시장보고서
상품코드
1857813

목재 바이오 제품 시장 : 제품, 가공 기술, 원료 공급원, 용도, 최종사용자, 판매 채널별 - 세계 예측(2025-2032년)

Wood Bio-Products Market by Product, Processing Technology, Raw Material Source, Application, End-User, Sales Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

목재 바이오 제품 시장은 2032년까지 CAGR 7.60%로 2,733억 5,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 1,520억 9,000만 달러
추정연도 2025 1,628억 8,000만 달러
예측연도 2032 2,733억 5,000만 달러
CAGR(%) 7.60%

원료 혁신의 가공 옵션과 최종사용자 수요의 변화로 인해 목재 바이오 제품의 가치 제안이 어떻게 재정의되고 있는지를 프레임워크화한 권위 있는 소개서

목재 바이오 제품 부문은 원료 활용, 가공 기술, 산업 전반에 걸친 채택의 발전으로 인해 틈새 실험에서 지속가능한 산업 전략의 필수적인 요소로 전환하고 있습니다. 이 소개에서는 이 부문의 현대적 배경, 투자자의 관심에 영향을 미치는 요인, 그리고 새로운 비즈니스 기회를 포착하기 위해 조직을 포지셔닝할 때 고위 리더가 고려해야 할 전략적 사항에 대해 간략히 설명합니다. 또한 제품 혁신, 물류의 복잡성, 규제 변화, 최종사용자 니즈의 진화가 어떻게 수렴하여 경쟁 역학을 재구성하고 있는지를 설명함으로써 후속 분석의 틀을 구축합니다.

최근 탄소 성능, 자원 순환성, 재생한 입력 스트림에 대한 관심으로 인해 목재 유래 바이오화학, 바이오 복합재, 바이오연료, 바이오폴리머 및 바이오플라스틱은 실험적인 결과물에서 다양한 밸류체인에서 실행 가능한 대체품으로 발전하고 있습니다. 다양한 밸류체인에서 실행 가능한 대안으로 승화되고 있습니다. 동시에, 업스트림로부터의 조달은 농업 잔류물, 산림 잔류물, 산업 잔류물까지 확대되어 원료 조달의 탄력성과 복잡성을 모두 창출하고 있습니다. 처리 경로는 기계적 분쇄에서 화학적 처리까지 다양하며, 기술 선택은 비용 구조, 제품 품질, 환경 강도를 점점 더 많이 규정하고 있습니다.

이 인트로는 현실적인 기조를 강조하고 있습니다. 기회는 크지만, 이를 실현하기 위해서는 엄격한 공급망 관리, 기술 검증, 그리고 농업, 산업, 주거 부문의 최종사용자 요구 사항과의 조율이 필요합니다. 다음 장에서는 이러한 토대 위에 변혁적 시장 세력, 관세의 영향, 세분화 인사이트, 지역 역학, 기업 전략, 실행 가능한 권장 사항, 그리고 이러한 결론을 도출하기 위해 사용한 연구 접근법을 검토합니다.

규제 모멘텀과 기술 성숙도, 이종 산업 간 제휴가 상업적 채택을 가속화하고 경쟁 역학을 재구성하는 방법

규제 강화, 기술 성숙, 자본의 흐름이 하나로 합쳐져 채택을 가속화하는 가운데, 목재 바이오 제품의 상황은 변화의 시기를 맞이하고 있습니다. 탈탄소화 및 순환성에 중점을 둔 정책적 신호는 화석연료 투입물의 대체를 촉진하고, 기업의 전과정 배출량 감축에 대한 약속은 다운스트림 구매자들의 관심을 불러일으키고 있습니다. 이러한 힘은 화학적 처리 기술과 기계적 분쇄 기술의 발전으로 수율이 향상되고, 에너지 소비가 감소하고, 제품 등급의 폭이 넓어지는 가공 기술의 개선으로 보완됩니다.

동시에 바이오화학, 바이오복합재, 바이오연료, 바이오폴리머, 바이오플라스틱 등의 제품 혁신으로 대응 가능한 용도가 확대되고 있습니다. 바이오화학은 고부가가치 특수 용도를 위해 배합되고, 바이오 복합재료는 구조적 및 반구조적 용도로 전환되고 있으며, 바이오연료는 운송 탈탄소화 경로가 우선시되는 가운데 견인력을 얻고 있고, 바이오폴리머는 일회용 플라스틱 의존도를 줄일 수 있는 유망 경로를 제공합니다. 동시에 농업 잔류물, 산림 잔류물, 산업 잔류물을 이용하는 공급측의 다양성은 원료의 표준화와 물류의 장애물을 높이고, 단일 공급 부족에 대한 영향을 완화하는 데 도움이 됩니다.

투자자와 기업의 전략도 이에 발맞추어 변화하고 있습니다. 자본 투자는 기존 사업 및 기존 판매 채널과의 통합을 위한 명확한 경로를 가진 스케일업 프로젝트에 집중되고 있습니다. 기술 개발자, 원료 공급업체, 최종사용자 간의 파트너십은 탈위험 상용화를 위한 우선적인 경로가 되고 있습니다. 이러한 변화를 종합하면 생태계는 파일럿 및 실증 단계에서 선택적 규모로 이동하고 있지만, 성공 여부는 지속적인 기술 검증, 규제 명확화, 견고한 공급망 설계에 달려있습니다.

2025년 관세 환경은 전략적 공급망 재편과 공급처 다변화를 촉진하는 동시에 투자 우선순위와 무역 경로 결정을 재구성했습니다.

2025년 미국의 정책 조치로 인한 관세 조정은 목재 바이오 제품 및 관련 원료의 세계 무역 흐름에 다각적인 영향을 미치고, 가격 책정, 공급망 경로, 전략적 조달 결정에 영향을 미쳤습니다. 관세의 변화는 수입품과 국산 원자재의 상대적 경쟁력을 변화시켰고, 기업으로 하여금 조달 전략을 재평가하고 가능하면 니어쇼어링을 가속화하도록 유도했습니다. 일부 생산자들은 비용 경쟁력과 계약상의 약속을 유지하기 위해 대체 항구를 통해 운송을 변경하거나 유리한 무역 조건이 있는 지역에서 조달하는 것이 당장의 대응책이 되었습니다.

관세는 당장의 무역 영향에 그치지 않고, 장기적인 공급망 설계의 재검토를 촉구했습니다. 수직적으로 통합된 밸류체인을 가진 기업은 관세의 영향을 더 효과적으로 흡수하고 완화할 수 있는 것으로 나타났지만, 중간 공급망에 의존하는 시장 진출기업은 비용 변동에 더 큰 영향을 받는 것으로 나타났습니다. 이러한 역학관계는 공급업체 다변화를 더욱 강조하고, 관세 통과 조항과 돌발상황에 대한 대응 메커니즘을 포함한 공급업체 협정을 공식화하도록 유도했습니다.

관세로 인한 혼란은 투자 결정에도 영향을 미쳤습니다. 자본 배분은 국내 가공 능력의 확대와 관세의 영향을 받기 쉬운 수입 원료에 대한 의존도를 낮추는 기술에 대한 투자를 점점 더 선호하게 되었습니다. 동시에, 국경 간 합작 투자 및 라이선스 계약은 관세상의 불리한 결과를 초래하지 않고 시장 접근을 유지하기 위한 수단으로 더욱 매력적으로 다가왔습니다. 전반적으로 2025년 정책 환경은 공급망 강건성 구축과 부문 전반의 전략적 재편에 촉매제 역할을 했습니다.

제품 카테고리의 가공 선택과 최종사용자 채널을 차별화된 상품화 경로와 가치 창출로 연결, 실용적인 세분화 인사이트를 제공

부문 수준의 역학은 가치 창출이 가장 가능성이 높은 곳을 나타내는 차별화된 궤도를 보여줍니다. 제품별로 바이오화학, 바이오복합재, 바이오연료, 바이오폴리머-바이오플라스틱은 개발 노력과 상업적 견인력이 다르며, 각 제품 카테고리는 기술적 복잡성, 규제 수용성, 최종사용자의 준비 정도에 따라 자체적인 상업화 리듬을 따르고 있습니다. 처리 기술에 따라 화학적 처리와 기계적 분쇄의 선택은 자본 집약도, 운영 프로파일 및 대응 가능한 다운스트림 용도를 결정하는 중요한 변곡점입니다. 원료공급원에 따라 농업잔재, 산림잔재, 산업잔재 등을 활용하기 위해서는 공급업체와의 관계와 상품 비용에 영향을 미치는 고유한 물류, 품질 보증, 지속가능성 검증 프로토콜이 필요합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 목재 바이오 제품 시장 : 제품별

  • 바이오케미컬
  • 바이오 복합재료
  • 바이오연료
  • 바이오폴리머 & 바이오플라스틱

제9장 목재 바이오 제품 시장 : 가공 기술별

  • 화학 처리
  • 기계적 분쇄

제10장 목재 바이오 제품 시장 : 원재료별

  • 농업잔사
  • 삼림 잔사
  • 산업용 잔사

제11장 목재 바이오 제품 시장 : 용도별

  • 동물 사료
  • 건설
  • 에너지 생산
  • 섬유 산업

제12장 목재 바이오 제품 시장 : 최종사용자별

  • 농업 부문
  • 산업 부문
  • 주택 소비자

제13장 목재 바이오 제품 시장 : 판매 채널별

  • 직접 판매
  • 판매업체

제14장 목재 바이오 제품 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 목재 바이오 제품 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 목재 바이오 제품 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Billerud AB
    • Bio Diversity LLC
    • Canfor Corporation
    • Celulosa Arauco y Constitucion
    • Craste
    • Domtar Corporation
    • Ekman & Co AB
    • Enviva Inc.
    • FORAY bioscience, Inc.
    • Georgia-Pacific LLC by Koch Industries, Inc.
    • Hanwha Corporation
    • HS Timber Group
    • JELD-WEN, Inc.
    • KCC Corporation
    • Klabin S.A.
    • Kruger Inc.
    • Louisiana-Pacific Corporation
    • Mercer International Inc.
    • Metsa Group
    • Nine Dragons Paper Holdings Limited
    • Nippon Paper Industries Co., Ltd.
    • Rayonier Advanced Materials Inc.
    • Sappi Limited
    • Sonae Arauco Deutschland GmbH
    • Stora Enso Oyj
    • Sumitomo Forestry Co., Ltd.
    • Suzano SA
    • Sodra, SE
    • Tolko Industries Ltd.
    • UFP Industries, Inc.
    • UPM-Kymmene Corporation
    • Viru Keemia Grupp
    • West Fraser Timber Co. Ltd.
    • Weyerhaeuser Company
    • Woodoo
KSA 25.11.13

The Wood Bio-Products Market is projected to grow by USD 273.35 billion at a CAGR of 7.60% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 152.09 billion
Estimated Year [2025] USD 162.88 billion
Forecast Year [2032] USD 273.35 billion
CAGR (%) 7.60%

An authoritative introduction framing how feedstock innovation processing options and shifting end-user demands are redefining the wood bio-products value proposition

The wood bio-products sector is transitioning from niche experimentation to an integral component of sustainable industrial strategies, driven by advances in feedstock utilization, processing technologies, and cross-industry adoption. This introduction outlines the sector's contemporary context, the forces influencing investor interest, and the strategic considerations that senior leaders must weigh when positioning organizations to capture emergent opportunities. It frames the subsequent analysis by describing how product innovation, logistics complexity, regulatory shifts, and evolving end-user needs are converging to reshape competitive dynamics.

In recent years, attention to carbon performance, resource circularity, and renewable input streams has elevated wood-derived biochemicals, biocomposites, biofuels, and biopolymers and bioplastics from experimental outputs to viable alternatives in diverse value chains. Simultaneously, upstream sourcing has broadened to incorporate agricultural residues, forest residues, and industrial residues, which has created both resilience and complexity in raw material availability. Processing pathways range from mechanical milling to chemical treatment, and the choice of technology increasingly defines cost structure, product quality, and environmental intensity.

This introduction sets a pragmatic tone: opportunities are substantial, but realization requires rigorous supply chain management, technology validation, and alignment with end-user requirements across agricultural, industrial, and residential sectors. The following sections build on this foundation by examining transformative market forces, tariff impacts, segmentation insights, regional dynamics, company strategies, actionable recommendations, and the research approach used to develop these conclusions.

How regulatory momentum technology maturation and cross-industry partnerships are accelerating commercial adoption and reshaping competitive dynamics

The landscape for wood bio-products is undergoing transformative shifts as regulatory ambition, technological maturation, and capital flows align to accelerate adoption. Policy signals focused on decarbonization and circularity are incentivizing substitution of fossil-derived inputs, while corporate commitments to lowered lifecycle emissions are generating pull from downstream buyers. These forces are complemented by improvements in processing technology where advances in chemical treatment techniques and mechanical milling have increased yields, reduced energy consumption, and broadened the spectrum of viable product grades.

Concurrently, product innovation across biochemicals, biocomposites, biofuels, and biopolymers and bioplastics is expanding addressable applications. Biochemicals are being formulated for higher-value specialty uses, biocomposites are moving into structural and semi-structural applications, biofuels are gaining traction where decarbonization pathways for transport are prioritized, and biopolymers offer promising routes to reduce single-use plastics dependency. At the same time, supply-side diversity that draws on agricultural residues, forest residues, and industrial residues is helping cushion exposure to single-stream shortages, though it raises the bar for feedstock standardization and logistics.

Investor and corporate strategies are shifting in response: capital deployment is increasingly directed at scale-up projects with clear pathways to integration with existing operations or established sales channels. Partnerships between technology developers, feedstock suppliers, and end-users are becoming the preferred route to derisk commercialization. Taken together, these shifts point to an ecosystem that is moving from pilot and demonstration phases into selective scale, but success will depend on continued technology validation, regulatory clarity, and robust supply chain design.

The 2025 tariff environment catalyzed strategic supply chain realignment and sourcing diversification while reshaping investment priorities and trade routing decisions

In 2025, tariff adjustments originating from United States policy measures exerted a multifaceted influence on global trade flows for wood bio-products and related feedstocks, affecting pricing, supply chain routing, and strategic sourcing decisions. Tariff changes altered the relative competitiveness of imports versus domestically produced inputs, prompting companies to re-evaluate procurement strategies and to accelerate nearshoring where feasible. For some producers, the immediate response involved rerouting shipments through alternative ports or sourcing from regions with favorable trade terms to preserve cost competitiveness and contractual commitments.

Beyond immediate transactional impacts, tariffs prompted a reassessment of longer-term supply chain design. Firms with vertically integrated value chains found they could absorb or mitigate tariff effects more effectively, while market participants reliant on intermediated supply networks faced higher exposure to cost volatility. These dynamics encouraged greater emphasis on supplier diversification and on formalizing supplier agreements that include tariff pass-through clauses and contingency mechanisms.

Tariff-driven disruption also influenced investment decisions. Capital allocations increasingly favored domestic processing capacity expansions and investments in technologies that reduce dependence on tariff-sensitive imported inputs. Simultaneously, cross-border joint ventures and licensing arrangements gained appeal as a means to maintain market access without triggering adverse tariff consequences. Overall, the policy environment in 2025 served as a catalyst for supply chain resilience-building and strategic realignment across the sector.

Actionable segmentation insights that link product categories processing choices and end-user channels to differentiated commercialization pathways and value capture

Segment-level dynamics reveal differentiated trajectories that inform where value creation is most likely to occur. Based on Product, development efforts and commercial traction are distinct between biochemicals, biocomposites, biofuels, and biopolymers and bioplastics, with each product category following its own commercialization rhythm driven by technical complexity, regulatory acceptance, and end-user readiness. Based on Processing Technology, choices between chemical treatment and mechanical milling are critical inflection points that determine capital intensity, operating profile, and the downstream applications that can be served. Based on Raw Material Source, leveraging agricultural residues, forest residues, and industrial residues requires tailored logistics, quality assurance, and sustainability verification protocols that influence supplier relationships and cost of goods.

Based on Application, demand elasticity varies across uses such as animal feed, construction, energy production, and textile industry applications; each application imposes different performance, purity, and certification requirements that shape product specifications and go-to-market approaches. Based on End-User, alignment with the agricultural sector, industrial sector, and residential consumers requires distinct value propositions, contractual frameworks, and distribution relationships, affecting how products are commercialized and scaled. Based on Sales Channel, the choice between direct sales and distributors shapes margins, customer intimacy, and the speed of market penetration.

Taken together, these segmentation lenses indicate that winning strategies will be highly contingent on aligning product development, processing investments, and sales models with the unique demands of targeted applications and end-users. Success will favor organizations that can modularize technology platforms, standardize feedstock inputs, and tailor commercial models to specific channel and customer requirements.

Regional strategic distinctions that reveal how policy nuance feedstock availability and end-user demand shape commercial opportunities across global markets

Regional dynamics are shaping opportunity windows and risk profiles in materially different ways across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, integration with established forestry and agricultural supply chains, combined with policy incentives for renewable fuels and circular materials, supports expansion of both feedstock sourcing and downstream processing. North-South intra-regional trade continues to be important, and proximity to large end markets for construction materials and advanced biofuels creates demand pull for scaled production.

In Europe, Middle East & Africa, regulatory frameworks emphasizing circular economy principles and stricter plastics directives are driving demand for biopolymers and bioplastics, while a complex regulatory patchwork necessitates careful compliance strategies. Investment in pilot facilities and public-private partnerships remains a distinguishing feature of the region. Regulatory incentives and sustainability standards are prompting supply chain scrutiny and higher expectations for traceability, particularly where agricultural residues and forest residues are sourced.

Asia-Pacific presents a dynamic mix of high-volume manufacturing demand and rapidly evolving policy environments. Strong growth in textile and packaging applications is increasing uptake of biopolymers and bioplastics, while the availability of diverse agricultural residues offers feedstock scalability. Trade exposure and logistics constraints vary by subregion, so companies prioritizing Asia-Pacific must balance speed to market with robustness in quality control and supplier governance. Across regions, localized strategies that account for policy nuance, feedstock availability, and end-use demand patterns will determine competitive positioning.

Competitive company strategies centered on feedstock control technology partnerships and portfolio balance that drive accelerated commercialization and durable advantage

Company strategies in the wood bio-products arena are converging around a set of tactical priorities that include vertical integration, strategic partnerships, and technology consolidation. Leading firms are seeking to secure upstream feedstock access through long-term supplier agreements and by investing in collection and preprocessing infrastructure that standardizes input quality. At the same time, players are evaluating processing platform choices, with some firms opting to internalize advanced chemical treatment capabilities while others pursue licensing or co-location agreements to access specialized mechanical milling expertise.

Corporate portfolios are being calibrated to balance near-term revenue-generating applications like commodity-grade biofuels and animal feed derivatives with higher-margin, technology-intensive offerings such as specialty biochemicals and biopolymers for technical applications. Collaboration models vary from joint development to equity investments in technology providers, enabling faster deployment while sharing commercialization risk. Additionally, firms that prioritize lifecycle transparency and third-party sustainability verification are enhancing trust with industrial buyers and regulators.

Competitive advantage increasingly depends on operational excellence and commercial agility: companies that can optimize logistics, compress time-to-quality validation, and secure distribution relationships will be better positioned to convert technical capability into sustained market presence. Ultimately, the cohort of companies that combine integrated supply chains with targeted product differentiation will lead the next wave of commercial scale-up.

High-impact and practical recommendations for leaders to secure feedstock resilience scale processing capabilities and align commercial models with rigorous sustainability expectations

Industry leaders must adopt decisive actions to capitalize on momentum and mitigate systemic risks. First, prioritize feedstock security by diversifying sources across agricultural residues, forest residues, and industrial residues, and by establishing preprocessing hubs that harmonize quality. Second, select processing technologies strategically: invest in complementary capabilities where chemical treatment and mechanical milling can be deployed in tandem to expand product scope and improve margins. Third, embed sustainability metrics into procurement and product development to meet regulatory expectations and buyer preferences, ensuring traceability and third-party verification are standard practice.

Next, structure commercial approaches to align with specific application needs, tailoring product specifications and contractual terms for customers in the agricultural sector, industrial sector, and residential consumers. Develop flexible sales channel strategies that combine direct sales for strategic accounts with distributor networks to accelerate regional penetration. Additionally, engage proactively with policymakers and standards bodies to shape practical regulations and certification frameworks that support scaled deployment while preserving environmental integrity.

Finally, invest in workforce capability and operational digitalization to drive process optimization, predictive maintenance, and quality control. By executing these actions in concert, leaders can reduce time-to-market, enhance resilience to trade disruptions, and create defensible positions within high-value segments of the wood bio-products ecosystem.

A transparent and rigorous research approach combining primary stakeholder interviews technology validation and supply chain mapping to underpin strategic insights

The research underpinning this analysis integrates primary and secondary evidence to produce a robust, defensible perspective on the wood bio-products sector. Primary inputs included interviews with industry executives, technology developers, feedstock suppliers, and end-users across agricultural, industrial, and residential domains, providing qualitative insights into operational bottlenecks, procurement strategies, and adoption barriers. Secondary inputs drew on public policy documents, technology validation studies, independent lifecycle assessments, and logistics and trade data to triangulate observed trends and to ensure factual accuracy.

Analytical methods combined scenario analysis with supply chain mapping to surface plausible responses to policy and tariff shifts, while thematic coding of interview transcripts allowed identification of recurring commercial strategies and pain points. Attention was given to technology readiness levels for processing approaches such as chemical treatment and mechanical milling, and to the practical constraints of incorporating agricultural residues, forest residues, and industrial residues at scale. Where possible, assertions were cross-validated against multiple sources to minimize bias and to ensure that conclusions reflect the prevailing technical and commercial realities.

Limitations are acknowledged: rapidly evolving policy regimes and localized feedstock dynamics introduce uncertainty that requires ongoing monitoring. Nevertheless, by emphasizing transparent methodologies and traceable evidence, the research provides a reliable foundation for strategic decision-making and for targeted follow-up analysis tailored to specific corporate contexts.

A conclusive synthesis highlighting the strategic imperatives required to convert technological advances and policy momentum into sustainable commercial outcomes

In conclusion, the wood bio-products landscape stands at a pivotal juncture where technical progress, policy incentives, and changing buyer expectations are aligning to create tangible commercial pathways. Success will depend on translating technological promise into reliable, cost-effective production and on aligning product specifications with the distinct requirements of applications such as animal feed, construction, energy production, and textile uses. Firms that secure diversified feedstock sources and that make deliberate processing technology choices will be better placed to navigate trade dynamics and regulatory complexity.

Strategic imperatives include strengthening supplier relationships, investing in preprocessing and quality assurance, and developing sales models that reflect the needs of agricultural, industrial, and residential customers. Moreover, companies must remain adaptive to regional differences that affect policy, logistics, and demand, from the Americas to Europe, Middle East & Africa, and Asia-Pacific. By following an integrated approach that balances operational rigor with commercial focus and sustainability transparency, industry participants can accelerate adoption and unlock durable value across multiple segments.

The path forward is not uniform, but it is navigable for organizations that combine technical excellence with disciplined commercial execution and proactive engagement with policy and market stakeholders.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Increasing investment in large-scale biorefinery plants integrating wood biomass conversion technologies
  • 5.2. Advances in enzymatic hydrolysis processes enhancing yield of bioethanol from wood residues
  • 5.3. Rising adoption of wood-based biochar for soil amendment in sustainable agriculture practices
  • 5.4. Development of lignin-derived aromatic chemicals as renewable substitutes for petroleum-based products
  • 5.5. Collaboration between forestry companies and bioplastic manufacturers to scale up wood polymer materials
  • 5.6. Optimization of fast pyrolysis technology to produce high-quality bio-oil from softwood and hardwood feedstocks
  • 5.7. Implementation of catalytic fractionation for simultaneous extraction of cellulose, hemicellulose and lignin streams

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Wood Bio-Products Market, by Product

  • 8.1. Biochemicals
  • 8.2. Biocomposites
  • 8.3. Biofuels
  • 8.4. Biopolymers & Bioplastics

9. Wood Bio-Products Market, by Processing Technology

  • 9.1. Chemical Treatment
  • 9.2. Mechanical Milling

10. Wood Bio-Products Market, by Raw Material Source

  • 10.1. Agricultural Residues
  • 10.2. Forest Residues
  • 10.3. Industrial Residues

11. Wood Bio-Products Market, by Application

  • 11.1. Animal Feed
  • 11.2. Construction
  • 11.3. Energy Production
  • 11.4. Textile Industry

12. Wood Bio-Products Market, by End-User

  • 12.1. Agricultural Sector
  • 12.2. Industrial Sector
  • 12.3. Residential Consumers

13. Wood Bio-Products Market, by Sales Channel

  • 13.1. Direct Sales
  • 13.2. Distributors

14. Wood Bio-Products Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Wood Bio-Products Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Wood Bio-Products Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Billerud AB
    • 17.3.2. Bio Diversity LLC
    • 17.3.3. Canfor Corporation
    • 17.3.4. Celulosa Arauco y Constitucion
    • 17.3.5. Craste
    • 17.3.6. Domtar Corporation
    • 17.3.7. Ekman & Co AB
    • 17.3.8. Enviva Inc.
    • 17.3.9. FORAY bioscience, Inc.
    • 17.3.10. Georgia-Pacific LLC by Koch Industries, Inc.
    • 17.3.11. Hanwha Corporation
    • 17.3.12. HS Timber Group
    • 17.3.13. JELD-WEN, Inc.
    • 17.3.14. KCC Corporation
    • 17.3.15. Klabin S.A.
    • 17.3.16. Kruger Inc.
    • 17.3.17. Louisiana-Pacific Corporation
    • 17.3.18. Mercer International Inc.
    • 17.3.19. Metsa Group
    • 17.3.20. Nine Dragons Paper Holdings Limited
    • 17.3.21. Nippon Paper Industries Co., Ltd.
    • 17.3.22. Rayonier Advanced Materials Inc.
    • 17.3.23. Sappi Limited
    • 17.3.24. Sonae Arauco Deutschland GmbH
    • 17.3.25. Stora Enso Oyj
    • 17.3.26. Sumitomo Forestry Co., Ltd.
    • 17.3.27. Suzano SA
    • 17.3.28. Sodra, SE
    • 17.3.29. Tolko Industries Ltd.
    • 17.3.30. UFP Industries, Inc.
    • 17.3.31. UPM-Kymmene Corporation
    • 17.3.32. Viru Keemia Grupp
    • 17.3.33. West Fraser Timber Co. Ltd.
    • 17.3.34. Weyerhaeuser Company
    • 17.3.35. Woodoo
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제