시장보고서
상품코드
1853865

차세대 첨단 배터리 시장 : 화학, 폼팩터, 수명주기 스테이지, 판매 채널별 - 세계 예측(2025-2032년)

Next Generation Advanced Batteries Market by Chemistry, Form Factor, Lifecycle Stage, Sales Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 199 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

차세대 첨단 배터리 시장은 2032년까지 CAGR 9.99%로 41억 4,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 19억 3,000만 달러
추정연도 2025 21억 3,000만 달러
예측연도 2032 41억 4,000만 달러
CAGR(%) 9.99%

첨단 에너지 저장 재구축을 위한 전략적 방향, 재료 혁신과 시스템 통합, 정책 추진력, 공급망 강인성을 연결하는 힘

전기화, 재생에너지 통합, 산업 및 모빌리티 분야의 탈탄소화 요구에 따라 첨단 축전지 산업 환경은 큰 변화의 시기를 맞이하고 있습니다. 셀 화학의 혁신, 에너지 밀도와 안전성을 우선시하는 아키텍처, 시스템 수준의 통합이 수렴하면서 새로운 성능의 한계점을 만들어내고 있습니다. 동시에, 수명주기 지속가능성에 대한 규제 프레임워크와 최종 고객의 기대치가 진화함에 따라 실험실 규모의 혁신에서 상업적 개발로의 전환이 가속화되고 있습니다.

이 소개에서는 공급망 탄력성, 재료 가용성, 최종 시장 수요라는 광범위한 맥락에서 기술 진보를 배치하여 차세대 배터리를 형성하는 중요한 벡터를 종합적으로 설명합니다. 고체 전해질에서 최적화된 양극 배합에 이르기까지 재료 과학의 발전은 성능과 안전성을 향상시키는 한편, 제조, 가공, 인증과 관련된 새로운 과제를 야기하고 있다는 점을 강조합니다. 이와 함께 팩 수준의 혁신, 열 관리 개선, 진단 소프트웨어는 시스템의 종합적인 가치 제안을 강화하여 이전에는 비용 및 위험 매개 변수에 의해 제한되었던 용도를 가능하게 합니다.

이 분야 전반에 걸쳐 원자재 제조업체부터 재활용 업체, OEM 통합업체에 이르기까지 이해관계자들은 새로운 기회를 포착하기 위해 역량을 재배치하고 있습니다. 혁신과 규모의 상호작용, 공급망 다각화의 중요성, 규제와 순환 경제에 대한 고려의 중요성 증대 등입니다. 서론은 독자를 이러한 세력으로 안내하여 시장 변화, 관세 역학, 세분화의 뉘앙스, 지역적 차이, 권장되는 전략적 행동 등을 보다 심층적으로 검토할 수 있는 기대치를 제시합니다.

기술 혁신, 정책적 인센티브, 디지털 통합, 공급망 재편이 동시에 진행되면서 첨단 배터리의 경쟁 우위를 어떻게 재정의하고 있는가?

배터리 생태계의 다음 변화의 물결은 경쟁 우위와 투자 우선순위를 재정의하는 여러 가지 동시다발적인 변화에 기인합니다. 화학 물질과 아키텍처의 기술적 발전으로 보다 안전하고 에너지 밀도가 높은 셀이 실현되고 있지만, 상업화 속도는 제조 자동화, 품질 보증, 스케일 레디 공급망의 병행적인 발전에 달려 있습니다. 그 결과, 연구실에서의 기술 혁신과 현실적인 제조 로드맵을 결합한 기업이 연구개발을 지속적인 시장 입지를 확보할 가능성이 가장 높은 기업으로 부상하고 있습니다.

정책적 개입과 조달 전략도 변화를 가속화하고 있습니다. 정부 및 대규모 기관 투자자들은 수명주기 성능, 원자재 추적성, 견고한 재활용 경로에 대한 보상을 제공하는 조달 프레임워크에 관심을 기울이고 있습니다. 이러한 규제와 구매자의 선호는 공급업체 선정 기준을 바꾸고, 원자재 조달의 투명성과 책임 있는 처리에 대한 업스트림 투자를 촉진하고 있습니다.

또 다른 큰 변화는 배터리 시스템에 디지털 기능이 통합된 것입니다. 고급 모니터링, 예측 분석, 무선 관리 기능은 제품을 데이터에 기반한 자산으로 전환하여 활용도를 높이고 수명을 연장하는 데 도움을 줍니다. 세컨드 라이프 용도과 진화하는 재활용 기술과 함께 디지털화 추세는 이해관계자들이 배터리 수명주기 전반에 걸쳐 더 많은 가치를 창출할 수 있도록 돕고 있습니다.

마지막으로 경쟁 구도도 확대되고 있습니다. 인접 산업의 신규 진입, 전략적 제휴, 공급업체 간 통합이 더욱 역동적인 시장 환경을 조성하고 있습니다. 이러한 변화로 인해 비용 곡선이 변화하고, 특정 기술의 상용화 일정이 앞당겨지고, 수직적 통합과 협업 생태계의 전략적 중요성이 강조되고 있습니다.

2025년 관세 조정이 조달 결정, 지역 제조 전략, 공급망 복원력, 제품 출시 계획에 미치는 전략적 영향 평가

2025년 미국의 관세 조치의 도입은 조달 전략, 지역 제조 결정, 전체 배터리 밸류체인공급업체 관계에 영향을 미치는 중요한 요인입니다. 무역 정책의 변화는 투입 비용 조정, 물류 경로 변경과 같은 즉각적인 무역 효과를 가져올 뿐만 아니라 국내 생산과 다각화된 수입 전략의 상대적 매력을 변화시킴으로써 보다 장기적인 전략적 압력을 가할 수 있습니다. 기업은 이러한 정책 신호를 평가하고 자본 배분, 파트너십 선택, 재고 관리 관행에 반영합니다.

관세는 공급망 지역화에 대한 인센티브를 창출하고, 총 상륙 비용, 규제 일관성, 시장 접근성이 현지 투자를 정당화할 경우 리쇼어링 구상을 가속화할 수 있습니다. 수입 관세로 인해 주요 부품 및 완성된 셀의 비용 방정식이 변경될 경우, 이해관계자들은 조달 포트폴리오를 재평가하고, 제조 기지가 가깝거나 니어쇼어 역량이 확립된 공급업체를 우선시할 수 있습니다. 동시에 관세는 국경 간 마찰에 노출될 기회를 줄이기 위해 중요한 원료의 국내 가공에 초점을 맞출 수 있습니다.

정책 환경은 또한 제품 전략과도 상호 작용합니다. 세계 고객을 대상으로 하는 제조업체는 관세로 인한 마진 압력을 완화하기 위해 제품 출시 계획을 조정하고, 가격 전략을 조정하고, 대체 채널을 모색할 수 있습니다. OEM의 경우, 공급망 계약 및 장기 조달 계약은 예측 가능한 투입 스트림을 확보하고 비용 변동을 관리할 수 있는 수단입니다. 또한 관세는 종종 관세 면제 및 특혜를 받을 자격이 있음을 증명하기 위한 검증, 컴플라이언스, 재료 증명 시스템에 대한 투자 증가를 자극하는 경우가 많습니다.

요약하면, 관세의 누적 영향은 단일 비용지표라기보다는 변동하는 무역체제 하에서 경쟁력을 유지하기 위해 어디서 가치를 창출하고, 어떻게 리스크를 관리하고, 어떤 파트너십을 구축할 것인가에 대한 전략적 재조정이 중요하다는 것을 알 수 있습니다.

전략적 투자와 상품화 경로를 명확히 하기 위해 화학, 폼팩터, 라이프 사이클 단계, 판매 채널의 교차점을 조정하고, 부문에 초점을 맞춘 관점을 조정

R&D, 제조 능력, 시장 접근에 우선순위를 정하기 위해서는 세분화에 대한 미묘한 이해가 필수적입니다. 화학을 기반으로 플로우 배터리, 리튬이온 배터리, 니켈 수소 배터리, 고체 배터리 시장을 조사했습니다. 각 화학 물질은 에너지 밀도, 사이클 수명, 안전성 프로파일, 원료 강도 사이에서 뚜렷한 트레이드오프를 실현하며, 이러한 트레이드오프에 따라 고정식 저장, 가전제품, 운송용 용도에 대한 적합성이 결정됩니다. 각 화학물질의 기술적 성숙도와 통합의 복잡성은 스케일업 타임라인과 대량 상용화에 필요한 생태계 파트너의 유형에도 영향을 미칩니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 차세대 첨단 배터리 시장 : 화학별

  • 플로우 배터리
  • 리튬이온
  • 니켈 수소
  • 솔리드 스테이트

제9장 차세대 첨단 배터리 시장 : 폼팩터별

  • 원통형
  • 파우치
  • 프리즈마틱

제10장 차세대 첨단 배터리 시장 : 수명주기 스테이지별

  • 셀 제조
  • 팩 통합
  • 원재료
  • 재활용

제11장 차세대 첨단 배터리 시장 : 판매 채널별

  • 애프터마켓
  • OEM 채널

제12장 차세대 첨단 배터리 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 차세대 첨단 배터리 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 차세대 첨단 배터리 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁사 분석
    • Contemporary Amperex Technology Co., Limited
    • BYD Company Limited
    • LG Energy Solution Ltd.
    • Panasonic Holdings Corporation
    • SK On Co., Ltd.
    • Samsung SDI Co., Ltd.
    • China Aviation Lithium Battery Co., Ltd.
    • EVE Energy Co., Ltd.
    • Farasis Energy Inc.
    • SVOLT Energy Technology Co., Ltd.
KSA 25.11.06

The Next Generation Advanced Batteries Market is projected to grow by USD 4.14 billion at a CAGR of 9.99% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.93 billion
Estimated Year [2025] USD 2.13 billion
Forecast Year [2032] USD 4.14 billion
CAGR (%) 9.99%

A strategic orientation to the forces reshaping advanced energy storage, linking materials innovation to system integration, policy drivers, and supply chain resilience

The advanced battery landscape is undergoing a profound transformation driven by electrification, renewable integration, and the imperative to decarbonize industrial and mobility sectors. Innovations in cell chemistry, architectures that prioritize energy density and safety, and systems-level integration are converging to create new performance thresholds. At the same time, evolving regulatory frameworks and end-customer expectations for lifecycle sustainability are accelerating the move from lab-scale breakthroughs to commercial deployments.

This introduction synthesizes the critical vectors shaping next-generation batteries by situating technological progress within the broader context of supply-chain resilience, materials availability, and end-market demand. It emphasizes how advances in materials science-ranging from solid electrolytes to optimized cathode formulations-are unlocking performance and safety gains while also introducing new manufacturing, processing, and qualification challenges. In parallel, pack-level innovations, thermal management improvements, and diagnostics software are enhancing the total system value proposition and enabling applications that were previously constrained by cost or risk parameters.

Throughout the sector, stakeholders from raw material producers to recyclers and OEM integrators are repositioning capabilities to capture emergent opportunities. This section frames the strategic themes that recur across subsequent analyses: the interplay between innovation and scale, the importance of supply-chain diversification, and the increasing centrality of regulatory and circular-economy considerations. By orienting readers to these forces, the introduction sets expectations for deeper inspection of market shifts, tariff dynamics, segmentation nuances, regional differentials, and recommended strategic actions.

How concurrent technological breakthroughs, policy incentives, digital integration, and supply chain realignment are jointly redefining competitive advantage in advanced batteries

The next wave of transformation in the battery ecosystem stems from multiple, simultaneous shifts that are redefining competitive advantage and investment priorities. Technological progress in chemistries and architectures is enabling safer, higher-energy-density cells, but the pace of commercialization depends on parallel advances in manufacturing automation, quality assurance, and scale-ready supply chains. As a result, companies that pair laboratory innovation with pragmatic manufacturing roadmaps are emerging as the most likely to translate R&D into durable market presence.

Policy interventions and procurement strategies are also accelerating change. Governments and large institutional buyers are leaning toward procurement frameworks that reward lifecycle performance, traceability of raw materials, and robust recycling pathways. These regulatory and buyer preferences are reorienting supplier selection criteria and incentivizing upstream investments in material sourcing transparency and responsible processing.

Another major shift is the integration of digital capabilities into battery systems. Advanced monitoring, predictive analytics, and over-the-air management are transforming products into data-rich assets that support higher utilization and longer useful life. Coupled with second-life applications and evolving recycling technologies, the digitization trend is helping stakeholders extract more value across the battery lifecycle.

Finally, the competitive landscape is widening. New entrants from adjacent industries, strategic partnerships, and consolidation among suppliers are creating a more dynamic market environment. These shifts combine to alter cost curves, speed commercialization timelines for certain technologies, and emphasize the strategic importance of vertical integration and collaborative ecosystems.

Assessing the strategic consequences of 2025 tariff adjustments on sourcing decisions, regional manufacturing strategies, supply chain resilience, and product rollout plans

The introduction of U.S. tariff measures in 2025 is a material factor influencing procurement strategies, regional manufacturing decisions, and supplier relationships across the battery value chain. Trade policy changes produce immediate transactional effects such as input cost adjustments and logistics re-routing, and they exert longer-term strategic pressure by altering the relative attractiveness of onshore production versus diversified import strategies. Firms evaluate these policy signals to inform capital allocation, partnership selection, and inventory management practices.

Tariffs create incentives for regionalization of supply chains and can accelerate reshoring initiatives where the total landed cost, regulatory alignment, and market access justify localized investment. When import duties change the cost equation for key components or completed cells, stakeholders reassess sourcing portfolios and may prioritize suppliers with proximate manufacturing footprints or established nearshore capabilities. At the same time, tariffs can sharpen focus on domestic processing of critical feedstocks to reduce exposure to cross-border frictions.

The policy environment also interacts with product strategy. Manufacturers targeting global customers may adjust product rollout plans, calibrate pricing strategies, and seek alternative channels to mitigate tariff-driven margin pressures. For OEMs, supply chain contracts and long-term procurement agreements become instruments to secure predictable input streams and to manage cost volatility. Additionally, tariffs often stimulate increased investment in verification, compliance, and materials provenance systems to demonstrate eligibility for tariff exemptions or preferential treatments.

In sum, the cumulative impact of tariffs is less about a single cost metric and more about a strategic rebalancing of where value is created, how risk is managed, and which partnerships are cultivated to maintain competitiveness under shifting trade regimes.

Segment-focused perspective that aligns chemistry, form factor, lifecycle stage, and sales channel intersections to clarify strategic investment and commercialization pathways

A nuanced understanding of segmentation is essential to prioritize R&D, manufacturing capacity, and go-to-market approaches. Based on Chemistry, market is studied across Flow Batteries, Lithium Ion, Nickel Metal Hydride, and Solid State; each chemistry delivers distinct trade-offs between energy density, cycle life, safety profile, and raw-material intensity, and these trade-offs determine suitability across stationary storage, consumer electronics, and transportation applications. The technical maturity and integration complexity for each chemistry also inform timelines for scale-up and the type of ecosystem partners required to commercialize at volume.

Based on Form Factor, market is studied across Cylindrical, Pouch, and Prismatic; form factor choices influence thermal management strategies, assembly line design, and pack-level density outcomes. The choice between cylindrical cells that favor automated assembly, pouch cells that offer form-factor flexibility, and prismatic cells that enable tight packaging is often dictated by end-use constraints and downstream assembly capabilities. Lifecycle considerations and repairability further affect form-factor selection.

Based on Lifecycle Stage, market is studied across Cell Manufacturing, Pack Integration, Raw Material, and Recycling; this sequencing highlights where value accrues and where bottlenecks commonly arise. Cell manufacturing remains capital- and process-intensive, pack integration is where system-level differentiation occurs, raw material sourcing dictates resource security and cost volatility, and recycling completes the circular loop while offering feedstock recovery opportunities. Each lifecycle stage requires unique skill sets, regulatory compliance, and capital structures.

Based on Sales Channel, market is studied across Aftermarket and OEM Channel; go-to-market strategies diverge significantly between aftermarket providers who emphasize retrofitability, service networks, and safety certifications versus OEM channels that prioritize design-in partnerships, co-engineering, and long-term supplier commitments. Understanding these segmentation dimensions enables stakeholders to align product roadmaps, investment profiles, and partnership strategies to specific commercial opportunities and risk profiles.

Regional dynamics and policy-driven differences that determine where capacity is built, how supply chains are structured, and what localization strategies are essential for success

Regional differences shape technology adoption rates, regulatory expectations, and supply-chain architectures, demanding tailored strategies for market entry and scale-up. In the Americas, energy-transition policies, incentives for domestic manufacturing, and established automotive ecosystems create fertile ground for high-power applications and vertically integrated supply chains. The presence of industrial-scale renewables and large fleet electrification programs also drives demand for utility-scale storage solutions and supports innovation in second-life applications.

Europe, Middle East & Africa combine stringent sustainability standards, producer-responsibility frameworks, and rising investments in circularity, which create commercial momentum for reparability, materials traceability, and certified recycling. Regulatory focus on lifecycle emissions and responsible sourcing is encouraging upstream transparency and investments in local processing capabilities. In many jurisdictions within this region, procurement frameworks reward demonstrable environmental and social governance performance across the supply chain, shaping supplier selection and product specifications.

Asia-Pacific remains a global center for high-volume cell manufacturing and materials processing, supported by deep manufacturing ecosystems, dense supplier networks, and established logistics corridors. The region's strengths in materials refinement, component supply, and capital-efficient manufacturing have historically enabled rapid scale-up and iterative process improvements. However, policy changes and geopolitical shifts are spurring diversification of manufacturing sites and an increasing emphasis on local content requirements in some markets.

Recognizing these regional nuances helps companies calibrate where to locate capacity, how to structure partnerships, and which regulatory-compliance investments are essential to maintain market access and competitiveness across diverse geographies.

How competitive advantage is being forged through vertical integration, strategic partnerships, manufacturing excellence, and intellectual property strategies across the value chain

Company strategies in the advanced battery landscape are coalescing around a set of repeatable patterns: vertical integration to secure critical feedstocks, strategic partnerships to accelerate time-to-market, and focused differentiation through system-level capabilities. Many established manufacturers are expanding their capabilities beyond cell fabrication into pack integration and battery management to capture more downstream value and improve margin resilience. At the same time, material suppliers and processing specialists are forming collaborative arrangements with manufacturers to ensure steady access to high-quality precursor materials and to co-develop formulations that are optimized for large-scale production.

Mergers, joint ventures, and licensing agreements are increasingly used to bridge capability gaps quickly. Startups with breakthrough chemistries often seek alliances with established production partners to access manufacturing expertise and capital, while OEMs pursue strategic supplier relationships to lock in tailored configurations and secure supply continuity. Intellectual property stewardship and standard-setting participation remain essential for firms aiming to embed their technologies within broader ecosystems and to shape interoperability norms.

Talent acquisition and operational excellence differentiate companies at scale. Competitive players invest in automated manufacturing platforms, quality-control systems, and workforce training programs that reduce defect rates and compress cycle times. Firms that combine rigorous process control with flexible production architectures are better positioned to pivot between cell types and to respond to evolving customer specifications.

Ultimately, winning strategies emphasize not only technology superiority but also robustness of supply chains, clarity of partnership ecosystems, and the ability to operationalize circularity commitments through validated recycling and second-life pathways.

Practical strategic moves for industry leaders to secure resilient supply, accelerate scalable manufacturing, protect IP, and integrate circular and digital capabilities

Industry leaders should adopt a set of pragmatic actions that align near-term operational resilience with long-term strategic positioning. First, prioritize dual-track sourcing strategies that combine secure long-term supplier agreements for critical feedstocks with flexible spot-market arrangements to manage near-term volatility. Investing in supplier qualification programs and materials traceability systems reduces exposure to sudden disruptions and supports compliance with evolving regulatory expectations.

Second, accelerate modularization of manufacturing architectures to enable rapid retooling and to support multiple form factors. Modular production lines and standardized interfaces between cell and pack assemblies reduce changeover costs and enable rapid shifts in product mix as customer requirements evolve. Complement this with robust automation and data-driven quality control to improve yield and lower per-unit labor intensity.

Third, cultivate ecosystem partnerships that bridge chemistry innovation and scale manufacturing. Co-investment vehicles, joint development agreements, and shared pilot facilities can compress commercialization timelines while distributing technical and financial risk. Concurrently, develop clear IP strategies that balance openness for ecosystem adoption with protection for core differentiators.

Fourth, integrate digital capabilities across the product lifecycle to maximize asset utilization and extend useful life through predictive maintenance and second-life planning. Investing in battery management systems, firmware update pathways, and cloud analytics delivers tangible lifecycle benefits and creates revenue opportunities through services.

Finally, engage proactively with policymakers, standards bodies, and recycling partners to influence the development of pragmatic, harmonized requirements that facilitate cross-border trade and bolster the circular economy. These collective actions create a foundation for resilient growth, sustained differentiation, and accelerated commercial impact.

A transparent and triangulated research approach combining primary expert interviews, site-level observations, secondary technical sources, and scenario-based validation to ensure robust insights

This research employs a mixed-methods approach that combines primary qualitative insights with rigorous secondary analysis and structured validation. Primary inputs include expert interviews with engineers, procurement leads, policy advisors, and system integrators, which illuminate practical constraints in scaling chemistries and the real-world trade-offs companies face when selecting suppliers and form factors. These interviews are complemented by site visits to manufacturing and integration facilities to observe process flows, automation levels, and quality-control practices firsthand.

Secondary inputs are drawn from publicly available technical literature, regulatory filings, patent landscapes, and product certification databases to establish a baseline understanding of technology maturity, safety considerations, and compliance obligations. The research team conducted structured cross-referencing to ensure consistency between stated capabilities and documented production footprints, and to verify claims regarding commercial readiness and regulatory approvals.

Data synthesis relied on triangulation techniques that reconcile qualitative insights with documented evidence, enabling robust interpretation of strategic trends without projecting quantitative market values. Scenario analysis was used to stress-test strategic options under varying policy and supply-chain conditions, and sensitivity checks evaluated how changes in raw-material availability or processing constraints could alter operational priorities. Quality assurance procedures include peer review of findings, source verification, and transparent documentation of assumptions underlying interpretive judgments.

This methodology ensures that conclusions are grounded in real-world observation, technical documentation, and expert judgment, providing reliable guidance for decision-makers seeking to navigate the complexity of advancing battery technologies and supply-chain dynamics.

A concise synthesis of how technological maturity, operational execution, policy context, and lifecycle thinking determine competitive outcomes in the advanced batteries landscape

The trajectory of next-generation battery development is shaped by an interplay of technical innovation, supply-chain realignment, policy evolution, and shifting commercial expectations. Breakthroughs in materials and cell architecture create pathways to higher performance and safety, but their commercial realization depends on manufacturing readiness, system integration capabilities, and lifecycle infrastructure that supports reuse and recycling. Stakeholders that align R&D ambition with pragmatic scale-up plans and resilient sourcing strategies are positioned to capture disproportionate value.

Policy and trade decisions will continue to exert a strong shaping effect on where capacity is located and how suppliers structure partnerships. Firms that proactively adapt procurement strategies, invest in localized processing where appropriate, and participate in policy dialogue will reduce exposure to disruptive shifts and retain market access. Digitalization and services-based business models further extend the value proposition of battery systems by improving utilization rates and enabling new revenue streams tied to asset performance over time.

In closing, the pace and direction of change create meaningful opportunities for those who balance technological leadership with operational rigor and supply-chain foresight. Success will favor organizations that execute integrated strategies across chemistry selection, manufacturing architecture, distribution channels, and end-of-life management while maintaining flexible commercial models that respond to regulatory and customer-driven requirements.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Implementation of silicon-dominant anode materials achieving over 500% capacity improvement for EV use
  • 5.2. Commercialization of lithium-sulfur battery cells with cycle life enhancements for aerospace demands
  • 5.3. Adoption of recycled battery materials in cathode production reducing carbon footprint and costs
  • 5.4. Development of high-temperature solid oxide flow batteries for grid-scale renewable energy storage
  • 5.5. Scaling of sodium-ion battery manufacturing to address raw-material supply chain constraints
  • 5.6. Integration of AI-driven electrode design platforms to optimize charge-discharge performance
  • 5.7. Deployment of second-life EV battery repurposing programs to support residential energy systems

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Next Generation Advanced Batteries Market, by Chemistry

  • 8.1. Flow Batteries
  • 8.2. Lithium Ion
  • 8.3. Nickel Metal Hydride
  • 8.4. Solid State

9. Next Generation Advanced Batteries Market, by Form Factor

  • 9.1. Cylindrical
  • 9.2. Pouch
  • 9.3. Prismatic

10. Next Generation Advanced Batteries Market, by Lifecycle Stage

  • 10.1. Cell Manufacturing
  • 10.2. Pack Integration
  • 10.3. Raw Material
  • 10.4. Recycling

11. Next Generation Advanced Batteries Market, by Sales Channel

  • 11.1. Aftermarket
  • 11.2. OEM Channel

12. Next Generation Advanced Batteries Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Next Generation Advanced Batteries Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Next Generation Advanced Batteries Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Contemporary Amperex Technology Co., Limited
    • 15.3.2. BYD Company Limited
    • 15.3.3. LG Energy Solution Ltd.
    • 15.3.4. Panasonic Holdings Corporation
    • 15.3.5. SK On Co., Ltd.
    • 15.3.6. Samsung SDI Co., Ltd.
    • 15.3.7. China Aviation Lithium Battery Co., Ltd.
    • 15.3.8. EVE Energy Co., Ltd.
    • 15.3.9. Farasis Energy Inc.
    • 15.3.10. SVOLT Energy Technology Co., Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제