시장보고서
상품코드
1853559

치과 수복 시장 : 제품 유형, 재료 유형, 최종사용자별 - 세계 예측(2025-2032년)

Restorative Dentistry Market by Product Type, Material Type, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 197 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

치과 수복 시장은 2032년까지 CAGR 7.92%로 162억 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 88억 달러
추정 연도 2025년 95억 1,000만 달러
예측 연도 2032 162억 달러
CAGR(%) 7.92%

현대 수복 치과와 전략적 의사결정을 형성하는 임상적, 재료적, 상업적 측면에 대한 종합적인 오리엔테이션

수복 치과 영역은 임상 혁신, 재료 과학, 진화하는 진료 경제학의 교차점에 위치하고 있으며, 정보에 입각한 경영 요약은 실용적이면서도 그 복잡성을 반영해야 합니다. 이 소개에서는 본 보고서의 조사 범위를 설정하기 위해 검토 대상 임상 카테고리, 제품 차별화를 뒷받침하는 주요 재료 클래스, 그리고 실험실 진보를 환자 결과에 반영하는 주요 최종사용자를 명확히 합니다. 또한, 시장 개척, 규제 촉진요인, 공급망 역학을 검증하기 위한 분석 렌즈를 구축하여 독자들이 분석의 깊이와 경계를 모두 이해할 수 있도록 하고 있습니다.

또한, 서론에서는 제품 개발자, 유통업체, 검사실 관리자, 임상 조달 책임자 등 가치사슬 전반의 이해관계자를 이끄는 전략적 요구사항을 개괄적으로 설명합니다. 또한 임상적 성능과 경제적 가치를 유지하기 위한 중요한 수단으로 복합재료 화학, 세라믹 가공, 접착 기술 혁신의 역할을 강조하고 있습니다. 또한 경쟁 동향, 관세 영향, 세분화 정보, 지역적 뉘앙스, 기업 차원의 전략 등을 종합하여 의사결정자에게 시사점을 종합적으로 제시함으로써 이후 각 섹션의 전개에 대한 기대감을 갖게 합니다. 이러한 방향성을 제시함으로써, 인트로는 경영진이 적절한 임상적, 상업적 배경을 염두에 두고 상세한 조사 결과를 소비할 수 있는 토대를 마련하고 있습니다.

재료, 디지털 워크플로우, 진료 통합의 동시 진행이 수복 치과의 제품 라이프사이클과 상업적 모델을 재정의하는 방법

재료과학, 디지털 워크플로우, 임상의의 기대치가 동시에 발전함에 따라 수복 치과는 혁신적인 변화를 경험하고 있으며, 이는 제품 라이프사이클과 진료 모델을 재구성하고 있습니다. 레진 케미스트리와 세라믹 배합의 혁신으로 심미성, 내구성, 다루기 쉬움의 균형 잡힌 수복물이 가능해졌으며, 동시에 접착 시스템의 개선으로 체어타임이 단축되고 임상예지성이 향상되었습니다. 디지털 구강내 스캐닝, CAD/CAM 제작, 체어사이드 밀링으로 인해 당일 수복 워크플로우의 도입이 가속화되고 있으며, 벤더와 기공소는 제품 형태, 재고 전략, 서비스 내용에 대한 재검토를 요구받고 있습니다.

동시에, 최소침습적 시술과 심미적 결과에 대한 환자의 요구가 증가함에 따라 제조업체는 보존적 준비와 원활한 심미적 통합을 용이하게하는 재료를 우선시하도록 촉구하고 있습니다. 생체적합성 및 환경 영향에 대한 규제가 점점 더 엄격해지고 있으며, 이는 재료 선택 및 포장 디자인에 영향을 미치고 있습니다. 치과 병원과 여러 지점을 보유한 클리닉 그룹이 구매력을 강화하는 반면, 독립적인 실험실은 기술 제공업체와의 제휴를 모색하고 납기, 일관성, 비용으로 경쟁하고 있습니다. 이러한 변화로 인해 제품 혁신, 디지털 통합, 채널 전략이 상업적 성공을 함께 좌우하는 상황이 만들어지고 있습니다.

2025년 관세 조정이 수복 치과 공급망 복원력, 조달 전략, 지역 제조 결정에 미치는 영향

2025년 새로운 관세 및 무역 조치의 발동은 수복 치과 공급망의 국경 간 역학 관계를 변화시키고, 조달 전략에 영향을 미치며, 조달 탄력성을 재평가하도록 촉구하고 있습니다. 특정 치과 재료 및 완성된 수복물에 대한 수입 관세는 세계 공급업체에 의존하는 유통업체와 치과 병원의 상륙 비용을 상승시키고, 니어쇼어링, 지역 제조 파트너십, 재고 버퍼링에 대한 논의를 가속화하고 있습니다. 이러한 변화는 또한 제조업체들이 생산기지를 재평가하고, 관세 혜택이 있는 지역에서 제조 위탁 계약을 검토하도록 유도하고 있습니다.

관세의 변화는 비용에 대한 영향뿐만 아니라 제품 개발 및 규제 계획에도 현실적인 파급효과를 가져오고 있습니다. 기업들은 유리한 무역 분류에 맞게 제형이나 포장을 변경할 수 있는지, 자유무역협정을 활용할 수 있는지 여부를 평가하게 되었습니다. 임상의와 구매 관리자는 비용 압박과 임상 실적의 균형을 유지하면서 예측 가능한 가격과 신뢰할 수 있는 리드 타임을 제공하는 장기적인 공급업체와의 관계를 원합니다. 이와 병행하여 일부 검사 시설 네트워크와 유통업체는 향후 정책 변화에 대한 위험을 줄이고 제조에서 임상 사용까지의 공급망을 단축하기 위해 현지 생산능력과 공동 컨소시엄에 투자하고 있습니다.

통합 세분화 분석을 통해 제품 카테고리, 재료 클래스 및 최종사용자의 우선 순위가 어떻게 수렴하여 상용화 경로를 형성하는지 파악할 수 있습니다.

제품 수준의 세분화에 대한 미묘한 이해를 통해 임상적 수요가 기술적 차별화 및 상업적 기회와 일치하는 지점을 파악할 수 있습니다. 제품 유형에 따른 주요 카테고리에는 복합재 수복물, 크라운 & 브릿지, 치과용 접착제, 인상재, 인레이 & 온레이가 포함되며, 복합재 수복물은 다시 벌크필 복합재, 하이브리드 복합재, 마이크로필드 복합재, 나노하이브리드 복합재, 크라운 & 브릿지로 세분화됩니다. 나노하이브리드 복합재료, 크라운 및 브릿지는 올세라믹, 금속합금, 포세린 융합 금속으로 세분화되며, 치과용 접착제는 일반적으로 에칭 및 헹굼, 셀프 에칭, 유니버설, 인상재는 엘라스토머와 하이드로콜로이드로, 인레이 및 온레이는 세라믹 인레이로 분류됩니다. 인레이는 세라믹 인레이, 복합 인레이, 금속 인레이로 나뉩니다. 이러한 구분은 각 하위 카테고리가 서로 다른 임상의의 워크플로우, 재고 회전 패턴, 마진 프로필을 의미하고, 어떤 제품 혁신이 가장 큰 임상적, 상업적 견인력을 창출할 수 있는지를 결정하기 때문에 중요합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 치과 수복 시장 : 제품 유형별

  • 복합재료 수복
    • 벌크 필 복합재
    • 하이브리드 복합재
    • 마이크로 필드 복합재료
    • 나노 하이브리드 복합재료
  • 크라운 및 브릿지
    • 올 세라믹
    • 금속 합금
    • 도자기-금속 융합
  • 치과용 접착제
    • 에칭과 린스
    • 셀프 에칭
    • 유니버설
  • 인상재
    • 엘라스토머
    • 하이드로콜로이드
  • 인레이와 온레이
    • 세라믹 인레이
    • 복합재료 인레이
    • 금속 인레이

제9장 치과 수복 시장 : 소재 유형별

  • 아말감
  • 세라믹
    • 이규산리튬
    • 자기
    • 지르코니아
  • 글래스 아이오노머
    • 산염기 반응
  • 금속
    • 금 합금
    • 티타늄
  • 수지 기반 복합재
    • 벌크 필 복합재
    • 하이브리드 복합재
    • 마이크로 필드 복합재료
    • 나노 충전 복합재료

제10장 치과 수복 시장 : 최종사용자별

  • 학술연구기관
  • 치과의원·클리닉
  • 치과 기공소

제11장 치과 수복 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제12장 치과 수복 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제13장 치과 수복 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제14장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Dentsply Sirona Inc.
    • 3M Company
    • Straumann Holding AG
    • Envista Holdings Corporation
    • Ivoclar Vivadent AG
    • Align Technology, Inc.
    • Zimmer Biomet Holdings, Inc.
    • GC Corporation
    • Kuraray Noritake Dental Inc.
    • Patterson Companies, Inc.
KSM 25.11.05

The Restorative Dentistry Market is projected to grow by USD 16.20 billion at a CAGR of 7.92% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 8.80 billion
Estimated Year [2025] USD 9.51 billion
Forecast Year [2032] USD 16.20 billion
CAGR (%) 7.92%

Comprehensive orientation to the clinical, material, and commercial dimensions shaping modern restorative dentistry and strategic decision-making

The restorative dentistry domain sits at the intersection of clinical innovation, material science, and evolving practice economics, and an informed executive summary must reflect that complexity while remaining actionable. This introduction frames the report's scope by clarifying the clinical categories under consideration, the primary material classes that underpin product differentiation, and the principal end users who translate laboratory advances into patient outcomes. It establishes the analytic lens through which market developments, regulatory drivers, and supply chain dynamics are examined, ensuring readers understand both the depth and the boundaries of the analysis.

In addition, the introduction outlines the strategic imperatives that guide stakeholders across the value chain, including product developers, distributors, laboratory managers, and clinical procurement directors. It emphasizes the role of innovation in composite chemistry, ceramic processing, and adhesive technology as critical levers for sustaining clinical performance and economic value. The narrative sets expectations for how the subsequent sections synthesize competitive behavior, tariff impacts, segmentation intelligence, regional nuances, and company-level strategies into a cohesive set of implications for decision-makers. By providing this orientation, the introduction primes executives to consume detailed findings with the appropriate clinical and commercial context in mind.

How simultaneous advances in materials, digital workflows, and practice consolidation are redefining product lifecycles and commercial models in restorative dentistry

Restorative dentistry is experiencing transformative shifts driven by parallel advances in materials science, digital workflows, and clinician expectations that together are reshaping product lifecycles and practice models. Innovations in resin chemistries and ceramic formulations are enabling restorations that better balance aesthetics, durability, and ease of handling, while simultaneous improvements in adhesive systems reduce chair time and improve clinical predictability. Digital intraoral scanning, CAD/CAM fabrication, and chairside milling have accelerated the adoption of same-day restorative workflows, forcing vendors and laboratories to reconsider product formats, inventory strategies, and service offerings.

At the same time, rising patient demand for minimally invasive procedures and aesthetic outcomes is prompting manufacturers to prioritize materials that facilitate conservative preparation and seamless esthetic integration. Regulatory scrutiny around biocompatibility and environmental impact is increasing, influencing material selection and packaging design. Distribution channels are also evolving: dental hospitals and multi-location clinic groups are consolidating purchasing power, while independent laboratories seek partnerships with technology providers to compete on turnaround, consistency, and cost. These combined shifts are producing a landscape in which product innovation, digital integration, and channel strategy jointly determine commercial success.

Consequences of 2025 tariff adjustments on supply chain resilience, sourcing strategies, and regional manufacturing decisions within restorative dentistry

The imposition of new tariffs and trade measures in 2025 has altered cross-border dynamics within the restorative dentistry supply chain, affecting procurement strategies and prompting reassessments of sourcing resilience. Import duties on certain dental materials and finished restorative products have increased landed costs for distributors and clinics that rely on global suppliers, thereby accelerating conversations about nearshoring, regional manufacturing partnerships, and inventory buffering. These shifts have also encouraged manufacturers to re-evaluate production footprints and to explore contract manufacturing arrangements in tariff-advantaged jurisdictions.

Beyond cost implications, tariff changes have created practical ripple effects across product development and regulatory planning. Companies are increasingly assessing whether formulations or packaging can be modified to qualify for favorable trade classifications or to leverage free trade agreements. Clinicians and purchasing managers are balancing cost pressures against clinical performance, often seeking longer-term supplier relationships that provide predictable pricing and reliable lead times. In parallel, some laboratory networks and distributors are investing in local production capabilities or collaborative consortia to mitigate exposure to future policy volatility and to shorten the supply chain between manufacture and clinical use.

Integrated segmentation analysis revealing how product categories, material classes, and end-user priorities converge to shape commercialization pathways

A nuanced understanding of product-level segmentation reveals where clinical demand aligns with technological differentiation and commercial opportunity. Based on Product Type, key categories include Composite Restorations, Crown and Bridges, Dental Adhesives, Impression Materials, and Inlays and Onlays, with Composite Restorations further differentiated into Bulk Fill Composite, Hybrid Composite, Microfilled Composite, and Nanohybrid Composite, and Crown and Bridges subdivided into All Ceramic, Metal Alloy, and Porcelain Fused to Metal; Dental Adhesives are commonly categorized as Etch and Rinse, Self Etch, and Universal, Impression Materials are classed as Elastomeric and Hydrocolloid, and Inlays and Onlays encompass Ceramic Inlays, Composite Inlays, and Metal Inlays. These distinctions matter because each subcategory implies different clinician workflows, inventory turnover patterns, and margin profiles, and they determine which product innovations will generate the greatest clinical and commercial traction.

Based on Material Type, product choices are organized across Amalgam, Ceramics, Glass Ionomer, Metals, and Resin Based Composite, with Ceramics further identified as Lithium Disilicate, Porcelain, and Zirconia, Glass Ionomer products understood through their Acid Base Reaction chemistry, Metals typically segmented into Gold Alloy and Titanium, and Resin Based Composite varieties including Bulk Fill Composite, Hybrid Composite, Microfilled Composite, and Nanofilled Composite. Material-level segmentation influences regulatory pathways, clinician training requirements, and the technical support manufacturers must provide to ensure predictable outcomes. Based on End User, demand flows are driven by Academic and Research Institutes, Dental Hospitals and Clinics, and Dental Laboratories, each exerting distinct purchasing behaviors: academic and research settings prioritize evidence generation and early adoption, hospitals and multi-specialty clinics prioritize workflow efficiencies and supplier reliability, and dental laboratories emphasize repeatable material processing and compatibility with digital fabrication systems.

Synthesizing these segmentation lenses highlights where R&D investment, sales focus, and service models should align to capture clinical adoption and deliver operational value to end users. The interplay between product type, material science, and end-user requirements ultimately shapes which innovations will scale and which will remain niche.

Regional differentiation in clinical practice, regulatory regimes, and supply chain structures driving customized go-to-market strategies across global markets

Regional dynamics in restorative dentistry manifest through differences in clinical practice patterns, regulatory environments, reimbursement structures, and supply chain architectures. In the Americas, clinicians and institutions demonstrate strong adoption of digital workflows and same-day restorative solutions, supported by established distribution networks and significant levels of private-pay procedures; manufacturers and service providers in this region often prioritize innovations that reduce chair time and improve esthetic outcomes. In Europe, Middle East & Africa, heterogeneous regulatory frameworks and varying procurement models lead to a mosaic of adoption rates, with some markets rapidly embracing advanced ceramic systems while others continue to rely on cost-effective metal-based solutions; regional trade agreements and manufacturing hubs in Europe also influence how products are sourced and distributed. In Asia-Pacific, rapid urbanization, expanding dental education capacity, and growing middle-class demand are driving heightened uptake of both restorative materials and digital dental technologies, with several countries emerging as centers for manufacturing and clinical innovation.

These regional differences require manufacturers and distributors to tailor product portfolios, training programs, and commercial models to local clinical norms and payment structures. For example, markets with higher volumes of private cosmetic dentistry will value premium aesthetic materials and streamlined chairside workflows, whereas regions with constrained public dental budgets will emphasize longevity and cost-effectiveness. Logistics considerations, regulatory timelines, and language-specific educational resources further underscore the importance of region-specific go-to-market strategies.

How innovation-driven product strategies and channel partnerships are reshaping competitive positioning and commercialization in restorative dentistry

Company strategies in restorative dentistry are increasingly shaped by a blend of technological differentiation, channel innovation, and collaborative partnerships. Leading manufacturers are investing in formulation science to deliver materials that simplify clinical protocols while delivering superior esthetics and longevity, and they are pairing product launches with robust clinician training, digital integration tools, and evidence packages to accelerate adoption. Smaller innovators frequently target narrow clinical needs-such as rapid-setting adhesives or specialized ceramics-and then seek to scale through distribution alliances or acquisition by larger strategic players that value their niche intellectual property and commercial momentum.

Distribution and service providers are evolving their value proposition by offering bundled solutions that include material supply, digital workflow support, and laboratory connectivity to reduce friction for end users. Strategic partnerships between material suppliers and manufacturers of CAD/CAM equipment or laboratory software are becoming common, enabling tighter integration across the restorative workflow. Additionally, contractual arrangements with multi-location clinic groups and hospital networks now emphasize service-level agreements, predictable supply, and training commitments to secure longer-term procurement relationships. Companies that balance scientific investment with pragmatic commercialization plans and flexible channel models are best positioned to translate innovation into sustained clinical and commercial adoption.

Actionable strategic priorities for leaders to synchronize product innovation, supply resilience, and end-user engagement for sustainable competitive advantage

Industry leaders should adopt a coordinated approach that aligns product innovation with clinician training, distribution design, and supply chain resilience to maintain relevance and drive growth. Prioritizing materials that reduce procedure time and simplify handling while ensuring robust clinical evidence will improve clinician acceptance and justify premium pricing. In parallel, manufacturers should develop modular offerings that integrate with digital scanning and fabrication platforms to support practice-level investments in efficiency and patient experience.

To mitigate the operational risk created by trade policy volatility, companies should diversify manufacturing footprints and develop contingency agreements with regional contract manufacturers. Strategic collaborations with dental laboratories and hospital procurement teams can create closed-loop supply arrangements that reduce lead times and improve consistency. Commercial teams must deepen their engagement with end users by offering practical training programs, case documentation, and digital tools that reduce the learning curve for new materials and techniques. Finally, leadership teams should institutionalize continuous feedback loops from clinicians and lab technicians to inform iterative product development and to identify early indicators of shifting clinical preferences, ensuring that roadmap decisions remain grounded in real-world practice needs.

Robust triangulated research approach combining clinician interviews, technical literature review, and supply chain analysis to ensure defensible insights

This analysis was compiled using a triangulated research methodology that blends primary qualitative engagements, secondary technical review, and comparative synthesis across multiple data streams to ensure robust conclusions. Primary inputs included structured interviews with clinicians, laboratory managers, and procurement leaders to capture frontline perspectives on product performance, workflow integration, and purchasing behavior. Secondary inputs incorporated peer-reviewed literature on material science, regulatory filings that clarify approval pathways, and publicly available clinical guidance to ground product-specific observations in validated evidence.

The analytical process emphasized cross-validation: practitioner insights were compared against technical sources and manufacturing disclosures to reconcile real-world experience with product specifications and regulatory contexts. Supply chain and trade implications were assessed through a combination of policy documentation, logistics reporting, and discussions with distribution executives to understand lead-time sensitivities. Throughout the methodology, care was taken to identify and disclose key assumptions, to test alternative explanations for observed trends, and to prioritize evidence that bore directly on clinical outcomes and operational impact. This systematic approach supports findings that are both practically relevant and technically defensible.

Synthesis of clinical, material, and policy forces that determine where strategic investment and operational changes will deliver the greatest impact in restorative dentistry

In conclusion, the restorative dentistry landscape is being reshaped by converging forces: material innovations that improve clinical workflows and esthetic outcomes, digital technologies that reconfigure practice operations, and policy dynamics that influence supply chain strategy. Stakeholders who integrate scientific rigor with pragmatic commercial execution-aligning product design with clinician training and resilient supply networks-will be best positioned to capture value in this environment. The segmentation interplay among product type, material class, and end-user preferences illuminates where investments will generate the strongest clinical and economic returns.

Regional variations underscore the need for tailored strategies that respect local clinical norms, regulatory timelines, and procurement models. Meanwhile, tariff-related disruptions in 2025 have highlighted the importance of supply chain agility and strategic manufacturing partnerships. Moving forward, organizations should institutionalize mechanisms for rapid learning from the clinic and lab, invest in evidence generation to support adoption, and adopt flexible commercialization frameworks that can pivot as practice models and policy conditions evolve. By focusing on these priorities, decision-makers can translate insights into sustained improvements in patient outcomes and organizational performance.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of AI driven shade matching and restoration planning within dental practices
  • 5.2. Expansion of 3D printing technologies for custom-fit polymer and ceramic restorations in clinics
  • 5.3. Adoption of advanced bioactive glass and calcium phosphate materials for pulp capping in restorative procedures
  • 5.4. Increasing emphasis on minimally invasive adhesive techniques to preserve tooth structure and enamel integrity
  • 5.5. Rising utilization of high-translucency zirconia and cubic-phase ceramics for aesthetically driven posterior restorations
  • 5.6. Implementation of centralized digital workflows connecting intraoral scanning, CAD/CAM design, and milling units in practices

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Restorative Dentistry Market, by Product Type

  • 8.1. Composite Restorations
    • 8.1.1. Bulk Fill Composite
    • 8.1.2. Hybrid Composite
    • 8.1.3. Microfilled Composite
    • 8.1.4. Nanohybrid Composite
  • 8.2. Crown And Bridges
    • 8.2.1. All Ceramic
    • 8.2.2. Metal Alloy
    • 8.2.3. Porcelain Fused To Metal
  • 8.3. Dental Adhesives
    • 8.3.1. Etch And Rinse
    • 8.3.2. Self Etch
    • 8.3.3. Universal
  • 8.4. Impression Materials
    • 8.4.1. Elastomeric
    • 8.4.2. Hydrocolloid
  • 8.5. Inlays And Onlays
    • 8.5.1. Ceramic Inlays
    • 8.5.2. Composite Inlays
    • 8.5.3. Metal Inlays

9. Restorative Dentistry Market, by Material Type

  • 9.1. Amalgam
  • 9.2. Ceramics
    • 9.2.1. Lithium Disilicate
    • 9.2.2. Porcelain
    • 9.2.3. Zirconia
  • 9.3. Glass Ionomer
    • 9.3.1. Acid Base Reaction
  • 9.4. Metals
    • 9.4.1. Gold Alloy
    • 9.4.2. Titanium
  • 9.5. Resin Based Composite
    • 9.5.1. Bulk Fill Composite
    • 9.5.2. Hybrid Composite
    • 9.5.3. Microfilled Composite
    • 9.5.4. Nanofilled Composite

10. Restorative Dentistry Market, by End User

  • 10.1. Academic And Research Institutes
  • 10.2. Dental Hospitals And Clinics
  • 10.3. Dental Laboratories

11. Restorative Dentistry Market, by Region

  • 11.1. Americas
    • 11.1.1. North America
    • 11.1.2. Latin America
  • 11.2. Europe, Middle East & Africa
    • 11.2.1. Europe
    • 11.2.2. Middle East
    • 11.2.3. Africa
  • 11.3. Asia-Pacific

12. Restorative Dentistry Market, by Group

  • 12.1. ASEAN
  • 12.2. GCC
  • 12.3. European Union
  • 12.4. BRICS
  • 12.5. G7
  • 12.6. NATO

13. Restorative Dentistry Market, by Country

  • 13.1. United States
  • 13.2. Canada
  • 13.3. Mexico
  • 13.4. Brazil
  • 13.5. United Kingdom
  • 13.6. Germany
  • 13.7. France
  • 13.8. Russia
  • 13.9. Italy
  • 13.10. Spain
  • 13.11. China
  • 13.12. India
  • 13.13. Japan
  • 13.14. Australia
  • 13.15. South Korea

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2024
  • 14.2. FPNV Positioning Matrix, 2024
  • 14.3. Competitive Analysis
    • 14.3.1. Dentsply Sirona Inc.
    • 14.3.2. 3M Company
    • 14.3.3. Straumann Holding AG
    • 14.3.4. Envista Holdings Corporation
    • 14.3.5. Ivoclar Vivadent AG
    • 14.3.6. Align Technology, Inc.
    • 14.3.7. Zimmer Biomet Holdings, Inc.
    • 14.3.8. GC Corporation
    • 14.3.9. Kuraray Noritake Dental Inc.
    • 14.3.10. Patterson Companies, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제