermo Fisher Scientific, Inc.
    • 13.3.24. Wuxi Jiebo Instrument Technology Co.,Ltd.
    • 13.3.25. Xiangyi Instrument (Xiangtan) Limited
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제