시장보고서
상품코드
1857529

C-arm 시장 : 용도, 시스템 유형, 검출기 유형, 최종사용자, 기술별 - 세계 예측(2025-2032년)

C-arms Market by Application, System Type, Detector Type, End User, Technology - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 191 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

C-arm 시장은 2032년까지 연평균 복합 성장률(CAGR) 8.79%로 50억 2,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 25억 6,000만 달러
추정 연도 : 2025년 27억 9,000만 달러
예측 연도 : 2032년 50억 2,000만 달러
CAGR(%) 8.79%

최신 C-arm 기술, 임상적 유용성, 조달 촉진요인, 의료 현장에서의 채택을 형성하는 업무적 우선순위에 대한 정보로 가득 찬 소개

C-arm 이미징 플랫폼은 최소침습적 시술 중 실시간 투시적 시각화를 가능하게 하며, 다양한 중재적 전문 분야의 중심이 되고 있습니다. 이러한 시스템은 병원 수술실, 하이브리드 수술실, 외래 수술실 등에 배치되고 있으며, 기기 유도, 배치 확인, 시술 합병증 감소 등의 기능은 현대 임상 워크플로우의 기초가 되고 있습니다. 임상 과정이 점점 더 최소 침습적 접근 방식을 선호함에 따라 인체공학적 시술과 전자 의료 기록에 원활하게 통합되는 신뢰할 수 있는 고해상도 이미지에 대한 수요가 증가하고 있습니다.

기술의 발전으로 벤더들의 초점은 아날로그 이미지 인텐시파이어에서 디지털 평면 패널 검출기, 선량 관리 개선, 소프트웨어에 의한 이미지 처리로 옮겨가고 있습니다. 한편, 유지보수성, 총소유비용, 라이프사이클 지원은 자본 계획 주기 및 임상 처리량 요구사항의 제약을 받는 조달팀에게 중요한 고려사항입니다. 규제 당국의 감독과 조달 프로토콜은 지역마다 다르며, 채택의 리듬과 벤더 시장 진입 모델을 형성하고 있습니다. 이러한 상황에서 임상 리더와 경영진이 기술 투자를 환자 결과와 운영 효율성 목표에 부합하도록 하기 위해서는 용도별 요구사항, 시스템 폼팩터 선택, 검출기 기술 간의 절충점을 명확히 하는 것이 필수적입니다.

C-arm 시스템 사양, 구매, 지원 방법을 근본적으로 재정의하는 기술 발전, 소프트웨어 통합, 운영 변화의 명확한 통합

C-arm을 둘러싼 환경은 제품 로드맵과 임상에 대한 기대치를 재정의하는 일련의 변혁적 변화를 동시에 경험하고 있습니다. 검출기 기술 및 영상 처리의 발전으로 이미지 품질과 저선량 성능이 향상되어 이전에는 하이엔드 영상 지원이 없었던 환경에서도 보다 복잡한 시술이 가능해졌습니다. 동시에 모듈화 및 소형화를 통해 모바일 시스템은 많은 이용 사례에서 고정형 장비와 동등한 기능을 갖게 되었으며, 진화하는 의료 서비스 제공 패턴에 따라 유연한 배포 모델이 가능해졌습니다.

소프트웨어는 이제 전략적 차별화 요소가 되었습니다. 내비게이션, 로봇공학, AI를 활용한 이미지 강화 기능과의 통합으로 임상 영역이 확대되고, 정기적인 소프트웨어 라이선스 및 서비스 계약으로 이어지는 새로운 가치 흐름이 창출되고 있습니다. 이와 병행하여 병원 계획에서 영상 처리와 인터벤션 기능을 통합한 하이브리드 수술실이 점점 더 강조되고 있으며, 상호 운용성과 무균 관리를 위해 설계된 시스템에 대한 요구가 증가하고 있습니다. 가동 시간, 원격 진단, 서비스 및 물류 최적화와 같은 운영상의 고려사항은 특히 의료 기관이 임상 처리량을 보호하고 계획되지 않은 자본 지출을 줄이기 위해 노력함에 따라 그 중요성이 더욱 커지고 있습니다. 그 결과, 제조업체와 서비스 제공업체들은 우수한 하드웨어, 강력한 소프트웨어 생태계, 유연한 자금 조달 모델, 탄력적인 공급망과 결합해야 하는 상황에 적응하고 있습니다.

2025년 관세 변경으로 인해 C-arm 생태계 전체공급망, 조달 일정, 조달 전략이 어떻게 변화했는지를 종합적으로 검토합니다.

2025년 미국의 무역 정책 조정과 관세 도입은 조달 결정부터 임상 조달 시기까지 다각적인 업계의 반응을 불러일으켰습니다. 특정 수입 부품에 대한 관세 인상으로 인해, 거래처 상표 제품 제조업체는 세계 공급망을 재평가해야 하며, 가격 경쟁력을 유지하고 리드타임 리스크를 줄이기 위해 니어쇼어링, 멀티소싱, 현지 조립 증가에 대한 논의가 가속화되고 있습니다. 그 결과, 조달팀은 자본 계획의 버퍼를 조정하고 부품의 출처와 공급업체의 탄력성에 대한 투명성을 높이기 위해 노력했습니다.

벤더들은 제조 발자국을 이동하고, 공급업체와의 계약을 재협상하고, 부품표를 최적화하여 관세 투입의 위험을 줄이는 방식으로 대응해 왔습니다. 이러한 변화는 안정적인 무역 분류를 가진 부품을 선호하는 제조에 적합한 설계 및 공급업체 통합 전략을 촉진하고 있습니다. 한편, 판매업체와 서비스 제공업체는 수술실 일정에 지장을 초래할 수 있는 서비스 중단을 피하기 위해 재고 정책 및 예비 부품 재고를 재조정하고 있습니다. 임상 및 조달 리더은 처리량 감소를 방지하기 위해 예측 가능한 유지보수 모델과 강력한 서비스 네트워크를 갖춘 시스템을 우선순위에 두고 있습니다.

규제 준수와 수입 서류 작성은 특히 여러 기관의 승인이 필요한 복잡한 구매의 경우, 현재 총 조달 일정에 있어 더욱 중요한 요소가 되고 있습니다. 그 누적된 운영 효과로 평가 기간의 연장, 가격 조정 및 리드타임에 대한 계약상 보호가 중요시되고 있습니다. 이러한 환경에서 공급망 투명성 및 라이프사이클 지원과 관련하여 공급업체와 적극적으로 협력하는 기관은 임상 연속성과 자본 효율성을 더 잘 보호할 수 있습니다.

용도, 시스템 유형, 감지기 구성, 최종 사용자의 구매 패턴, 아날로그 및 디지털 기술 도입 동향을 파악하는 부문별 인텔리전스

부문 수준의 역학은 제품 디자인, 판매 전략, 임상적 포지셔닝에 도움이 되는 차별화된 수요 패턴을 보여줍니다. 응용 분야에 따라 임상적 요구는 매우 다양합니다. 순환기 내과에서는 혈관 탐색을 위해 높은 시간 분해능과 안정적인 투시 성능이 중요시되는 반면, 소화기내과와 비뇨기과에서는 내시경 워크플로우에 대응하기 위해 유연한 C-arm 각도를 가진 컴팩트한 시스템이 요구됩니다. 정형외과와 통증 관리에서는 뼈와 임플란트의 가시화를 위해 영상의 선명도가 우선시되며, 혈관 수술에서는 확대 시야 영상과 고도의 조영제 관리가 요구됩니다. 이러한 용도에 따른 차이는 기능 우선순위, 교육 요건, 서비스 계약에 영향을 미칩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 C-arm 시장 : 용도별

  • 심장병학
  • 구급
  • 소화기외과
  • 정형외과
  • 통증 관리
  • 비뇨기과
  • 혈관외과

제9장 C-arm 시장 : 시스템 유형별

  • 고정
  • 모바일

제10장 C-arm 시장 : 검출기 유형별

  • 플랫 패널 검출기
  • 영상 증폭기
    • 12인치
    • 16인치
    • 9인치

제11장 C-arm 시장 : 최종사용자별

  • 외래수술센터(ASC)
  • 병원

제12장 C-arm 시장 : 기술별

  • 아날로그
  • 디지털

제13장 C-arm 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 C-arm 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 C-arm 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • General Electric Company
    • Siemens Healthineers AG
    • Koninklijke Philips N.V.
    • Shimadzu Corporation
    • Ziehm Imaging GmbH
    • Canon Medical Systems Corporation
    • Hologic, Inc.
    • Hitachi, Ltd.
    • Fujifilm Holdings Corporation
    • Mindray Medical International Limited
LSH 25.11.11

The C-arms Market is projected to grow by USD 5.02 billion at a CAGR of 8.79% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 2.56 billion
Estimated Year [2025] USD 2.79 billion
Forecast Year [2032] USD 5.02 billion
CAGR (%) 8.79%

An informed introduction to contemporary C-arm technology, clinical utility, procurement drivers, and operational priorities that shape adoption across care settings

C-arm imaging platforms remain central to a wide range of interventional specialties, enabling real-time fluoroscopic visualization during minimally invasive procedures. These systems are deployed across hospital operating rooms, hybrid suites, and outpatient surgical settings where their ability to guide instrumentation, confirm placement, and reduce procedural complications has become foundational to modern clinical workflows. As clinical pathways increasingly favor minimally invasive approaches, demand for dependable, high-resolution imaging that integrates seamlessly into procedure ergonomics and electronic health records has intensified.

Technological evolution has shifted vendor focus from analogue image intensifiers toward digital flat panel detectors, improved dose management, and software-driven image processing. Meanwhile, serviceability, total cost of ownership, and lifecycle support are prominent considerations for procurement teams constrained by capital planning cycles and clinical throughput requirements. Regulatory oversight and procurement protocols vary by geography, shaping adoption rhythms and vendor go-to-market models. In this context, clarity around application-specific requirements, system form factor choices, and detector technology trade-offs is essential for clinical leaders and business executives alike to align technology investments with patient outcomes and operational efficiency goals.

A clear synthesis of technology advancements, software integration, and operational shifts that are fundamentally redefining how C-arm systems are specified, purchased, and supported

The C-arm landscape is experiencing a suite of concurrent transformative shifts that are redefining product road maps and clinical expectations. Advances in detector technology and image processing have pushed image quality and low-dose performance forward, enabling more complex procedures in settings that previously lacked high-end imaging support. At the same time, modularity and miniaturization have allowed mobile systems to gain functional parity with fixed installations for many use cases, enabling flexible deployment models that better align with evolving care delivery patterns.

Software is now a strategic differentiator: integration with navigation, robotics, and AI-enabled image enhancement is expanding the clinical envelope and creating new value streams tied to recurring software licenses and service agreements. In parallel, hospital planning increasingly emphasizes hybrid operating rooms that blend imaging and interventional capability, which drives demand for systems designed for interoperability and sterility management. Operational considerations such as uptime, remote diagnostics, and optimized service logistics are rising in importance, particularly as providers seek to protect clinical throughput and reduce unplanned capital expenditure. Consequently, manufacturers and service providers are adapting to a landscape where hardware excellence must be paired with robust software ecosystems, flexible financing models, and resilient supply chains.

A comprehensive examination of how tariff changes in 2025 reshaped supply chains, procurement timelines, and sourcing strategies across the C-arm ecosystem

Trade policy adjustments and tariff implementations in the United States during 2025 have generated a multifaceted industry response that extends from sourcing decisions to clinical procurement timing. Increased duties on certain imported components have pressured original equipment manufacturers to re-evaluate global supply chains, accelerating conversations about nearshoring, multi-sourcing, and increased local assembly to preserve price competitiveness and mitigate lead-time risk. As a result, procurement teams have adjusted capital planning buffers and sought greater transparency around component provenance and supplier resilience.

Vendors have reacted by shifting manufacturing footprints, renegotiating supplier contracts, and optimizing bills of materials to reduce exposure to tariffed inputs. These changes have incentivized design-for-manufacturing and supplier consolidation strategies that favor components with stable trade classifications. Meanwhile, distributors and service providers are recalibrating stocking policies and spare parts inventories to avoid service disruptions that could compromise operating room schedules. Clinical and procurement leaders are prioritizing systems with predictable maintenance models and strong service networks to prevent throughput erosion.

Regulatory compliance and import documentation now factor more prominently into total procurement timelines, especially for complex purchases requiring multi-site approvals. The cumulative operational effect includes extended evaluation periods and a heightened emphasis on contractual protections around price adjustments and lead times. In this environment, institutions that proactively engage with suppliers on supply chain transparency and lifecycle support can better safeguard clinical continuity and capital efficiency.

Segment-specific intelligence that decodes application, system type, detector configurations, end-user purchasing patterns, and analog-to-digital technology adoption dynamics

Segment-level dynamics reveal differentiated demand patterns that inform product design, sales strategy, and clinical positioning. Based on application, clinical needs vary markedly: cardiology procedures emphasize high temporal resolution and consistent fluoroscopic performance for vascular navigation, whereas gastroenterology and urology require compact systems with flexible C-arm angulation to accommodate endoscopic workflows. Orthopedics and pain management prioritize image clarity for bone and implant visualization, and vascular surgery demands extended field-of-view imaging and advanced contrast management. These application-driven distinctions influence feature prioritization, training requirements, and service contracts.

Based on system type, procurement choices are driven by the trade-off between the stability and higher throughput of fixed installations and the flexibility and lower footprint of mobile units. Facilities with multiple procedure types or constrained capital budgets tend to favor mobile systems that can be redeployed across rooms, while high-volume interventional centers and hybrid ORs typically specify fixed platforms for integrated sterility and imaging performance.

Based on detector type, there is a clear technical divergence between flat panel detectors and image intensifiers. Flat panel detectors are increasingly preferred for their uniform image quality, lower distortion, and improved dose efficiency, but image intensifiers remain relevant in specific legacy fleets and cost-sensitive deployments. Within the image intensifier category, preferences for 12 inch, 16 inch, or 9 inch formats depend on procedure types and field-of-view requirements, with larger intensifiers serving broader anatomical coverage and smaller formats supporting targeted interventions.

Based on end user, ambulatory surgical centers and hospitals present different purchasing profiles: ambulatory centers prioritize throughput, rapid turnaround, and capital efficiency, while hospitals emphasize integration, redundancy, and broad clinical versatility. Based on technology, analog platforms continue to serve legacy workflows and retrofit markets, but digital systems are leading new deployments due to superior image processing, integration capability, and enabling digital services. Understanding these segmentation vectors enables vendors and purchasers to align clinical performance expectations with procurement strategy and long-term service commitments.

A region-by-region perspective that explains how regulatory environments, infrastructure maturity, and local manufacturing shape C-arm adoption across global markets

Regional dynamics shape adoption pathways and commercial strategy, with variation driven by regulatory frameworks, healthcare delivery models, and manufacturing footprints. In the Americas, clinical demand is concentrated in large hospital networks and growing outpatient surgical centers, supported by established distribution channels and a strong emphasis on lifecycle service agreements. Reimbursement frameworks and capital approval processes in the region incentivize investments that deliver operational efficiencies and measurable clinical improvements, which in turn elevate interest in integrated imaging and software-enabled functionality.

In Europe, Middle East & Africa, heterogeneous regulatory regimes and variable infrastructure maturity create a patchwork of opportunity. Western Europe tends to adopt advanced imaging capabilities within tertiary hospitals and hybrid suites, while other regional markets prioritize durable, serviceable systems that can function reliably in constrained environments. Middle Eastern healthcare investment has driven demand for high-end imaging in flagship centers, whereas parts of Africa present long-term growth potential tied to investments in basic fluoroscopy and training infrastructure.

The Asia-Pacific region combines high-volume demand with strong local manufacturing and supply chain networks. Adoption is being propelled by expanding hospital capacity, the proliferation of outpatient surgical facilities, and competitive vendor landscapes that feature both global OEMs and agile regional manufacturers. In many Asia-Pacific markets, procurement decisions balance capital constraints with the need for robust service coverage, making locally supported service models and retrofit upgrade paths particularly valuable. Across regions, vendors that tailor deployment models, financing options, and service footprints to local regulatory and operational realities achieve stronger uptake and long-term customer retention.

Strategic company-level analysis describing product modularity, service differentiation, partnership strategies, and evolving commercial models that define vendor competitiveness

Corporate strategies among leading suppliers emphasize end-to-end value propositions that combine hardware, software, and service. Companies are investing in modular product architectures that accommodate detector upgrades and software enhancements over time, which helps extend device lifecycles and supports recurring revenue through maintenance and software licensing. Strategic partnerships with navigation, robotics, and analytics providers are increasingly common, enabling combined solutions that address complex procedural workflows and create differentiated clinical value.

Aftermarket service performance is a competitive battleground. Firms that offer predictive maintenance, remote diagnostics, and rapid spare-parts logistics sustain higher uptime and stronger client relationships. In response, some suppliers are expanding direct service footprints or partnering with regional service organizations to improve responsiveness. Additionally, pricing models are evolving: flexible financing, pay-per-use constructs for high-utilization environments, and bundled service contracts are being used to lower procurement barriers and align vendor incentives with clinical outcomes.

Emerging and regional players are competing on cost, localized support, and niche clinical fit, while incumbents defend through innovations in detector technology, software ecosystems, and proven clinical evidence. Mergers and strategic alliances within the broader imaging and interventional markets continue to reshape competitive positioning, with an emphasis on building comprehensive interventional ecosystems rather than singular product offerings.

Actionable strategic priorities for vendors and health systems to enhance supply resilience, accelerate technology migration, and monetize service and software capabilities

Industry leaders should prioritize several strategic initiatives to secure market position and accelerate clinical adoption. First, invest in supply chain resilience through multi-sourcing and regional assembly capabilities to reduce exposure to trade and tariff volatility. This approach should be complemented by transparent supplier mapping and contractual clauses that mitigate lead-time and cost uncertainty. Second, accelerate the transition to flat panel detector technology and software-enabled features that demonstrably improve image quality and dose efficiency, while offering retrofit paths for legacy installed bases to preserve customer relationships.

Third, adopt service-centric commercial models that emphasize uptime guarantees, remote diagnostics, and outcome-linked service agreements. Tying value to measurable operational and clinical metrics strengthens procurement conversations and supports longer-term revenue stability. Fourth, expand partnerships with navigation and analytics providers to embed imaging systems within broader procedural ecosystems, which increases switching costs and enhances clinical value. Fifth, tailor regional go-to-market approaches: offer financing and localized service packages in emerging markets, and prioritize integration and hybrid OR capability in centers of excellence.

Finally, invest in clinician education and training programs that reduce user variability and demonstrate clinical utility for new features. By combining technology investments with strong service models and clinician enablement, companies can differentiate on total cost of ownership, clinical throughput, and patient safety outcomes, translating product innovation into sustainable commercial advantage.

A transparent and rigorous mixed-methods research approach combining primary clinician and procurement interviews with secondary regulatory and technical source triangulation for robust insight validation

The research approach combined qualitative and quantitative techniques to ensure comprehensive and validated insights. Primary research included structured interviews and guided discussions with interventional physicians, radiology leaders, operating room managers, procurement officers, and service executives across a spectrum of acute care and ambulatory facilities. These conversations explored clinical requirements, procurement criteria, service expectations, and real-world usage patterns to ground technical and commercial observations in frontline experience.

Secondary research leveraged peer-reviewed clinical literature, regulatory approval documentation, patent filings, clinical trial registries, and publicly available company disclosures to contextualize technological trends and product development pathways. Secondary sources were triangulated with primary findings to validate technology adoption narratives and to identify areas of divergence between clinical expectations and vendor positioning. Data validation steps included cross-referencing interview input with documented product specifications and service offering descriptions, and circulating key findings to a panel of industry advisors for critique and refinement.

Limitations were acknowledged and addressed through targeted follow-up interviews and sensitivity checks. The methodology emphasized transparency in source attribution and reproducibility of analytic steps, enabling stakeholders to interrogate assumptions and adapt insights to their internal decision frameworks.

A concise conclusion tying together technology evolution, supply chain realities, and strategic imperatives for vendors and provider organizations in the C-arm space

In summary, C-arm systems sit at the intersection of clinical need, technological innovation, and operational constraint. The combined effects of detector modernization, software integration, and shifting procurement paradigms are reshaping how health systems and ambulatory providers evaluate imaging platforms. Tariff-driven supply chain shifts underscore the need for manufacturing agility and procurement transparency, while regional differences in regulation and infrastructure demand tailored commercialization strategies.

For clinical leaders and vendor executives, the imperative is clear: align product development with clinician workflows, ensure service models deliver predictable uptime, and present value in terms that resonate with capital planners and quality leaders. Vendors that marry hardware excellence with robust software ecosystems and flexible commercial terms will be better positioned to capture durable customer relationships. Meanwhile, providers that demand clarity on lifecycle support, integration capability, and proven clinical benefit will protect throughput and patient outcomes as adoption patterns evolve. The path forward favors strategic alignment between technology capability and operational reality, enabling safer, more efficient interventional care.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rapid adoption of AI-powered image reconstruction algorithms in C-arm systems to enhance procedural accuracy
  • 5.2. Integration of 3D cone beam CT functionality in C-arm devices for intraoperative imaging guidance
  • 5.3. Emergence of robotic-assisted C-arm positioning systems for precision control in interventional suites
  • 5.4. Advances in low-dose radiation imaging technologies to minimize patient exposure during C-arm procedures
  • 5.5. Development of portable C-arm units with battery-powered mobility for field and outpatient interventions
  • 5.6. Growth of cloud-based PACS integration for real-time remote access to C-arm imaging across healthcare networks
  • 5.7. Implementation of augmented reality overlays in C-arm visualization to facilitate surgical navigation and planning
  • 5.8. Expansion of hybrid operating rooms featuring fixed C-arm installations for multidisciplinary procedural workflows

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. C-arms Market, by Application

  • 8.1. Cardiology
  • 8.2. Emergency
  • 8.3. Gastroenterology
  • 8.4. Orthopedics
  • 8.5. Pain Management
  • 8.6. Urology
  • 8.7. Vascular Surgery

9. C-arms Market, by System Type

  • 9.1. Fixed
  • 9.2. Mobile

10. C-arms Market, by Detector Type

  • 10.1. Flat Panel Detector
  • 10.2. Image Intensifier
    • 10.2.1. 12 Inch
    • 10.2.2. 16 Inch
    • 10.2.3. 9 Inch

11. C-arms Market, by End User

  • 11.1. Ambulatory Surgical Centers
  • 11.2. Hospitals

12. C-arms Market, by Technology

  • 12.1. Analog
  • 12.2. Digital

13. C-arms Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. C-arms Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. C-arms Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. General Electric Company
    • 16.3.2. Siemens Healthineers AG
    • 16.3.3. Koninklijke Philips N.V.
    • 16.3.4. Shimadzu Corporation
    • 16.3.5. Ziehm Imaging GmbH
    • 16.3.6. Canon Medical Systems Corporation
    • 16.3.7. Hologic, Inc.
    • 16.3.8. Hitachi, Ltd.
    • 16.3.9. Fujifilm Holdings Corporation
    • 16.3.10. Mindray Medical International Limited
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제