시장보고서
상품코드
1855690

플라스틱 필러 시장 : 필러 유형, 형상, 폴리머 유형, 최종 이용 산업, 용도별 - 세계 예측(2025-2032년)

Plastic Fillers Market by Filler Type, Form, Polymer Type, End Use Industry, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 188 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

플라스틱 필러 시장은 2032년까지 160억 1,000만 달러, CAGR 5.98%로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 100억 6,000만 달러
추정 연도 2025년 106억 7,000만 달러
예측 연도 2032 160억 1,000만 달러
CAGR(%) 5.98%

진화하는 플라스틱 필러의 트렌드를 간결하고 전략적으로 소개합니다.

플라스틱 필러는 비용 효율성, 기능 강화, 지속가능성에 대한 압박이 집중되는 현대 재료공학에서 핵심적인 역할을 하고 있습니다. 이 소개에서는 폴리머의 성능을 개선하고, 물성을 개선하고, 버진 폴리머에 대한 의존도를 줄이기 위해 사용되는 필러에 대한 본질적인 상황을 설명합니다. 이러한 역학에 대한 이해는 규제 준수 및 최종 용도 성능 저하 없이 필러를 통합할 수 있는 명확한 경로를 필요로 하는 배합, 조달 및 제품 개발 이해관계자들에게 매우 중요합니다.

이 분야의 기술적 복잡성은 다양한 광물 및 합성 필러가 강성, 열 안정성, 치수 제어 및 표면 미학에 고유한 기여를 제공하는 다양한 광물 및 합성 필러에 기인합니다. 동시에, 분말과 과립 사이의 변환은 압출, 성형 및 컴파운드의 각 작업에서 가공 거동에 영향을 미칩니다. 환경 및 규제 추진력이 강화됨에 따라 재료 선택은 수명주기 고려, 재활용 가능성 제약 및 순환 경제 개념과의 적합성에 의해 점점 더 많은 정보를 제공받게 됩니다.

이 소개에서는 기술 혁신, 공급망 탄력성, 최종 용도 수요 패턴이 제품 선택과 공급업체 전략을 어떻게 형성하고 있는지를 강조하여 후속 분석을 구성합니다. 개발 주기, 적격성 테스트 및 장기적인 조달 계획에 미치는 실질적인 영향에 중점을 두어 이후 섹션에서 더 자세한 인사이트의 토대를 제공합니다.

기술 혁신, 규제 압력, 공급망 강인성이 필러의 경쟁 우위와 제품 선택을 재정의하는 방법

플라스틱 충전재의 환경은 첨단 재료 공학, 규제 진화, 빠르게 변화하는 최종 용도 우선 순위의 조합으로 인해 혁신적인 변화를 경험하고 있습니다. 표면 개질, 입자 크기 제어 및 하이브리드 필러 시스템의 기술 발전으로 인해 배합자는 강성 향상, 내충격성 개선, 유변학 제어와 같은 특정 성능 속성을 목표로 삼을 수 있게 되었습니다. 이러한 발전은 제품 설계의 선택권을 재구성하고 경쟁 분야에서 차별화를 위한 새로운 길을 만들고 있습니다.

탄소발자국을 줄이고 화학제품 관리를 강화하는 규제 움직임은 공급업체와 컨버터 모두 원료 포트폴리오를 재평가하도록 유도하고 있습니다. 이에 따라 재생 가능 원료 및 저환경 원료에 대한 투자가 가속화되고 있으며, 공급망 투명성에 대한 감시의 눈은 더욱 엄격해지고 있습니다. 동시에, 재활용성을 촉진하고 폴리머 매트릭스의 재활용 함량을 높일 수 있는 충전재에 대한 수요가 증가하고 있으며, 충전재 제조업체와 폴리머 재활용 제조업체 간의 협력 관계가 강화되고 있습니다.

공급망의 탄력성도 결정적인 변화입니다. 기업들은 조달 전략을 다양화하고, 지역화된 조달 모델을 채택하고, 변동에 대응하기 위해 완충 재고와 대체 운송 경로에 투자하고 있습니다. 마지막으로, 자동차, 의료기기, 포장 분야에서는 고객의 요구가 점점 더 용도에 특화되어 맞춤형 배합이 추진되고 있습니다. 이러한 변화를 종합하면, 기술적 우수성, 추적성, 적응형 상업적 모델이 누가 성공할 수 있는지를 결정하는 상황이 만들어지고 있습니다.

2025년 미국 관세 조정이 공급업체 선택, 계약 조건, 공급망 민첩성을 뒷받침하는 제제 전략에 미치는 영향

2025년 미국의 관세 조정은 주요 무역액뿐만 아니라 필러 공급망 전반의 비용 구조, 공급업체 선택, 조달 지역에도 변화를 가져올 것입니다. 관세 변경으로 인해 원산지 규정, 분류의 뉘앙스, 지역 공급업체의 상대적 경쟁에 대한 이해의 중요성이 높아졌습니다. 이로 인해 다운스트림 제조업체들은 승인된 공급업체 목록을 재검토하고, 종합적인 리스크 완화 전략의 일환으로 근해 대체품에 대한 평가를 강화해야 합니다.

관세는 직접적인 비용에 대한 영향 외에도 물류 계획과 계약 조건에도 영향을 미치고 있습니다. 장기 계약에서는 갑작스러운 비용 변동으로부터 바이어와 공급업체 모두를 보호하기 위해 관세 인상 조항이나 패스스루(pass-through) 구조를 포함하는 경우가 많습니다. 관세 준수에 따른 행정적 부담은 통관 지연과 그에 따른 운송 비용을 줄이기 위해 세관의 전문성을 높이고 디지털 문서화 시스템에 투자하도록 기업들을 부추기고 있습니다.

제품 개발의 관점에서 볼 때, 관세 중심의 가격 신호는 고가의 수입 필러에 대한 의존도를 줄이기 위해 포뮬러 최적화에 다시 초점을 맞추도록 촉구하고 있습니다. 이 때문에 현지에서 구할 수 있는 광물 자원이나, 육상 채굴 비용을 개선하면서 비슷한 성능을 발휘하는 인공 대체품에 대한 관심이 높아지고 있습니다. 전반적으로 2025년 관세 환경은 공급망 민첩성, 규제 상황의 선견지명, 조달, R&D, 법무팀 간의 부서 간 협력의 전략적 가치를 강화합니다.

필러 유형, 모양, 폴리머 적합성, 최종 사용 산업, 용도가 재료 선택 및 적격성 평가 경로를 어떻게 촉진하는지에 대한 심층적인 세분화 인사이트를 제공합니다.

세분화 분석을 통해 필러 선택이 폴리머 시스템, 가공 폼팩터, 최종 용도 요구 사항과 상호 작용하는 미묘한 방식을 파악할 수 있습니다. 탄산칼슘은 분쇄 탄산칼슘과 침전 탄산칼슘, 카올린은 소성 카올린과 함수 카올린, 운모는 천연 운모와 합성 운모, 실리카는 흄드 실리카와 침전 실리카, 월라스타나이트는 분쇄 월라스타나이트와 표준 월라스타나이트로 나뉩니다. 이러한 하위 유형은 각각 다른 입자 형태, 표면 화학, 불순물 프로파일을 나타내며 최종 제품의 분산 거동, 기계적 강화 및 미학에 직접적인 영향을 미칩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 플라스틱 필러 시장 필러별

  • 탄산칼슘
    • 중질탄산칼슘
    • 침전 탄산칼슘
  • 카올린
    • 소성 카올린
    • 함수 카올린
  • 운모
    • 천연 마이카
    • 합성 마이카
  • 실리카
    • 흄드 실리카
    • 침전 실리카
  • 탈크
  • 규회석
    • 분쇄 규회석
    • 표준 규회석

제9장 플라스틱 필러 시장 : 형태별

  • 과립
  • 분말

제10장 플라스틱 필러 시장 폴리머 종류별

  • ABS
  • 폴리에틸렌
    • HDPE
    • LDPE
    • LLDPE
  • 폴리프로필렌
    • 코폴리머
    • 호모폴리머
  • PVC
    • 가소화 PVC
    • 경질 PVC

제11장 플라스틱 필러 시장 : 최종 이용 산업별

  • 접착제&실란트
  • 화장품
  • 페인트 및 코팅
  • 의약품
  • 플라스틱
  • 고무

제12장 플라스틱 필러 시장 : 용도별

  • 자동차
  • 건설
  • 소비재
  • 전기·전자
  • 의료기기
  • 패키징
  • 섬유

제13장 플라스틱 필러 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 플라스틱 필러 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 플라스틱 필러 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Imerys S.A.
    • Omya International AG
    • Sibelco Group NV
    • Minerals Technologies Inc.
    • J.M. Huber Corporation
    • BASF SE
    • Evonik Industries AG
    • Lhoist Group
    • R.T. Vanderbilt Co., Inc.
    • Quarzwerke Group
KSM 25.11.12

The Plastic Fillers Market is projected to grow by USD 16.01 billion at a CAGR of 5.98% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 10.06 billion
Estimated Year [2025] USD 10.67 billion
Forecast Year [2032] USD 16.01 billion
CAGR (%) 5.98%

A concise and strategic introduction to the evolving plastics fillers landscape highlighting technical drivers, processing implications, and sustainability pressures

Plastics fillers occupy a central role in modern materials engineering, where cost efficiency, functional enhancement, and sustainability pressures converge. This introduction outlines the essential landscape of fillers used to modify polymer performance, deliver property improvements, and reduce reliance on virgin polymers. Understanding these dynamics is critical for stakeholders across formulation, procurement, and product development who need clear pathways to integrate fillers without compromising regulatory compliance or end-use performance.

The sector's technical complexity stems from the diversity of mineral and synthetically derived fillers, each offering unique contributions to stiffness, thermal stability, dimensional control, and surface aesthetics. At the same time, conversions between powder and granule forms influence processing behavior across extrusion, molding, and compounding operations. As environmental and regulatory drivers intensify, material selection is increasingly informed by lifecycle considerations, recyclability constraints, and compatibility with circular economy initiatives.

This introduction frames the subsequent analysis by highlighting how innovation, supply chain resilience, and end-use demand patterns are shaping product choices and supplier strategies. Emphasis is placed on the practical implications for development cycles, qualification testing, and long-term sourcing plans, providing a foundation for more detailed insights in later sections.

How technological innovation, regulatory pressure, and supply chain resilience are jointly redefining competitive advantage and product selection in fillers

The plastics fillers landscape is experiencing transformative shifts driven by a combination of advanced materials engineering, regulatory evolution, and rapidly changing end-use priorities. Technological advancements in surface modification, particle size control, and hybrid filler systems are enabling formulators to target specific performance attributes such as enhanced stiffness, improved impact resistance, and controlled rheology. These developments are reshaping product design choices and creating new avenues for differentiation in competitive sectors.

Regulatory momentum toward reduced carbon footprints and stricter chemical governance is prompting both suppliers and converters to re-evaluate raw material portfolios. This has accelerated investment in renewable or low-impact feedstocks and increased scrutiny on supply chain transparency. Concurrently, demand is migrating toward fillers that facilitate recyclability and permit higher recycled content in polymer matrices, leading to greater collaboration between filler manufacturers and polymer recyclers.

Supply chain resiliency is another defining shift. Firms are diversifying sourcing strategies, adopting regionalized procurement models, and investing in buffer inventories and alternative transport routes to manage volatility. Finally, customer requirements are becoming more application-specific, with the automotive, medical devices, and packaging sectors driving bespoke formulations. Taken together, these shifts are cultivating a landscape where technical excellence, traceability, and adaptive commercial models determine who succeeds.

Impacts of the 2025 United States tariff adjustments on supplier selection, contractual terms, and formulation strategies that support supply chain agility

United States tariff adjustments in 2025 have implications that extend beyond headline trade figures, altering cost structures, supplier choices, and sourcing geographies across filler supply chains. Tariff changes have magnified the importance of understanding country-of-origin rules, classification nuances, and the relative competitiveness of regional suppliers. This has encouraged downstream manufacturers to revisit their approved vendor lists and to conduct deeper evaluations of nearshore alternatives as part of a comprehensive risk mitigation strategy.

In addition to direct cost impacts, tariffs have influenced logistics planning and contractual terms. Longer-term agreements increasingly incorporate tariff escalation clauses and pass-through mechanisms to protect both buyers and suppliers from abrupt cost shifts. The administrative burden associated with tariff compliance has also pushed companies to invest in greater customs expertise and digital documentation systems to reduce clearance delays and associated carrying costs.

From a product development perspective, tariff-driven price signals have prompted a renewed focus on formulation optimization to reduce reliance on higher-cost imported fillers. This has stimulated interest in locally available mineral sources and in engineered alternatives that deliver similar performance at improved landed cost. Overall, the 2025 tariff landscape has reinforced the strategic value of supply chain agility, regulatory foresight, and cross-functional collaboration between procurement, R&D, and legal teams.

Deep segmentation insight revealing how filler type, form, polymer compatibility, end-use industry, and application drive material selection and qualification pathways

Segmentation analysis reveals the nuanced ways filler selection interacts with polymer systems, processing form factors, and end-use demands. Based on Filler Type, market study spans Calcium Carbonate, Kaolin, Mica, Silica, Talc, and Wollastonite, with Calcium Carbonate further examined across Ground Calcium Carbonate and Precipitated Calcium Carbonate; Kaolin broken down into Calcined Kaolin and Hydrous Kaolin; Mica characterized as Natural Mica and Synthetic Mica; Silica differentiated into Fumed Silica and Precipitated Silica; and Wollastonite separated into Ground Wollastonite and Standard Wollastonite. Each of these subtypes exhibits distinct particle morphology, surface chemistry, and impurity profiles that directly affect dispersion behavior, mechanical reinforcement, and aesthetic outcomes in finished goods.

Based on Form, the study contrasts Granule and Powder presentations, where granule formats typically enhance feed consistency in automated dosing systems and improve dust management, while powder forms often allow finer control of particle distribution for high-performance applications. Based on Polymer Type, the analysis includes ABS, Polyethylene, Polypropylene, and PVC, with Polyethylene further segmented into HDPE, LDPE, and LLDPE; Polypropylene differentiated into Copolymer and Homo Polymer; and PVC divided into Plasticized PVC and Rigid PVC. Compatibility and processing windows differ materially across these polymer streams, shaping filler selection and surface treatments.

Based on End Use Industry, the research examines Adhesives & Sealants, Cosmetics, Paint & Coatings, Paper, Pharmaceuticals, Plastics, and Rubber, each with specific regulatory and performance constraints that influence filler specifications. Based on Application, the study looks at Automotive, Construction, Consumer Goods, Electrical & Electronics, Medical Devices, Packaging, and Textile applications, where mechanical requirements, aesthetic expectations, and regulatory obligations vary significantly. Integrating these segmentation dimensions provides practitioners with a framework to align technical criteria with commercial priorities and qualification timelines.

How regional supply dynamics and regulatory priorities across the Americas, Europe Middle East & Africa, and Asia-Pacific shape filler sourcing strategies and technical expectations

Regional dynamics shape both supply and demand in distinctive ways, with geographic advantages and constraints influencing sourcing strategies and technical preferences. In the Americas, proximity to large polymer converters and robust industrial manufacturing clusters supports demand for a wide range of fillers, especially those tailored for automotive, packaging, and consumer goods applications. Domestic mineral deposits and well-developed logistics corridors enable responsive supply chains, yet regional regulatory frameworks and sustainability commitments increasingly influence supplier selection and product labeling requirements.

In Europe, Middle East & Africa, regulatory rigor and an advanced materials innovation ecosystem create a landscape that prioritizes recyclability, low-emission processing, and compliance with stringent chemical controls. The region's focus on circular economy solutions drives demand for fillers that support recycled content and permit easier end-of-life processing. Meanwhile, MEA countries present opportunities for mineral sourcing and export-driven manufacturing, albeit with infrastructure and certification variability that must be navigated carefully.

Asia-Pacific remains a major hub for polymer production and chemical processing, with diverse supplier capabilities ranging from large-scale mineral processors to specialty modifier producers. Strong demand across electronics, construction, and textiles stimulates continuous innovation in filler surface treatments and engineered particle systems. However, supply chain concentration and regional logistical bottlenecks can introduce vulnerability, encouraging multinational firms to balance local sourcing with strategic inventory positioning across these regions.

Competitive company dynamics emphasizing technical capability, strategic partnerships, and customer-focused services that accelerate application adoption and supplier trust

Competitive dynamics among leading companies are defined by a balance of technical innovation, global footprint, and customer-centric services. Industry leaders invest in application laboratories, pilot-scale compounding facilities, and collaborative development programs that shorten qualification cycles for converters and OEMs. These investments support bespoke surface treatments, coupling agents, and particle engineering that enhance compatibility with specific polymer grades and processing platforms.

Strategic partnerships and targeted acquisitions are common as firms seek to expand product portfolios and enter new geographic markets. Value propositions increasingly emphasize end-to-end support, including regulatory documentation, color and rheology matching, and on-site technical assistance. Firms that combine deep material science capabilities with resilient supply networks and transparent sourcing practices tend to capture long-term customer trust.

Smaller, specialized suppliers play a vital role by focusing on niche applications or high-performance filler systems that demand precise particle morphologies or proprietary surface chemistries. Their agility allows rapid iteration with customers, while larger suppliers leverage scale to offer broad product ranges and global logistics solutions. The competitive landscape thus rewards both depth of technical expertise and the ability to align commercial models with customer operational realities.

Actionable recommendations for suppliers to strengthen technical capabilities, diversify sourcing, and enhance customer engagement to secure long-term advantage

Leaders should act decisively to align operational capabilities with evolving technical and regulatory imperatives. Invest in robust application labs and pilot compounding capacity to enable rapid verification of filler-polymer combinations and to shorten qualification cycles for strategic customers. Enhancing surface modification capabilities and analytical instrumentation will permit more predictable performance outcomes and smoother scale-up from laboratory trials to production.

Strengthen supply chain resilience by diversifying sourcing across geographies, establishing nearshore agreements where feasible, and implementing contractual mechanisms that mitigate tariff volatility. Parallel to this, develop clearer sustainability narratives by documenting lifecycle impacts, impurity profiles, and recyclability attributes to meet growing customer disclosure requirements. Cross-functional collaboration between procurement, R&D, and regulatory teams will be critical to translate technical options into actionable sourcing decisions.

Finally, prioritize client-facing services such as co-development programs, technical training, and customized packaging or granulation formats. These offerings help embed suppliers within customer value chains and create commercial stickiness. By pursuing these strategic moves, firms can convert technical differentiation into durable commercial advantage and better align offerings with the priorities of OEMs and converters.

A transparent and reproducible research methodology integrating primary interviews, technical validation, and regulatory synthesis to support evidence-based conclusions

The research methodology combines qualitative engagement with industry practitioners, technical literature review, and primary data gathered from supplier and converter interviews to deliver an integrated perspective. Technical assessments draw on laboratory validation reports, product specification analyses, and case studies of application trials to map performance trade-offs across filler types and processing forms. Legal and regulatory inputs were synthesized from publicly available policy guidance and materials safety documentation to ensure compliance considerations are accurately represented.

Primary research included structured interviews with formulation scientists, procurement leaders, and product managers who shared insights on qualification hurdles, preferred supplier attributes, and lifecycle priorities. Secondary sources encompassed peer-reviewed journals, standards documentation, and industry technical papers that informed the discussion of particle morphology, surface treatments, and polymer compatibility. Comparative analysis emphasized cross-referencing technical claims with observed application outcomes to provide practitioners with practical, evidence-based conclusions.

The methodology prioritizes transparency and reproducibility by documenting data sources, interview protocols, and the criteria used for inclusion of case examples. This approach allows readers to trace findings back to original inputs and to apply the insights to internal development and sourcing processes with confidence.

Concluding synthesis emphasizing the need for integrated material strategies, operational resilience, and customer-focused innovation to capitalize on evolving demand

In conclusion, the fillers sector is being reshaped by technical innovation, regulatory emphasis on sustainability and chemical governance, and evolving commercial dynamics that favor resilient and differentiated suppliers. Strategic material choices now require a holistic view that connects particle engineering, processing format, polymer compatibility, and end-use regulatory constraints. Organizations that make investment decisions with this integrated perspective will be better positioned to accelerate qualification, reduce lifecycle risk, and meet customer demands for demonstrable sustainability performance.

Operationally, success hinges on the ability to translate laboratory performance into predictable production outcomes, maintain agile sourcing in the face of tariff and logistical pressures, and provide customer-centric services that facilitate adoption. The most effective strategies are those that combine technical depth with flexible commercial models and transparent documentation. Applying the insights from this report will help R&D, procurement, and commercial teams to align priorities, shorten time to specification, and improve the resilience of product portfolios.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising integration of sustainably sourced biofillers such as lignin and cellulose in high-performance plastic composites to meet regulatory targets
  • 5.2. Adoption of nano-scaled calcium carbonate fillers to enhance mechanical strength and thermal stability in automotive-grade polymer parts
  • 5.3. Development of multifunctional glass microsphere fillers with improved dispersion for lightweight panels in aerospace applications
  • 5.4. Growing utilization of recycled mineral fillers derived from industrial byproducts to lower costs and carbon emissions in PVC production
  • 5.5. Innovation in surface-modified talc fillers for enhanced compatibility with polypropylene matrices in consumer electronics housing

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Plastic Fillers Market, by Filler Type

  • 8.1. Calcium Carbonate
    • 8.1.1. Ground Calcium Carbonate
    • 8.1.2. Precipitated Calcium Carbonate
  • 8.2. Kaolin
    • 8.2.1. Calcined Kaolin
    • 8.2.2. Hydrous Kaolin
  • 8.3. Mica
    • 8.3.1. Natural Mica
    • 8.3.2. Synthetic Mica
  • 8.4. Silica
    • 8.4.1. Fumed Silica
    • 8.4.2. Precipitated Silica
  • 8.5. Talc
  • 8.6. Wollastonite
    • 8.6.1. Ground Wollastonite
    • 8.6.2. Standard Wollastonite

9. Plastic Fillers Market, by Form

  • 9.1. Granule
  • 9.2. Powder

10. Plastic Fillers Market, by Polymer Type

  • 10.1. ABS
  • 10.2. Polyethylene
    • 10.2.1. HDPE
    • 10.2.2. LDPE
    • 10.2.3. LLDPE
  • 10.3. Polypropylene
    • 10.3.1. Copolymer
    • 10.3.2. Homo Polymer
  • 10.4. PVC
    • 10.4.1. Plasticized PVC
    • 10.4.2. Rigid PVC

11. Plastic Fillers Market, by End Use Industry

  • 11.1. Adhesives & Sealants
  • 11.2. Cosmetics
  • 11.3. Paint & Coatings
  • 11.4. Paper
  • 11.5. Pharmaceuticals
  • 11.6. Plastics
  • 11.7. Rubber

12. Plastic Fillers Market, by Application

  • 12.1. Automotive
  • 12.2. Construction
  • 12.3. Consumer Goods
  • 12.4. Electrical & Electronics
  • 12.5. Medical Devices
  • 12.6. Packaging
  • 12.7. Textile

13. Plastic Fillers Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Plastic Fillers Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Plastic Fillers Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Imerys S.A.
    • 16.3.2. Omya International AG
    • 16.3.3. Sibelco Group NV
    • 16.3.4. Minerals Technologies Inc.
    • 16.3.5. J.M. Huber Corporation
    • 16.3.6. BASF SE
    • 16.3.7. Evonik Industries AG
    • 16.3.8. Lhoist Group
    • 16.3.9. R.T. Vanderbilt Co., Inc.
    • 16.3.10. Quarzwerke Group
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제