시장보고서
상품코드
1850414

재조합 단백질 시장 : 용도, 제품 유형, 발현 시스템, 최종사용자, 형태, 판매채널별 - 세계 예측(2025-2032년)

Recombinant Proteins Market by Application, Product Type, Expression System, End User, Form, Sales Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 188 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

재조합 단백질 시장은 2032년까지 175억 7,000만 달러에 이르고, CAGR 14.85%를 보일 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 58억 달러
추정 연도 : 2025년 66억 5,000만 달러
예측 연도 : 2032년 175억 7,000만 달러
CAGR(%) 14.85%

치료제, 진단제, 바이오 제조 분야의 리더십을 위한 전략적 의미를 강조한 재조합 단백질의 역학에 대한 간결한 경영진의 방향성 제시

재조합 단백질은 진단, 치료제 개발, 백신 제조, 기초 연구 등 현대 생명과학의 기초가 되고 있습니다. 본 Executive Summary는 재조합 단백질 공급망, 기술 플랫폼, 최종 사용자 채택, 규제 움직임에 영향을 미치는 가장 두드러진 구조적 발전을 요약한 보고서입니다. 이 책은 경영진이 경쟁사 포지셔닝을 재구축하는 힘을 빠르게 이해하고, 연속성을 지키고 성장을 가능하게 하는 당면한 우선순위를 파악할 수 있도록 돕습니다.

다음 페이지에서는 기술적 변곡점, 규제 압력 포인트, 상업적 세분화, 지역적 사업 개발 고려사항, 그리고 조직이 회복력을 강화하고 다운스트림 가치를 확보하기 위해 취할 수 있는 실천적 행동에 대해 분석합니다. 정량적 시장 규모보다 정성적 트렌드와 전략적 의미에 중점을 두기 때문에 경영진과 부서 간 리더은 계획 수립, 포트폴리오 최적화, 조달 의사결정에 통찰력을 활용할 수 있습니다. 이 보고서는 과학적 동향과 상업적 현실을 통합함으로써 투자와 역량 구축이 가장 큰 경영적, 전략적 수익을 창출할 수 있는 곳을 명확하게 제시합니다.

제조 민첩성,설계 자동화,재조합 단백질에 대한 규제 당국의 기대치 재정의,기술 및 상업적 변곡점 통합

재조합 단백질을 둘러싼 환경은 기술적 경로와 상업적 모델을 재구성하는 동시에 여러 차례의 전환기를 맞이하고 있습니다. 첫째, 발현 시스템과 다운스트림 공정의 발전으로 순화 시간이 단축되고 기능적 수율이 향상되었습니다. 한편, 일회용 바이오프로세싱, 무세포 합성, 모듈식 정제 아키텍처와 같은 플랫폼 기술의 확산으로 인해 제조 공간의 유연성이 향상되고 특정 제품군의 자본 집약도가 감소하고 있습니다.

둘째, 데이터 기반 설계와 자동화가 제품 개발 주기를 가속화하고 있습니다. 머신러닝 모델은 시퀀싱 최적화, 용해도 예측, 공정 파라미터 튜닝에 적용되어 실험 주기가 단축되고 실패율이 감소하고 있습니다. 셋째, 규제 당국의 기대는 프로세스 이해와 설계를 통한 품질에 더 중점을 두는 방향으로 진화하고 있으며, 제조업체가 개발 초기에 실시간 분석과 보다 강력한 문서화 관행을 도입하도록 촉구하고 있습니다.

넷째, 수탁 제조업체와 서비스 제공 업체는 연구 개발 지원, 스케일업, 상업용 공급을 결합한 엔드 투 엔드 솔루션을 제공하기 위해 역량을 통합하고 있습니다. 이러한 수직적 통합은 리스크가 적은 아웃소싱 관계를 원하는 고객의 요구에 부응하는 것이지만, 동시에 독립적인 공급업체에 대한 경쟁 압력을 증가시키는 것이기도 합니다. 마지막으로, 정밀의료, 진단의 다양화, 백신 플랫폼의 혁신에 힘입어 최종 사용자의 요구사항이 변화함에 따라 제품 사양과 유통 모델이 변화하고, 가치사슬 전반의 민첩성과 파트너십에 대한 새로운 전략적 요구가 생겨나고 있습니다.

2025년 관세 조치가 생물학적제제 관계자의 조달 전략, 지역 생산 결정, 조달 위험 감소에 미치는 영향에 대한 평가적 견해

2025년 미국 관세 조치의 누적 영향은 유전자 재조합 단백질, 원자재, 바이오 가공 소모품을 조달하는 조직에 새로운 비용 및 물류 고려사항을 도입했습니다. 관세로 인한 비용 압박으로 인해 구매자는 공급업체 포트폴리오를 재검토하고, 중립적 관할권에 있는 대체 공급업체의 자격 인증을 가속화하고, 관세 전가 메커니즘을 통합하기 위해 장기 계약을 재협상하도록 유도하고 있습니다. 그 결과, 조달팀은 보다 적극적인 헤지 전략을 채택하고, 공급의 연속성을 유지하기 위해 멀티소싱을 우선시하게 되었습니다.

동시에 관세는 공급망 아키텍처 결정에도 영향을 미쳐 무역 마찰에 대한 노출을 줄이기 위해 생산 지역화 및 니어쇼어링 기회 검토로 전환을 유도하고 있습니다. 이러한 추세는 생산 능력 계획, 규제 신청, 품질 감독에 영향을 미칩니다. 생산의 지역화를 위해서는 검증 활동과 품질 시스템의 조화가 병행되어야 하는 경우가 많기 때문입니다. 따라서 기업들은 국경 간 제조를 보다 현실화하기 위해 일관된 문서 및 품질 관리 플랫폼에 투자하고 있습니다.

또한, 관세 정책으로 인해 세포배양배지 성분, 크로마토그래피 수지, 일회용 재료 등 업스트림 인풋의 중요성이 높아짐에 따라 고객들은 전략적 재고를 확보하고, 가능하면 대체 전략을 모색하고 있습니다. 이와 함께 원자재 공급업체의 현지화, 외주 생산하던 부품의 내재화 등 보다 장기적인 전략 옵션을 추구하는 기업들도 등장하고 있습니다. 이러한 변화는 무역 정책의 변동을 완화하고 프로그램 일정을 유지하기 위해 시나리오 계획과 계약의 유연성이 필요함을 강조하고 있습니다.

용도 니즈, 제품 화학, 표현 플랫폼, 사용자 유형, 형식, 판매 모델을 전략적 제품 및 서비스 설계에 연결하는 다차원적 세분화 분석

세분화 인사이트는 용도, 제품 유형, 표현 시스템, 최종 사용자, 폼 팩터, 판매 채널에 걸쳐 다양한 가치 동인을 밝혀내고, 조직이 투자 및 상업적 접근 방식에 대한 우선순위를 결정하는 방식에 영향을 미칩니다. 진단약은 영상진단약과 체외진단약으로, 연구개발은 기초연구, 신약개발, 공정개발로, 치료제는 자가면역, 순환기, 종양에 대한 응용이 포함되며, 백신은 예방약과 치료제으로 분류됩니다. 각 용도 분야는 성능 사양, 규제 고려사항, 고객 기대치 등이 다르기 때문에 각각에 맞는 제품 설계와 지원 및 서비스가 필요합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 재조합 단백질 시장 : 용도별

  • 진단
    • 조영제
    • 체외진단
  • 연구개발
    • 기초 조사
    • Drug Discovery
    • 프로세스 개발
  • 치료제
    • 자가면역
    • 심혈관계
    • 종양학
  • 백신
    • 예방
    • 치료

제9장 재조합 단백질 시장 : 제품 유형별

  • 사이토카인
  • 효소
  • 성장인자
  • 호르몬

제10장 재조합 단백질 시장 : 표현 시스템

  • 세균성
    • 대장균
  • 곤충
    • 바큐로바이러스 발현
  • 포유류
    • CHO 세포
    • HEK 세포
  • 식물
    • 유전자 재조합 식물
  • 효모
    • Pichia Pastoris
    • Saccharomyces Cerevisiae

제11장 재조합 단백질 시장 : 최종사용자별

  • 학술연구기관
  • 계약연구기관
  • 진단실험실
  • 제약 및 바이오테크놀러지 기업
    • 대형 제약회사
    • 중소 바이오테크놀러지

제12장 재조합 단백질 시장 : 형태별

  • 액체
  • 동결건조 형태

제13장 재조합 단백질 시장 : 판매채널별

  • 직접 판매
  • 판매 파트너

제14장 재조합 단백질 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 재조합 단백질 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 재조합 단백질 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Thermo Fisher Scientific Inc.
    • Merck KGaA
    • Danaher Corporation
    • Sartorius AG
    • Lonza Group Ltd.
    • F. Hoffmann-La Roche Ltd.
    • Boehringer Ingelheim International GmbH
    • Bio-Rad Laboratories, Inc.
    • Bio-Techne Corporation
    • Abcam plc
LSH 25.10.31

The Recombinant Proteins Market is projected to grow by USD 17.57 billion at a CAGR of 14.85% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 5.80 billion
Estimated Year [2025] USD 6.65 billion
Forecast Year [2032] USD 17.57 billion
CAGR (%) 14.85%

A concise executive orientation to recombinant protein dynamics highlighting strategic implications for leadership in therapeutics, diagnostics, and biomanufacturing

Recombinant proteins have become foundational to modern life sciences, spanning diagnostics, therapeutic development, vaccine production, and fundamental research. This executive summary synthesizes the most salient structural developments affecting recombinant protein supply chains, technology platforms, end-user adoption, and regulatory dynamics. It is designed to help senior leaders quickly assimilate the forces reshaping competitive positioning and to identify near-term priorities that protect continuity and enable growth.

The following pages analyze technological inflection points, regulatory pressure points, commercial segmentation, regional operating considerations, and practical actions that organizations can deploy to strengthen resiliency and capture downstream value. Emphasis is placed on qualitative trends and strategic implications rather than quantitative market sizing, enabling executive teams and cross-functional leaders to incorporate insights into planning, portfolio optimization, and sourcing decisions. By integrating scientific trends with commercial realities, this report clarifies where investment and capability-building will yield the greatest operational and strategic returns.

A synthesis of concurrent technological and commercial inflection points that are redefining manufacturing agility, design automation, and regulatory expectations for recombinant proteins

The recombinant protein landscape is undergoing multiple concurrent shifts that together reconfigure technical pathways and commercial models. First, advances in expression systems and downstream processing have reduced time-to-purity and improved functional yields, enabling more rapid iteration between discovery and preclinical validation. Alongside that, the proliferation of platform technologies such as single-use bioprocessing, cell-free synthesis, and modular purification architectures has increased flexibility in manufacturing footprints and lowered capital intensity for certain product classes.

Second, data-driven design and automation are accelerating product development cycles. Machine learning models are being applied to sequence optimization, solubility prediction, and process parameter tuning, which shortens experimental cycles and reduces failure rates. Third, regulatory expectations are evolving toward greater emphasis on process understanding and quality by design, prompting manufacturers to incorporate real-time analytics and more robust documentation practices earlier in development.

Fourth, contract manufacturing and service providers are consolidating capabilities to offer end-to-end solutions that combine R&D support, scale-up, and commercial-grade supply. This vertical integration addresses customer demand for de-risked outsourcing relationships but also raises competitive pressure on independent suppliers. Finally, changing end-user requirements-driven by precision medicine, diagnostic diversification, and vaccine platform innovation-are shifting product specifications and distribution models, creating new strategic imperatives for agility and partnerships across the value chain.

An evaluative view of how 2025 tariff measures have reshaped sourcing strategies, regional production decisions, and procurement risk mitigation for biologics stakeholders

The cumulative effects of United States tariff actions in 2025 have introduced new cost and logistical considerations for organizations sourcing recombinant proteins, raw materials, and bioprocessing consumables. Tariff-induced cost pressures have prompted buyers to reconsider supplier portfolios, accelerate qualification of alternative vendors in neutral jurisdictions, and renegotiate long-term contracts to incorporate tariff pass-through mechanisms. As a result, procurement teams are adopting more active hedging strategies and are increasingly prioritizing multi-sourcing to preserve supply continuity.

Concurrently, tariffs have influenced supply chain architecture decisions, encouraging a shift toward regionalization of production and the exploration of nearshoring opportunities to reduce exposure to trade frictions. This trend has implications for capacity planning, regulatory filings, and quality oversight, since regionalizing production often requires parallel validation activities and harmonization of quality systems. Firms are therefore investing in harmonized documentation and quality management platforms to make cross-jurisdictional manufacturing more feasible.

Additionally, tariff policies have elevated the importance of upstream inputs-such as cell culture media components, chromatography resins, and single-use materials-driving customers to secure strategic inventories and to explore substitution strategies where feasible. In parallel, some companies are pursuing longer-term strategic options, including localized raw material suppliers and incremental in-house production of previously outsourced components. These shifts emphasize the need for scenario planning and contract flexibility to mitigate trade policy volatility and maintain program timelines.

A multidimensional segmentation analysis tying application needs, product chemistry, expression platforms, user types, formats, and sales models to strategic product and service design

Segmentation insights reveal divergent value drivers across applications, product types, expression systems, end users, form factors, and sales channels that impact how organizations prioritize investments and commercial approaches. Based on application, the landscape spans Diagnostics, Research and Development, Therapeutics, and Vaccines; Diagnostics further differentiates between Imaging Agents and In Vitro Diagnostics, Research and Development breaks down into Basic Research, Drug Discovery, and Process Development, Therapeutics includes Autoimmune, Cardiovascular, and Oncology applications, while Vaccines separate into Prophylactic and Therapeutic categories. Each application area carries distinct performance specifications, regulatory considerations, and customer expectations, necessitating tailored product design and support services.

Based on product type, the portfolio includes Cytokines, Enzymes, Growth Factors, and Hormones, each representing different stability profiles, dosing contexts, and formulation challenges that affect manufacturing and distribution strategies. Based on expression system, offerings originate from Bacterial, Insect, Mammalian, Plant, and Yeast systems; the Bacterial pathway often centers on E. coli, Insect expression leverages baculovirus systems, Mammalian platforms typically use CHO or HEK cells, Plant production exploits transgenic plant approaches, and Yeast systems include Pichia pastoris and Saccharomyces cerevisiae. These expression choices dictate process complexity, post-translational modification patterns, and downstream purification requirements.

Based on end user, demand is driven by Academic and Research Institutes, Contract Research Organizations, Diagnostic Laboratories, and Pharmaceutical and Biotech Companies, with the latter further classified into Large Pharma and Small and Medium Biotech, each with differing procurement cycles, regulatory sophistication, and customization needs. Based on form, products are offered in Liquid and Lyophilized presentations that present trade-offs between cold-chain dependency and on-site preparation. Finally, based on sales channel, access to end users occurs via Direct Sales or Distribution Partners, which in turn influences service levels, lead times, and customer support models. Taken together, these segmentation dimensions create a matrix of service and product expectations that businesses must navigate to align R&D, manufacturing, and commercial strategies with customer-specific value propositions.

A comparative regional appraisal revealing how Americas, Europe Middle East & Africa, and Asia-Pacific priorities influence production location, regulatory alignment, and partnership models

Regional dynamics continue to determine operational priorities, regulatory strategies, and partnership opportunities for stakeholders across the recombinant protein value chain. In the Americas, demand drivers include a strong therapeutic development ecosystem, dense networks of contract service providers, and a regulatory environment focused on process robustness; the region favors speed to clinic and integrated supply partnerships, which shapes procurement timelines and quality expectations. The Americas also see ongoing investments in capacity expansion and in advanced analytics to support process understanding and lifecycle management.

In Europe, Middle East & Africa, regulatory harmonization and cross-border collaboration are prominent themes, with EU frameworks emphasizing rigorous process control and traceability. This region balances high technical standards with diverse national reimbursement and access considerations, prompting companies to adopt adaptable product specifications and labelling strategies. The Middle East and Africa are emerging as targeted growth corridors for clinical trial activity and for strategic manufacturing partnerships that reduce time-to-market for certain localized applications.

In Asia-Pacific, rapid expansion of biotech hubs, strong contract manufacturing capabilities, and cost-competitive production resources create attractive options for scale-up and commercial supply. Regional regulators are progressively aligning standards with international expectations while also supporting domestic innovation through incentive programs. Together, these regional distinctions influence choices around manufacturing location, regulatory submission sequencing, and partner selection, making geographic strategy a central element of commercial planning.

An examination of how capability modularity, strategic partnerships, vertical integration, and data-enabled services create competitive advantage among recombinant protein providers

Key company-level insights center on capability concentration, partnership strategies, and the interplay between proprietary platforms and service offerings. Leading organizations are investing in platform modularity that allows them to move from discovery-grade production to commercial supply with lower marginal cost and shortened timelines. This modularity extends from expression system flexibility to scalable downstream unit operations and standardized quality systems that facilitate cross-site transfers. In turn, companies that can demonstrate robust tech transfer pathways and transparent quality metrics gain preference among large developers and contract manufacturers.

Strategic partnerships are increasingly used to fill capability gaps quickly, with companies forming alliances across IP owners, contract development manufacturers, analytical specialists, and distribution networks. Licensing and co-development arrangements frequently focus on enabling technologies such as high-throughput expression screening, advanced purification chemistries, and analytics for critical quality attributes. Simultaneously, some firms are vertically integrating to capture higher-margin service layers, offering bundled solutions that span R&D reagents through to commercial supply and regulatory support.

Competitive differentiation also emerges from service excellence in regulatory support, lot-release analytics, and cold-chain logistics. Firms that invest in digital documentation, real-time release testing, and customer-facing portals strengthen long-term relationships and reduce friction during scale-up. Finally, talent and scientific leadership remain crucial; organizations that attract cross-disciplinary teams-combining molecular biology, process engineering, regulatory affairs, and data science-are better positioned to translate technological advances into commercial advantage.

Practical and strategic initiatives for executive teams to enhance manufacturing flexibility, supplier resilience, analytical rigor, and commercial differentiation in biologics

Industry leaders should pursue a balanced set of tactical and strategic initiatives to enhance resilience and capture differentiated value in recombinant protein ecosystems. First, prioritize multi-modal expression capacity and process flexibility so that product candidates can be matched to the most appropriate production route early in development; this reduces later-stage surprises and optimizes product attributes such as glycosylation and folding. Second, invest in analytics and automation to support quality by design principles, which in turn streamlines regulatory interactions and shortens validation timelines.

Third, strengthen supplier relationships through longer-term agreements with contractual clauses that address trade disruptions, inventory buffers, and cooperative contingency planning. Firms should also qualify secondary and tertiary suppliers proactively to ensure rapid substitution when needed. Fourth, adopt a regional production strategy that balances cost, regulatory alignment, and speed to market; nearshoring certain critical steps while centralizing high-complexity operations can yield improved control without forfeiting efficiency.

Fifth, develop differentiated commercial offerings by bundling technical support, regulatory guidance, and data transparency with product sales, thereby converting reagent transactions into strategic partnerships. Sixth, implement talent development programs that bridge biology and data science to ensure organizations can leverage machine learning and process analytics effectively. Finally, execute scenario-based stress tests that incorporate tariff volatility, supply interruptions, and demand surges to refine playbooks for procurement, production scaling, and customer communication.

An overview of the evidence-based methodological approach combining expert interviews, authoritative technical sources, and scenario analysis to derive actionable qualitative insights

This research synthesized primary and secondary sources to develop an evidence-based, qualitative perspective on recombinant protein dynamics, emphasizing methodological transparency and reproducibility. Primary research included structured interviews with subject-matter experts across bioprocess engineering, regulatory affairs, procurement, and commercial strategy, supplemented by technical briefings from analytics providers and contract manufacturers. These interviews were designed to surface operational constraints, validation challenges, and buyer expectations rather than to elicit proprietary financials.

Secondary research encompassed peer-reviewed literature, regulatory guidance documents, conference proceedings, and company disclosures that relate to expression technologies, purification methods, and regulatory frameworks. Where regulatory interpretations were discussed, the methodology prioritized authoritative agency texts and published guidance to ensure accuracy. Data synthesis followed an iterative triangulation approach, where insights from interviews were cross-validated against documented technical approaches and publicly available process descriptions.

The analytical framework applied scenario analysis to assess the implications of supply chain disruptions, tariff changes, and technological adoption pathways. Segmentation analysis was used to map product and customer needs across application, expression system, form, and sales channel dimensions. Finally, findings were stress-tested through peer review by independent experts to confirm practical relevance and to refine recommendations for operationalization within R&D, manufacturing, and commercial teams.

A concise synthesis underscoring the strategic imperative of aligning technological choices, operational resilience, and customer-centric services to lead in recombinant protein applications

The recombinant protein sector is at an inflection point where technological maturity, regulatory emphasis on process understanding, and commercial demands for flexibility intersect. Organizations that proactively align expression system choices with downstream capabilities, invest in analytics and automation, and develop nimble sourcing strategies will be better positioned to manage risk and to accelerate translational timelines. Moreover, those that convert product transactions into value-added partnerships through bundled services and transparent performance metrics will strengthen customer retention and command better commercial outcomes.

Looking ahead, success will favor entities that integrate scientific innovation with pragmatic operational planning-balancing cost, quality, and speed while maintaining regulatory compliance. By prioritizing capability modularity, regional supply diversity, and cross-disciplinary talent, companies can create durable competitive moats. Ultimately, the ability to translate technical improvements into reliable, documented, and scalable processes will determine which organizations lead in therapeutic, diagnostic, and vaccine applications built on recombinant protein technologies.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Expansion of modular antibody-drug conjugates using recombinant protein scaffolds for targeted oncology therapies
  • 5.2. Integration of plant-based transient expression systems to accelerate large-scale vaccine antigen production
  • 5.3. Development of engineered protein subunit vaccines using novel adjuvant-binding recombinant antigens
  • 5.4. Application of CRISPR/Cas9 genome editing for optimized recombinant enzyme expression in microbial hosts
  • 5.5. Adoption of continuous perfusion bioreactors for high-yield monoclonal antibody manufacturing processes
  • 5.6. Advances in synthetic biology enabling customizable recombinant protein glycoengineering for improved efficacy

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Recombinant Proteins Market, by Application

  • 8.1. Diagnostics
    • 8.1.1. Imaging Agents
    • 8.1.2. In Vitro Diagnostics
  • 8.2. Research And Development
    • 8.2.1. Basic Research
    • 8.2.2. Drug Discovery
    • 8.2.3. Process Development
  • 8.3. Therapeutics
    • 8.3.1. Autoimmune
    • 8.3.2. Cardiovascular
    • 8.3.3. Oncology
  • 8.4. Vaccines
    • 8.4.1. Prophylactic
    • 8.4.2. Therapeutic

9. Recombinant Proteins Market, by Product Type

  • 9.1. Cytokines
  • 9.2. Enzymes
  • 9.3. Growth Factors
  • 9.4. Hormones

10. Recombinant Proteins Market, by Expression System

  • 10.1. Bacterial
    • 10.1.1. E Coli
  • 10.2. Insect
    • 10.2.1. Baculovirus Expression
  • 10.3. Mammalian
    • 10.3.1. CHO Cells
    • 10.3.2. HEK Cells
  • 10.4. Plant
    • 10.4.1. Transgenic Plants
  • 10.5. Yeast
    • 10.5.1. Pichia Pastoris
    • 10.5.2. Saccharomyces Cerevisiae

11. Recombinant Proteins Market, by End User

  • 11.1. Academic And Research Institutes
  • 11.2. Contract Research Organizations
  • 11.3. Diagnostic Laboratories
  • 11.4. Pharmaceutical And Biotech Companies
    • 11.4.1. Large Pharma
    • 11.4.2. Small And Medium Biotech

12. Recombinant Proteins Market, by Form

  • 12.1. Liquid Form
  • 12.2. Lyophilized Form

13. Recombinant Proteins Market, by Sales Channel

  • 13.1. Direct Sales
  • 13.2. Distribution Partners

14. Recombinant Proteins Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Recombinant Proteins Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Recombinant Proteins Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Thermo Fisher Scientific Inc.
    • 17.3.2. Merck KGaA
    • 17.3.3. Danaher Corporation
    • 17.3.4. Sartorius AG
    • 17.3.5. Lonza Group Ltd.
    • 17.3.6. F. Hoffmann-La Roche Ltd.
    • 17.3.7. Boehringer Ingelheim International GmbH
    • 17.3.8. Bio-Rad Laboratories, Inc.
    • 17.3.9. Bio-Techne Corporation
    • 17.3.10. Abcam plc
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제