시장보고서
상품코드
1857429

농업 애널리틱스 시장 : 작물 유형, 기술, 용도, 농장 규모, 최종사용자별 - 세계 예측(2025-2032년)

Agriculture Analytics Market by Crop Type, Technology, Application, Farm Size, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 190 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

농업 애널리틱스 시장은 2032년까지 33억 3,000만 달러에 이르고, CAGR 8.90%를 보일 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 16억 8,000만 달러
추정 연도 : 2025년 18억 3,000만 달러
예측 연도 : 2032년 33억 3,000만 달러
CAGR(%) 8.90%

본 조사의 목적, 주요 주제, 분석과 현대 농업 생산 및 이해관계자 의사결정과의 통합 방법을 개괄적으로 설명한 권위 있는 오리엔테이션

데이터, 연결성, 고급 분석이 융합되어 식품, 섬유, 사료의 생산 및 관리 방식이 재편됨에 따라 세계 농업 부문은 급속한 변화를 겪고 있습니다. 이 소개에서는 초점 주제, 즉 기술 도입 경로, 용도 중심의 가치 실현, 규제 및 무역 역풍, 농업 규모와 최종 사용자에 따라 다른 요구 사항을 명확히 함으로써 분석의 목적과 범위를 설정합니다. 이러한 초점을 명확히 함으로써 독자는 명확한 렌즈를 통해 다음 섹션에서 증거를 해석하고 시사점을 얻을 수 있습니다.

이 책은 경영자, 농학자, 정책 관계자를 위한 실용적인 의사결정에 초점을 맞추었습니다. 애널리틱스를 독립적인 역량으로 취급하는 것이 아니라, 원격 감지, 농장 내 센서, 예측 모델, 공급망 가시성을 연결하는 통합자로서의 역할을 강조합니다. 이 방향성은 수율 안정성, 투입 효율, 가축의 건강 상태, 이력추적성 등의 성과에 근거를 두고 있습니다. 분석 전반에 걸쳐 기술 성숙도, 서비스 제공 모델, 이해관계자 기대치에 대한 관찰 가능한 트렌드에 중점을 두어 조직이 통찰력을 우선순위에 따라 행동과 투자에 반영할 수 있도록 돕습니다.

센싱의 발전, 상호운용 가능한 데이터 생태계, 지속가능성 중심의 정책이 농업의 경쟁 우위와 업무 우선순위를 재정의하는 방법

농업 환경은 경쟁 역학 및 경영 우선순위를 재구성하는 여러 상호의존적인 축을 따라 변화하고 있습니다. 눈에 띄는 변화 중 하나는 센서 네트워크와 원격 센싱의 성숙과 엣지 애널리틱스의 결합으로 의사결정 인텔리전스가 정기적인 평가에서 거의 실시간에 가까운 지속적인 가이던스로 전환되고 있다는 점입니다. 이러한 변화는 병해충과 수분 스트레스에 대한 개입에 소요되는 반응 시간을 단축하는 한편, 농장 및 전체 우군 성능 측정의 세분성을 향상시킵니다.

또 다른 혁신적 변화는 장비 제조업체, 투입재 공급업체, 물류 제공업체 간의 데이터 교환을 가능하게 하는 상호 운용 가능한 소프트웨어 생태계와 플랫폼 비즈니스 모델의 출현입니다. 그 결과, 개별 하드웨어나 사일로화된 소프트웨어 모듈이 아닌 데이터 흐름을 오케스트레이션하고 실용적인 권장 사항을 제공하는 솔루션의 가치가 점점 더 커지고 있습니다. 이와 함께 지속가능성 지표와 추적 가능성에 대한 규제에 대한 강조는 증명 능력과 검증 능력에 대한 투자를 촉진하고 있습니다. 이러한 규제적 압박과 투명성과 회복력을 추구하는 소비자 선호도의 변화로 인해 농업 기업과 공공 기관은 분석에 대한 투자를 측정 가능한 환경적, 사회적 성과와 일치시켜야 하는 과제를 안고 있습니다. 이러한 변화를 종합하면, 경쟁 우위는 전문 지식, 시스템 통합 능력, 확장 가능한 데이터 거버넌스를 겸비한 조직으로 재조정되고 있습니다.

최근 관세 조정, 조달, 공급망 회복력, 기술 소싱이 어떻게 재구성되고, 농업 이해관계자 전체의 신속한 업무 전환을 촉진했는지 설명합니다.

관세 정책의 역학관계는 농업 가치사슬 전체에 빠르고 광범위하게 영향을 미쳐 투입비용, 상품 흐름, 투자 인센티브를 변화시킬 수 있습니다. 2025년 미국의 관세 제도 변경은 업스트림 조달과 다운스트림 시장 접근에 영향을 미쳐 조달 전략과 공급망 라우팅에 대한 재평가를 즉각적으로 촉구했습니다. 수입 장비와 부품에 의존하던 기업들은 단기적인 조달 중단을 겪었고, 연속성을 유지하기 위해 대체 공급업체와 현지 제조 파트너십을 모색했습니다.

물류뿐만 아니라 관세 조정은 상품 협상의 역학 및 계약 구조에도 영향을 미쳤습니다. 수출업체와 유통업체들은 수출 대상 시장을 다변화하고 마진을 확보하기 위한 헤지 접근법을 재검토하는 등 대응에 나섰습니다. 관세 조정으로 인해 기술 공급업체들은 지역 생산이 가능한 모듈형 솔루션과 제한 없는 구성품으로 조립할 수 있는 솔루션에 다시 한 번 주목하고 있습니다. 농장 수준에서 투입물 가격의 변동은 투입물 낭비를 줄이고 투입물 배분 효율을 향상시키는 정밀 용도의 신속한 도입을 촉진했습니다. 전반적으로 관세는 생태계 전반의 적응 행동을 촉진하고, 공급망 가시화, 공급업체 다각화, 정책 충격에 대한 노출을 줄이는 탄력적 조달 모델에 대한 투자를 가속화했습니다.

작물별 우선순위, 기술 역량, 이용 사례, 농장 규모별 요구사항, 최종 사용자 채택 패턴을 전략적 기회로 매핑, 세분화 기반의 심층적인 통찰력 제공

세분화 분석을 통해 기업이 개별 시장 진출 전략과 솔루션 설계를 통해 해결해야 할 차별화된 비즈니스 기회와 채택 패턴을 파악할 수 있습니다. 곡물 생산자들은 보리, 옥수수, 쌀, 밀 등 작물 유형에 따라 분석의 이용 사례는 크게 다르며, 보리, 옥수수, 쌀, 밀의 경우 투입 효율을 극대화하고 타이밍에 민감한 작업을 관리하기 위해 토양 수분과 영양분 모니터링에 우선순위를 둡니다.

자주 묻는 질문

  • 농업 애널리틱스 시장의 규모는 어떻게 예측되나요?
  • 농업 애널리틱스 시장의 주요 기술은 무엇인가요?
  • 농업 애널리틱스 시장에서의 주요 용도는 무엇인가요?
  • 농업 애널리틱스 시장의 주요 이해관계자는 누구인가요?
  • 농업 애널리틱스 시장에서의 경쟁 구도는 어떻게 되나요?

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 농업 애널리틱스 시장 : 작물 유형별

  • 곡류
    • 보리
    • 옥수수
  • 섬유
    • 면화
    • 주트
  • 과일 및 채소
    • 베리류
    • 감귤류
    • 잎채소
  • 지방종자 및 콩류
    • 카놀라
    • 피넛
    • 대두

제9장 농업 애널리틱스 시장 : 기술별

  • 데이터 분석 플랫폼
    • 빅데이터 관리
    • 예측 분석
  • 드론 및 UAV
  • IoT 센서
  • 소프트웨어 솔루션
    • 농장 관리 소프트웨어
    • GIS 소프트웨어

제10장 농업 애널리틱스 시장 : 용도별

  • 필드 모니터링
  • 가축 관리
    • 가축 건강 모니터링
    • 사료 관리
  • 정밀농업
    • 작물 정찰
    • 필드 매핑
    • 가변 레이트 기술
  • 공급망 관리
    • 물류 최적화
    • 추적 가능성 솔루션

제11장 농업 애널리틱스 시장 : 농장 규모별

  • 대규모 농장
  • 중규모 농장
  • 소규모 농장

제12장 농업 애널리틱스 시장 : 최종사용자별

  • 농업 관련 기업
  • 농가
  • 정부기관
    • 규제기관
    • 연구기관

제13장 농업 애널리틱스 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 농업 애널리틱스 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 농업 애널리틱스 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Deere & Company
    • Trimble Inc.
    • AGCO Corporation
    • CNH Industrial N.V.
    • Topcon Positioning Systems, Inc.
    • Raven Industries, Inc.
    • International Business Machines Corporation
    • Microsoft Corporation
    • Oracle Corporation
    • SAP SE
LSH 25.11.11

The Agriculture Analytics Market is projected to grow by USD 3.33 billion at a CAGR of 8.90% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.68 billion
Estimated Year [2025] USD 1.83 billion
Forecast Year [2032] USD 3.33 billion
CAGR (%) 8.90%

An authoritative orientation that outlines the study's purpose, core thematic focal areas, and how analytics integrates with modern agricultural production and stakeholder decision-making

The global agricultural sector is undergoing a rapid transition as data, connectivity, and advanced analytics converge to reshape how food, fiber, and feed are produced and managed. This introduction frames the purpose and scope of the analysis by clarifying the focal themes: technology adoption pathways, application-driven value realization, regulatory and trade headwinds, and differentiated needs across farm sizes and end users. By establishing these focal areas up front, readers obtain a clear lens through which subsequent sections interpret evidence and derive implications.

We position the conversation around practical decision-making for executives, agronomists, and policy stakeholders. Rather than treating analytics as a standalone capability, we emphasize its role as an integrator that links remote sensing, on-farm sensors, predictive models, and supply chain visibility. This orientation grounds the work in outcomes such as yield consistency, input efficiency, animal health, and traceability. Throughout, the analysis remains anchored to observable trends in technology maturity, service delivery models, and stakeholder expectations, enabling organizations to translate insights into prioritized actions and investments.

How advances in sensing, interoperable data ecosystems, and sustainability-driven policy are jointly redefining competitive advantage and operational priorities in agriculture

Agricultural landscapes are shifting along multiple interdependent axes that reconfigure competitive dynamics and operational priorities. One prominent shift is the maturation of sensor networks and remote sensing combined with edge analytics, which moves decision intelligence from periodic assessments to continuous, near-real-time guidance. This change reduces reaction time for pest, disease, and moisture stress interventions while increasing the granularity of performance measurement across fields and herds.

Another transformative shift is the emergence of interoperable software ecosystems and platform business models that enable data exchange across equipment manufacturers, input suppliers, and logistics providers. As a result, value increasingly accrues to solutions that orchestrate data flows and deliver actionable recommendations rather than to individual hardware or siloed software modules. In parallel, regulatory emphasis on sustainability metrics and traceability is incentivizing investments in provenance and verification capabilities. These regulatory pressures, together with shifting consumer preferences for transparency and resilience, are prompting agribusiness and public agencies to align analytics investments with measurable environmental and social outcomes. Collectively, these shifts are rebalancing competitive advantage toward organizations that combine domain expertise, systems integration capabilities, and scalable data governance.

Explaining how recent tariff adjustments reshaped procurement, supply chain resilience, and technology sourcing, prompting rapid operational pivots across agricultural stakeholders

Tariff policy dynamics can have swift and pervasive effects across agricultural value chains, altering input costs, commodity flows, and investment incentives. In 2025, changes to tariff regimes in the United States influenced both upstream procurement and downstream market access, prompting immediate re-evaluation of sourcing strategies and supply chain routing. Firms reliant on imported equipment or components experienced near-term procurement disruptions and sought alternative suppliers or localized manufacturing partnerships to maintain continuity.

Beyond logistics, tariff adjustments affected commodity negotiation dynamics and contract structures. Exporters and distributors responded by diversifying destination markets and re-examining hedging approaches to insulate margins. For technology vendors, tariffs created a renewed emphasis on modular solutions that could be produced regionally or assembled from non-restricted components. At the farm level, input price volatility encouraged more rapid adoption of precision applications that reduce input waste and improve input allocation efficiency. Overall, tariffs catalyzed adaptive behaviors across the ecosystem, accelerating investments in supply chain visibility, supplier diversification, and resilient sourcing models that reduce exposure to policy shocks.

Deep segmentation-driven insights that map crop-specific priorities, technology capabilities, application use cases, farm-scale needs, and end-user adoption patterns to strategic opportunities

Segmentation analysis reveals differentiated opportunity and adoption patterns that organizations must address through tailored go-to-market strategies and solution design. Based on Crop Type, analytics use cases vary significantly: cereal producers prioritize high-frequency soil moisture and nutrient monitoring across Barley, Corn, Rice, and Wheat to maximize input efficiency and manage timing-sensitive operations; fiber growers focus on pest management and fiber quality metrics for Cotton and Jute; fruit and vegetable operations emphasize phenology tracking, harvest forecasting, and cold-chain coordination for Berries, Citrus, and Leafy Vegetables; oilseeds and pulses producers use predictive modeling and harvest optimization techniques for Canola, Peanut, and Soybean to balance yield and quality targets.

Based on Technology, adoption trajectories differ by capability: Data Analytics Platforms that include Big Data Management and Predictive Analytics serve as the backbone for cross-source integration, while Drones & UAVs and IoT Sensors deliver high-resolution observations; Software Solutions like Farm Management Software and GIS Software enable operational execution and contextual mapping. Based on Application, value propositions are application-specific: Field Monitoring drives early-warning systems, Livestock Management focuses on Animal Health Monitoring and Feeding Management, Precision Farming includes Crop Scouting, Field Mapping, and Variable Rate Technology, and Supply Chain Management concentrates on Logistics Optimization and Traceability Solutions. Based on Farm Size, capability requirements range from scalable, low-cost offerings for Small Scale Farms to sophisticated integrated platforms for Large Scale Farms, with Medium Scale Farms representing a critical segment seeking modular, interoperable solutions. Based on End User, adoption and procurement behaviors are distinct: agribusinesses demand enterprise-grade interoperability and compliance reporting, farmers prioritize practicality and ROI at field scale, and government agencies including Regulatory Agencies and Research Institutions emphasize standards, reproducibility, and public-good applications.

Comparative regional dynamics and strategic imperatives that explain how the Americas, Europe Middle East & Africa, and Asia-Pacific shape differentiated adoption and deployment pathways

Regional dynamics shape both the pace of technology diffusion and the structure of value chains, requiring geographically informed strategies. In the Americas, extensive arable land, mature agri-business networks, and high adoption of precision machinery accelerate demand for platform-based analytics, traceability, and logistics optimization; investment flows favor integrated solutions that reduce cost per hectare and improve export readiness. In Europe, Middle East & Africa, diverse climatic zones and regulatory emphasis on sustainability and carbon accounting drive demand for provenance systems, compliance-oriented analytics, and solutions adaptable to fragmented landholdings; public-private partnerships and research institutions play a strong role in field trials and standards development. In Asia-Pacific, high population density, intensive cropping systems, and rising input costs create a premium on yield intensification, labor-saving automation, and compact sensor deployments suitable for small to medium holdings.

Transitioning between these regional realities requires firms to adapt commercial models, localization strategies, and technology configurations. For multinational suppliers, success depends on modular offerings that can be configured to local regulatory regimes, language requirements, and service ecosystems. For local innovators, leveraging deep agronomic knowledge and close customer relationships provides an advantage in rapid iteration and adoption. Across all regions, connectivity constraints, workforce skill levels, and capital access remain important determinants of the adoption curve.

Company strategic archetypes, partnership dynamics, and capability priorities that determine competitive differentiation and route-to-customer effectiveness in agricultural analytics

Company-level dynamics reveal three dominant strategic archetypes: platform orchestrators that integrate data and deliver cross-functional workflows, specialized hardware and sensor innovators that compete on fidelity and cost of observation, and services-oriented integrators that combine agronomic expertise with technology deployment and managed services. Platform orchestrators focus on building interoperability, API ecosystems, and partner networks to capture value from aggregated data flows, while sensor innovators drive down cost-per-data-point and expand coverage through new form factors and deployment approaches. Services integrators monetize domain expertise, enabling customers to translate analytics into farm-level actions and to embed continuous improvement loops into operations.

Competitive differentiation is increasingly tied to data governance, model provenance, and the ability to demonstrate reproducible agronomic outcomes. Firms that can provide transparent validation protocols, explainable models, and clear data stewardship practices are more successful in securing enterprise contracts and public-sector programs. Strategic partnerships across equipment manufacturers, input suppliers, and logistics providers are common as companies seek to assemble end-to-end offerings that reduce buyer friction. In parallel, acquisitions and alliances accelerate capability filling where organic development would be slower, and investment in customer success functions becomes a critical lever for driving retention and expanding footprint within existing accounts.

Actionable strategic moves for leaders to scale interoperability, validation, flexible commercial models, regulatory alignment, and customer success to accelerate adoption and value capture

Industry leaders should pursue a clear set of actions that align technology capability with measurable operational outcomes. First, prioritize interoperability and open data standards so that platforms and devices can exchange information seamlessly; this reduces integration friction for customers and expands addressable use cases. Second, invest in demonstrable model validation and explainability to build trust with commercial buyers and regulatory stakeholders; transparent validation protocols accelerate procurement decisions and reduce adoption risk. Third, adopt flexible commercial models that accommodate farm-size variability, offering subscription tiers, pay-per-use options, and bundled services that lower the barrier to entry for small and medium operations.

Leaders should also deepen partnerships with research institutions and public agencies to co-develop sustainability and traceability frameworks that align with evolving regulatory requirements. Additionally, focus on supply chain resilience by diversifying component sourcing and localizing assembly where appropriate to mitigate tariff and logistics exposure. Finally, scale customer success and extension services to translate analytics into on-farm practice change, thereby converting technical capability into measurable improvements in efficiency, resilience, and compliance.

Transparent mixed-methods research approach that combines stakeholder interviews, technical literature synthesis, and triangulation to ensure reproducible, evidence-based insights

The research employed a mixed-methods approach combining primary engagements, secondary literature review, and cross-validation exercises to ensure robust, actionable findings. Primary research included structured interviews with a broad set of stakeholders such as producers across crop and livestock systems, technology vendors, agribusiness buyers, and public-sector program managers to capture real-world adoption drivers and barriers. These perspectives were synthesized with public domain technical literature, peer-reviewed agronomy studies, and implementation case studies to ground interpretations in established science and observed outcomes.

Analysts cross-checked thematic findings through triangulation, comparing operational anecdotes from field interviews with observable indicators such as adoption case studies, technology capability briefs, and product roadmaps. Where necessary, sensitivity checks were performed on qualitative inferences to ensure conclusions were resilient to alternative interpretations. The methodology emphasized reproducibility and traceability of insights by documenting source material, interview protocols, and analytic steps so that stakeholders can understand how conclusions were derived and can replicate focal analyses for specific geographies or commodity systems.

A decisive synthesis showing how integrated analytics, validated models, and user-centric deployment determine the trajectory of agricultural operational improvement and resilience

This synthesis highlights a clear direction: agricultural analytics is transitioning from isolated pilots to integrated operational capability, and the organizations that win will combine technical depth with pragmatic service delivery. Across crops, technologies, and regions, the most successful initiatives link data acquisition to decision workflows that are easy for farm teams to adopt and maintain. Regulatory emphasis on sustainability and traceability adds urgency to the deployment of solutions that can demonstrate verifiable outcomes.

As stakeholders adapt to tariff volatility, supply chain disruption, and shifting consumer expectations, resilience and flexibility emerge as central design principles. Investing in interoperable platforms, validated models, and customer-centric commercial structures will enable faster scaling while reducing friction for end users. Ultimately, the value of analytics will be judged by its ability to improve day-to-day operational choices, to enhance compliance and market access, and to enable measurable improvements in efficiency and resilience across diverse agricultural systems.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of AI-driven predictive analytics for precision irrigation scheduling
  • 5.2. Implementation of blockchain-based supply chain traceability solutions for farm produce
  • 5.3. Adoption of drone-mounted multispectral imaging for real-time crop health monitoring
  • 5.4. Development of gene-edited drought-resistant crop varieties using CRISPR technology
  • 5.5. Deployment of IoT-enabled soil sensor networks for continuous nutrient and moisture analysis
  • 5.6. Emergence of vertical farming systems optimized by AI for year-round urban crop production

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Agriculture Analytics Market, by Crop Type

  • 8.1. Cereals
    • 8.1.1. Barley
    • 8.1.2. Corn
    • 8.1.3. Rice
    • 8.1.4. Wheat
  • 8.2. Fibers
    • 8.2.1. Cotton
    • 8.2.2. Jute
  • 8.3. Fruits & Vegetables
    • 8.3.1. Berries
    • 8.3.2. Citrus
    • 8.3.3. Leafy Vegetables
  • 8.4. Oilseeds & Pulses
    • 8.4.1. Canola
    • 8.4.2. Peanut
    • 8.4.3. Soybean

9. Agriculture Analytics Market, by Technology

  • 9.1. Data Analytics Platforms
    • 9.1.1. Big Data Management
    • 9.1.2. Predictive Analytics
  • 9.2. Drones & UAVs
  • 9.3. IoT Sensors
  • 9.4. Software Solutions
    • 9.4.1. Farm Management Software
    • 9.4.2. GIS Software

10. Agriculture Analytics Market, by Application

  • 10.1. Field Monitoring
  • 10.2. Livestock Management
    • 10.2.1. Animal Health Monitoring
    • 10.2.2. Feeding Management
  • 10.3. Precision Farming
    • 10.3.1. Crop Scouting
    • 10.3.2. Field Mapping
    • 10.3.3. Variable Rate Technology
  • 10.4. Supply Chain Management
    • 10.4.1. Logistics Optimization
    • 10.4.2. Traceability Solutions

11. Agriculture Analytics Market, by Farm Size

  • 11.1. Large Scale Farms
  • 11.2. Medium Scale Farms
  • 11.3. Small Scale Farms

12. Agriculture Analytics Market, by End User

  • 12.1. Agribusinesses
  • 12.2. Farmers
  • 12.3. Government Agencies
    • 12.3.1. Regulatory Agencies
    • 12.3.2. Research Institutions

13. Agriculture Analytics Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Agriculture Analytics Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Agriculture Analytics Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Deere & Company
    • 16.3.2. Trimble Inc.
    • 16.3.3. AGCO Corporation
    • 16.3.4. CNH Industrial N.V.
    • 16.3.5. Topcon Positioning Systems, Inc.
    • 16.3.6. Raven Industries, Inc.
    • 16.3.7. International Business Machines Corporation
    • 16.3.8. Microsoft Corporation
    • 16.3.9. Oracle Corporation
    • 16.3.10. SAP SE
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제