시장보고서
상품코드
1857531

CRISPR 기술 시장 : 제공, 전달 방법, 용도, 최종사용자별 - 세계 예측(2025-2032년)

CRISPR Technology Market by Offering, Delivery Method, Application, End-User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 185 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

CRISPR 기술 시장은 2032년까지 연평균 복합 성장률(CAGR) 14.29%로 103억 2,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 35억 4,000만 달러
추정 연도 : 2025년 40억 2,000만 달러
예측 연도 : 2032년 103억 2,000만 달러
CAGR(%) 14.29%

CRISPR의 과학적 기초와 번역적 궤적에 대한 간략한 개요.

CRISPR 툴킷은 분자생물학, 계산 설계, 번역 연구의 교차점에 위치하여 다양한 생물의 유전체을 정확하게 편집할 수 있습니다. 효소 공학, 가이드 RNA 최적화, 전달 방식, 스크리닝 플랫폼의 발전은 CRISPR을 실험실 기술에서 응용 생명과학의 핵심 역량으로 총체적으로 전환시켰습니다. 기초과학의 발견이 성숙함에 따라 연구기관과 기업들은 유전자 편집을 치료제, 농업 개량, 진단, 산업 바이오 가공에 적용하는 데 점점 더 많은 관심을 기울이고 있습니다.

이 소개에서는 성능과 채택을 뒷받침하는 기술적 기둥인 뉴클레아제 화학, 가이드 디자인, 시약 품질, 전달 전략에 초점을 맞추어 본 보고서의 조사 범위를 구성하였습니다. 또한, CRISPR을 규제 당국의 감시, 윤리적 논의, 공급망 역학 등 진화하는 생태계에 위치시키고 있습니다. 독자들은 연구, 제품 개발, 전략적 투자에서 정보에 입각한 선택을 지원하고, 분자 세부 사항과 상업적 현실의 균형을 맞추는 증거 기반 통합을 기대합니다.

뉴클레아제, 가이드 디자인, 전달 시스템의 기술적 진보가 CRISPR의 밸류체인과 도입 역학을 재정의하는 방법

CRISPR 기술의 상황은 효소의 다양화, 계산 가이드 디자인, 첨단 전달 시스템의 기술 혁신의 수렴으로 인해 크게 변화하고 있습니다. 새로운 뉴클레아제 및 염기 편집기로 인해 달성 가능한 편집 레퍼토리가 확대되고, 가이드 RNA 화학 및 알고리즘 설계의 발전으로 특이성이 향상되고 오프 타겟 효과가 감소했습니다. 이와 함께 지질 나노입자 제제, 리타겟팅 바이러스 벡터, 생체외 세포 변형 접근법 등의 전달 전략은 보다 광범위한 치료 및 농업에 적용이 가능해져 가치사슬을 재구성하고 있습니다.

동시에 조직적인 채용 패턴도 변화하고 있습니다. 학술 그룹, 생명공학 기업, 위탁 연구 기관, 제약 개발 기업들은 신약 개발, 세포 치료, 진단 분석, 균주 공학 파이프라인에 CRISPR을 통합하기 위해 자원을 재분배하고 있습니다. 임상 및 상업화 전문성과 플랫폼의 강점을 결합하기 위해 전략적 공동 연구 및 라이선싱 계약을 체결하는 것이 점점 더 보편화되고 있습니다. 윤리적 사용을 둘러싼 규제 프레임워크와 여론도 성숙해지고 있으며, 상장사들은 컴플라이언스, 투명성, 이해관계자 참여에 투자하고 책임감 있는 개발을 가속화하기 위해 노력하고 있습니다.

최근 미국의 관세 조치가 CRISPR 공급망, 조달, 제조 의사결정에 미치는 연쇄적인 업무 및 전략적 영향 평가

최근 미국이 시행한 관세 조치와 무역 정책 조정으로 인해 세계 CRISPR 공급망에 새로운 변수가 도입되어 시약, 장비, 아웃소싱 서비스 조달 전략에 영향을 미치고 있습니다. 수입 관세 인상 및 관련 규정 준수 요건은 국제적으로 조달되는 부품의 상륙 비용을 증가시키고, 연구 기관 및 제조업체에 관리 오버헤드를 유발할 수 있습니다. 이에 대응하기 위해 많은 이해관계자들은 공급업체와의 관계를 재검토하고, 공급처를 다른 지역으로 분산하고, 재고를 늘려 변동에 대비하고 있습니다.

관세 환경은 제조 및 서비스 활동의 전략적 입지 결정에도 영향을 미칩니다. 특수 효소, 가이드 RNA 합성, 키트 및 시약에 의존하는 기업들은 생산을 현지화하거나 관세 우대 지역 내 계약 제조업체와의 제휴를 포함한 대체 조달 모델을 개발하기 위한 노력을 가속화할 수 있습니다. 중요한 것은 누적된 영향은 가격 책정뿐만 아니라 계약 조건의 변경, 중요한 인풋의 리드타임 연장, 개발 프로그램의 타임라인 변경에까지 영향을 미칠 수 있다는 점입니다. 그 결과, 국제적으로 사업을 전개하는 조직은 공급망 투명성, 시나리오 계획, 연구의 연속성을 유지하면서 관세의 영향을 완화하는 계약 조항을 우선시하고 있습니다.

제품 및 서비스 포트폴리오, 제공 방식, 용도 분야, 최종 사용자 프로파일, 비즈니스 위험 및 전략적 우선순위를 연결하는 다차원적 세분화 분석

실용적인 세분화 관점을 통해 제공 서비스, 제공 방식, 용도, 최종 사용자에게 가치와 위험이 어디에 집중되어 있는지를 명확히 합니다. 제품 경로에는 효소, 가이드 RNA, 키트 및 시약과 같은 핵심 구성요소가 포함되며, 서비스에는 세포주 엔지니어링, gRNA 디자인 및 벡터 제작, 플랫폼의 가능성을 실험결과로 전환하는 스크리닝 서비스 등 실험실 기능이 포함됩니다. 플랫폼의 잠재력을 실험 결과로 변환하는 스크리닝 서비스 등의 실험실 기능이 포함됩니다. 이러한 서비스의 차이는 기업이 내부 역량에 대한 투자와 외주 전문 지식에 대한 투자의 우선순위를 결정하는 데 도움이 됩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 CRISPR 기술 시장 : 제공별

  • 제품
    • 효소
    • 가이드 RNA
    • 키트 및 시약
  • 서비스
    • 세포주 공학
    • gRNA 디자인&벡터 구축
    • 스크리닝 서비스

제9장 CRISPR 기술 시장 : 전달 방법별

  • 생체외
    • 세포주 변형
    • 1차 세포 변형
  • In vivo
    • 직접 편집
    • 나노입자 전달
    • 리타겟팅 벡터

제10장 CRISPR 기술 시장 : 용도별

  • 농업 용도
    • 가축 번식
    • 해충 저항성
  • 바이오메디컬 용도
    • Drug Discovery & Development
    • 유전자 치료
  • 진단
  • 산업 바이오테크놀러지
    • 바이오연료 생산
    • 미생물주 공학

제11장 CRISPR 기술 시장 : 최종사용자별

  • 학술기관 및 연구기관
  • 바이오테크놀러지 기업
  • 수탁 연구기관
  • 제약회사

제12장 CRISPR 기술 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 CRISPR 기술 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 CRISPR 기술 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • AgBiome Inc.
    • Agilent Technologies, Inc.
    • BASF SE
    • Bayer AG
    • Beam Therapeutics Inc.
    • Benson Hill Biosystems, Inc.
    • Caribou Biosciences, Inc.
    • Cibus Inc.
    • CRISPR Therapeutics AG
    • Danaher Corporation
    • Editas Medicine, Inc.
    • GeneCopoeia, Inc.
    • Genscript Biotech Corporation
    • Hera BioLabs
    • Intellia Therapeutics Inc.
    • Lonza Group Ltd.
    • Mammoth Biosciences, Inc.
    • Merck KGaA
    • Pairwise Foods Inc.
    • Qiagen NV
    • Revvity, Inc.
    • Syngenta AG
    • Thermo Fisher Scientific, Inc.
    • ToolGen Inc,
    • Yield10 Bioscience, Inc.
LSH 25.11.11

The CRISPR Technology Market is projected to grow by USD 10.32 billion at a CAGR of 14.29% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 3.54 billion
Estimated Year [2025] USD 4.02 billion
Forecast Year [2032] USD 10.32 billion
CAGR (%) 14.29%

A concise overview of CRISPR's scientific foundations and translational trajectory that frames technological pillars, regulatory context, and commercial relevance

The CRISPR toolkit sits at the intersection of molecular biology, computational design, and translational research, enabling precise edits of genomes across diverse organisms. Advancements in enzyme engineering, guide RNA optimization, delivery modalities, and screening platforms have collectively moved CRISPR from a laboratory technique into a core capability for applied life sciences. As basic science discoveries have matured, institutions and companies are increasingly focused on translating gene editing into therapeutics, agricultural improvements, diagnostics, and industrial bioprocessing.

This introduction frames the report's scope by highlighting the technical pillars-nuclease chemistry, guide design, reagent quality, and delivery strategies-that underpin performance and adoption. It also situates CRISPR within an evolving ecosystem of regulatory scrutiny, ethical debate, and supply chain dynamics. Readers should expect an evidence-based synthesis that balances molecular detail with commercial realities, supporting informed choices across research, product development, and strategic investment.

How converging technological advances in nucleases, guide design, and delivery systems are redefining the CRISPR value chain and adoption dynamics

The landscape of CRISPR technology is undergoing transformative shifts driven by converging innovations in enzyme diversification, computational guide design, and sophisticated delivery systems. New engineered nucleases and base editors have expanded the repertoire of achievable edits, while advances in guide RNA chemistry and algorithmic design are improving specificity and reducing off-target effects. In parallel, delivery strategies such as lipid nanoparticle formulations, retargeted viral vectors, and ex vivo cell modification approaches are enabling broader therapeutic and agricultural applications, thereby reshaping the value chain.

Concurrently, institutional adoption patterns are changing: academic groups, biotech companies, contract research organizations, and pharmaceutical developers are reallocating resources to integrate CRISPR into pipelines for drug discovery, cell therapies, diagnostic assays, and strain engineering. Strategic collaborations and licensing arrangements are increasingly common as organizations seek to combine platform strengths with clinical or commercialization expertise. Regulatory frameworks and public discourse around ethical use are also maturing, prompting companies to invest in compliance, transparency, and stakeholder engagement to accelerate responsible deployment.

Evaluating the cascading operational and strategic effects of recent United States tariff actions on CRISPR supply chains, procurement, and manufacturing decisions

Recent tariff measures and trade policy adjustments implemented by the United States have introduced new variables into global CRISPR supply chains, affecting procurement strategies for reagents, instruments, and outsourced services. Elevated import duties and related compliance requirements can increase landed costs for components sourced internationally and create administrative overhead for research organizations and manufacturers. In response, many stakeholders are reassessing supplier relationships, diversifying procurement to alternate geographies, and increasing inventories to buffer against volatility.

The tariff environment also influences strategic location decisions for manufacturing and service activities. Companies that rely on specialized enzymes, guide RNA synthesis, or kits and reagents may accelerate efforts to localize production or to develop alternative sourcing models, including partnerships with contract manufacturers within tariff-favored jurisdictions. Importantly, the cumulative impact extends beyond pricing: it reshapes contractual terms, lengthens lead times for critical inputs, and can alter timelines for development programs. Consequently, organizations with international operations are prioritizing supply chain transparency, scenario planning, and contract clauses that mitigate tariff exposure while preserving research continuity.

A multidimensional segmentation analysis linking product and service portfolios, delivery approaches, application areas, and end-user profiles to operational risks and strategic priorities

A practical segmentation perspective clarifies where value and risk concentrate across offerings, delivery modalities, applications, and end users. Based on offering, the landscape divides into Product and Services: Product pathways encompass core components such as enzymes, guide RNA, and kits & reagents, while Services include laboratory capabilities like cell line engineering, gRNA design & vector construction, and screening services that convert platform potential into experimental outcomes. These offering distinctions help organizations prioritize investments in in-house capabilities versus outsourced expertise.

Based on delivery method, distinctions between Ex Vivo and In Vivo approaches shape technical and regulatory requirements. Ex Vivo strategies further segment into cell line modification and primary cell modification, each with unique manufacturing, cell handling, and quality control needs. In Vivo delivery subdivides into direct editing, nanoparticle delivery, and retargeting vectors, where biodistribution, immunogenicity, and long-term expression profiles inform development choices. Based on application, CRISPR use cases span agricultural applications, biomedical applications, diagnostics, and industrial biotechnology; agricultural efforts include livestock breeding and pest resistance, biomedical efforts emphasize drug discovery & development and gene therapy, and industrial biotechnology focuses on biofuel production and microbial strain engineering. Based on end-user, demand originates from academic & research institutes, biotech companies, contract research organizations, and pharmaceutical companies, each bringing different procurement cycles, validation expectations, and collaboration models. Collectively, these segmentation lenses reveal where technical complexity, regulatory friction, and commercial opportunity overlap, guiding prioritization of capability building and partnership formation.

How regional regulatory environments, talent pools, and manufacturing hubs across the Americas, Europe Middle East & Africa, and Asia-Pacific shape CRISPR adoption and collaboration strategies

Regional dynamics influence talent access, regulatory pathways, supply chain resilience, and partnership ecosystems. In the Americas, home to large research universities, venture capital concentration, and established clinical trial infrastructures, there is strong momentum for therapeutic development and commercialization. The region's ecosystem tends to favor rapid translation of promising modalities into early-stage clinical work and to support deep collaborations between academic inventors and commercial partners.

Europe, Middle East & Africa present a heterogeneous environment where divergent regulatory regimes and public attitudes shape program design. Several European jurisdictions combine robust scientific capabilities with conservative regulatory evaluation, prompting companies to adopt deliberate engagement strategies and to invest in transparent safety data. Meanwhile, Middle Eastern and African markets show growing interest in agricultural and industrial biotechnology applications, with an emphasis on capacity building. Asia-Pacific exhibits a mix of rapid technical adoption, localized manufacturing strengths, and significant government-backed initiatives to support biotechnology. The region's expansive manufacturing base for reagents and instruments, coupled with advancing clinical capabilities, positions it as a critical node for both supply and collaborative development.

Insights into how reagent developers, service specialists, and strategic partners are structuring capabilities, alliances, and operational excellence to advance CRISPR programs

Key corporate behaviors illuminate how organizations translate technological capability into market traction. Established developers of core reagents and instruments continue to invest in enzyme engineering, reagent quality control, and scalable kit design to meet the demands of both research labs and regulated development programs. Parallel to this, specialized service providers are differentiating through integrated offerings that combine gRNA design, vector construction, and cell line engineering with high-throughput screening, enabling customers to compress discovery timelines.

Strategic alliances and licensing arrangements remain central to scaling complex therapeutic programs, with companies forming cross-sector partnerships to access clinical expertise, manufacturing capacity, or regulatory experience. Contract research organizations and contract manufacturing organizations demonstrate increasing vertical integration, offering end-to-end support from assay development through GMP production. Firms that prioritize robust quality management systems, transparent data packages, and regulatory engagement gain trust from pharmaceutical sponsors and academic collaborators, reinforcing their role in translational pipelines. Taken together, these behaviors underscore that commercial success hinges on technical excellence plus the operational capabilities to support regulated development pathways.

Actionable strategic priorities for industry leaders to build resilient capabilities, diversify supply chains, and accelerate responsible translation of CRISPR innovations

Leaders seeking sustainable advantage should adopt a balanced playbook that combines capability investment with risk mitigation. First, organizations should prioritize modular in-house capabilities for critical-path activities such as enzyme quality control and gRNA validation while outsourcing specialized or scale-dependent functions to trusted service providers. This hybrid approach preserves control over intellectual property and technical standards while enabling agility.

Second, proactively harden supply chains by diversifying suppliers across jurisdictions and by qualifying secondary sources for high-risk inputs. Third, invest in regulatory intelligence and early engagement with authorities to align study designs, safety assessments, and manufacturing controls with evolving expectations. Fourth, cultivate partnerships that pair scientific novelty with clinical or commercial experience, ensuring that platform innovations translate into viable products. Finally, embed data governance, reproducibility practices, and transparent reporting into R&D workflows to build credibility with regulators, funders, and the public. Together, these actions create a resilient foundation for scaling CRISPR-enabled initiatives responsibly and efficiently.

A rigorous mixed-methods research approach combining expert consultations, literature synthesis, and reproducibility-focused data validation to underpin actionable insights

The research methodology integrates primary engagement, expert interviews, and systematic literature synthesis to generate a rigorous, objective analysis. Primary engagement included structured consultations with technical leaders across academia, biotechnology firms, contract research organizations, and pharmaceutical developers to capture real-world operational constraints and evolving requirements. Expert interviews provided qualitative depth on enzyme innovations, delivery challenges, and regulatory trajectories, enabling the study to triangulate practitioner perspectives with documented evidence.

Secondary research encompassed peer-reviewed scientific literature, regulatory guidance documents, patent landscapes, and publicly disclosed corporate materials to map technological progress and institutional behavior. Data synthesis emphasized reproducibility, cross-validation of claims, and contextual interpretation of technical performance metrics. Throughout the process, methodological safeguards were applied to minimize bias, including diverse expert sampling and transparent citation of sources used to inform technical assessments. The resulting methodology supports conclusions that are actionable for scientific, operational, and strategic audiences.

A synthesis of CRISPR's maturation across scientific, operational, and regulatory dimensions that identifies enduring challenges and near-term enablers of translation

CRISPR technology has progressed from a transformative scientific discovery to a foundational platform with tangible translational pathways across therapeutics, agriculture, diagnostics, and industrial biotechnology. Progress in enzyme engineering, guide design, delivery modalities, and integrated services has reduced technical barriers, yet persistent challenges remain in delivery specificity, regulatory alignment, and supply chain resilience. As adoption broadens, the interplay of technical, regulatory, and commercial considerations will determine which applications reach clinical and market maturity first.

Looking forward, stakeholders that invest in robust quality systems, diversify procurement strategies, and engage early with regulatory authorities will be best positioned to convert platform capability into sustainable products. Moreover, strategic partnerships that combine deep technical expertise with clinical development capacity will accelerate translation while distributing risk. In sum, CRISPR stands as a high-impact platform whose realized value will depend on coordinated advances in science, operations, and governance.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Growth of CRISPR companies focusing on personalized medicine and rare genetic diseases
  • 5.2. Collaborative global research efforts accelerating CRISPR technology commercialization
  • 5.3. Integration of AI and machine learning to optimize CRISPR gene-editing outcomes
  • 5.4. CRISPR applications in creating sustainable biofuels and industrial bioproducts
  • 5.5. Innovations in delivery systems improving CRISPR component targeting and efficiency
  • 5.6. Regulatory challenges and ethical considerations shaping CRISPR clinical trial approvals
  • 5.7. Development of CRISPR tools targeting complex genetic disorders with increased efficacy
  • 5.8. Expansion of CRISPR technology in agricultural biotechnology for crop improvement
  • 5.9. Emergence of CRISPR-based diagnostics driving rapid and accurate disease detection
  • 5.10. Advancements in prime editing techniques enhancing CRISPR precision for therapeutic applications

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. CRISPR Technology Market, by Offering

  • 8.1. Product
    • 8.1.1. Enzymes
    • 8.1.2. Guide RNA
    • 8.1.3. Kits & Reagents
  • 8.2. Services
    • 8.2.1. Cell Line Engineering
    • 8.2.2. gRNA Design & Vector Construction
    • 8.2.3. Screening Services

9. CRISPR Technology Market, by Delivery Method

  • 9.1. Ex Vivo
    • 9.1.1. Cell Line Modification
    • 9.1.2. Primary Cell Modification
  • 9.2. In Vivo
    • 9.2.1. Direct Editing
    • 9.2.2. Nanoparticle Delivery
    • 9.2.3. Retargeting Vectors

10. CRISPR Technology Market, by Application

  • 10.1. Agricultural Applications
    • 10.1.1. Livestock Breeding
    • 10.1.2. Pest Resistance
  • 10.2. Biomedical Applications
    • 10.2.1. Drug Discovery & Development
    • 10.2.2. Gene Therapy
  • 10.3. Diagnostics
  • 10.4. Industrial Biotechnology
    • 10.4.1. Biofuel Production
    • 10.4.2. Microbial Strain Engineering

11. CRISPR Technology Market, by End-User

  • 11.1. Academic & Research Institutes
  • 11.2. Biotech Companies
  • 11.3. Contract Research Organizations
  • 11.4. Pharmaceutical Companies

12. CRISPR Technology Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. CRISPR Technology Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. CRISPR Technology Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. AgBiome Inc.
    • 15.3.2. Agilent Technologies, Inc.
    • 15.3.3. BASF SE
    • 15.3.4. Bayer AG
    • 15.3.5. Beam Therapeutics Inc.
    • 15.3.6. Benson Hill Biosystems, Inc.
    • 15.3.7. Caribou Biosciences, Inc.
    • 15.3.8. Cibus Inc.
    • 15.3.9. CRISPR Therapeutics AG
    • 15.3.10. Danaher Corporation
    • 15.3.11. Editas Medicine, Inc.
    • 15.3.12. GeneCopoeia, Inc.
    • 15.3.13. Genscript Biotech Corporation
    • 15.3.14. Hera BioLabs
    • 15.3.15. Intellia Therapeutics Inc.
    • 15.3.16. Lonza Group Ltd.
    • 15.3.17. Mammoth Biosciences, Inc.
    • 15.3.18. Merck KGaA
    • 15.3.19. Pairwise Foods Inc.
    • 15.3.20. Qiagen NV
    • 15.3.21. Revvity, Inc.
    • 15.3.22. Syngenta AG
    • 15.3.23. Thermo Fisher Scientific, Inc.
    • 15.3.24. ToolGen Inc,
    • 15.3.25. Yield10 Bioscience, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제