시장보고서
상품코드
1857875

봉지제 시장 : 유형, 용도, 최종 용도 산업, 형태, 경화 방법별 - 세계 예측(2025-2032년)

Encapsulants Market by Type, Application, End Use Industry, Form, Curing Method - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 183 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

봉지제 시장은 2032년까지 CAGR 6.53%로 24억 2,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 14억 6,000만 달러
추정연도 2025 15억 6,000만 달러
예측연도 2032 24억 2,000만 달러
CAGR(%) 6.53%

기술적 트레이드 오프, 법적 규제 압력, 전략적 조달 고려 사항, 인캡슐레이션 재료 및 제조 역학에 대한 종합적인 방향 제시

밀봉재는 기계적 스트레스, 습기 침투, 열 순환, 화학 물질에 대한 노출로부터 부품을 보호하는 동시에 점점 더 컴팩트하고 신뢰할 수 있는 시스템을 구현하는 현대 전자제품 조립에서 기본적인 역할을 하고 있습니다. 디바이스가 소형화되고 집적도가 높아짐에 따라 엔지니어는 실장 솔루션을 선택할 때 기계적 보호, 열 관리, 광학 특성, 제조 가능성 등 여러 가지 우선순위를 균형 있게 고려해야 합니다. 이러한 재료들은 현재 전통적 성능 지표뿐만 아니라 자동분주 적합성, 재가공성, 가혹한 사용 환경에서의 장기적인 신뢰성으로 평가되고 있습니다.

이러한 배경에서 제형 기술 혁신은 점진적인 성능 격차에서 특정 조립 문제에 대한 타겟팅된 솔루션으로 전환되고 있습니다. 예를 들어 다양한 기질에 대한 접착력을 유지하면서 고유한 탄성을 구현하는 폴리머는 새로운 포장 아키텍처를 가능하게 합니다. 한편, 퓨어 케미스트리와 하이브리드 시스템의 발전은 생산 라인의 사이클 시간을 단축하고 에너지 수요를 감소시키고 있습니다. 그 결과, 조달 및 제품 개발 의사결정자는 재료의 특성, 가공 제약, 최종 용도 요구사항에 대한 미묘한 관점을 가지고 선행 가공 비용과 수명주기 성능 사이에서 정보에 입각한 절충을 해야 합니다.

이와 함께 규제 프레임워크와 환경에 대한 기대치도 변화하고 있습니다. 재료 선택은 특정 화학물질에 대한 제한, 공급업체의 투명성 의무, 기업의 지속가능성 목표의 영향을 점점 더 많이 받고 있습니다. 이러한 광범위한 배경에서 추적성, 공급업체 감사 가능성, 컴플라이언스 및 순환성 목표를 충족시키면서 성능을 유지할 수 있는 효과적인 대체 화학물질의 중요성이 커지고 있습니다. 따라서 인캡슐레이션제의 종합적인 평가는 기술 성능, 제조 적합성, 규제 태도, 공급망 강인성을 통합하여 견고하고 미래지향적인 제품 전략을 지원해야 합니다.

재료 혁신, 첨단 제조, 지속가능성에 대한 기대가 캡슐제 선택, 적격성 평가, 공급 전략을 어떻게 재정의하고 있는가?

인캡슐레이션의 상황은 재료 과학의 혁신, 제조 자동화, 최종사용자 기대치의 진화에 걸친 일련의 혁신적인 변화로 인해 재구성되고 있습니다. 새로운 화학 물질과 하이브리드 배합은 다기능 성능의 바늘을 움직여 열전도성, 기계적 감쇠, 광학 투명성을 동시에 해결할 수 있는 재료를 가능하게 합니다. 이러한 발전은 소형화와 고출력 밀도가 수렴하고, 전기적 절연을 유지하면서 열을 관리할 수 있는 봉지재에 대한 요구가 발생하는 상황에서 특히 중요한 의미를 갖습니다.

제조 혁신으로 인해 정밀 주입, 인라인 경화, 고급 품질 검사 기술의 채택이 가속화되고 있으며, 이를 통해 편차가 감소하고 처리량이 향상되고 있습니다. 그 결과, 제품 설계자들은 특수 밀봉제 배합을 보다 적극적으로 지정하게 되었고, 제조 생태계는 이를 대규모로 안정적으로 구현할 수 있게 되었습니다. 또한 디지털화 및 공정 분석은 재료 특성과 현장 성능의 상관관계를 더욱 긴밀하게 만들어 공급업체와 OEM이 데이터베이스 검증을 통해 인증 주기를 단축할 수 있도록 돕고 있습니다.

동시에 지속가능성은 성능과 함께 소재 선택의 기준으로 떠오르고 있습니다. 공급망 전반의 이해관계자들은 저배출 제조 공정, 규제 물질 사용 감소, 사용 후 옵션 개선을 요구하고 있습니다. 따라서 공급업체들은 보다 친환경적인 경화제, 재활용 또는 재가공이 가능한 시스템, 재료 성분의 투명한 공개에 대한 투자를 장려하고 있습니다. 이러한 추세의 합류는 시장이 원료의 성능 위주에서 화학적 특성, 가공 적합성, 규제 명확성, 수명주기 영향 등을 결합한 통합적 제안으로 진화하고 있음을 의미합니다.

2025년 미국 관세 개정이 변화하는 무역 체제 하에서 캡슐제 조달, 공급망 복원력, 전략적 조달 계획에 미치는 다각적인 영향

2025년 미국에서 시행되는 관세 조치와 무역 정책의 전환은 캡슐제 밸류체인을 따라 반향하는 물질적 복잡성을 가져오고, 조달 전략, 공급업체 리스크 평가, 단기 조달 결정에 영향을 미칠 것입니다. 특정 고분자 중간체 및 수입 배합 화합물에 대한 관세 인상은 세계 공급망에 의존하는 제조업체의 육지 운송 비용을 상승시켰습니다. 그 결과, 많은 기업이 공급업체 다변화를 검토하고, 현지 품질 보증 활동을 확대하며, 적시 재고 접근 방식을 재검토하고, 운영의 연속성을 초래하는 완충 전략을 선택하게 되었습니다.

이러한 정책 조정으로 인해 니어쇼어링과 지역화에 대한 논의도 가속화되고 있습니다. 생산 재조달을 통해 국경을 넘는 과세와 물류 혼란에 노출될 위험을 줄일 수 있는 반면, 현지 가공 능력, 인력 훈련, 프로젝트 일정을 압박할 수 있는 인증 일정에 대한 투자도 필요합니다. 그 결과, 현지 생산 옵션을 고려하는 기업은 공급 안정성과 리드타임 단축이라는 전략적 가치와 총소유비용을 비교하는 시나리오를 실행하고 있습니다. 또한 조달팀은 R&D 및 품질 부서와 더욱 긴밀하게 협력하여 국내 공급업체 및 협력업체에서 사용할 수 있는 대체 처방을 검증하고, 새로운 조달 구조 하에서 성능의 동등성을 보장하기 위해 노력하고 있습니다.

관세 정책은 종종 관세 분류 및 규제 문서와 상호 작용하는 경우가 많기 때문에 규정 준수에 대한 부담이 증가하고 있습니다. 기업은 제품의 무결성을 훼손하지 않고 관세를 최소화할 수 있는 합법적인 경로를 파악하기 위해 제품 분류, 자재 리스트, 신고 전략을 검토하는 관세 엔지니어링에 투자하고 있습니다. 동시에 가격 조정 조항, 공급 지속 조항 등 제조업체와 고객 간의 위험 분담을 위한 계약상 보호 장치도 중요시되고 있습니다. 이러한 영향을 종합하면 봉입제 공급과 생산 경제에 중대한 영향을 미치는 무역 정책의 변화에 상업적, 기술적, 법적으로 통합적으로 대응해야 할 필요성이 부각됩니다.

캡슐의 화학적 특성, 용도 유형, 폼팩터, 경화제, 최종 사용 산업 수요를 실용적인 재료 선택 전략으로 연결하는 상세한 세분화 정보

세분화 중심의 인사이트를 통해 성능 요구사항, 가공 제약, 최종 용도 요구사항이 교차하는 지점을 파악하여 제품 전략과 공급업체의 전문성을 형성합니다. 유형별로는 아크릴, 에폭시, 폴리우레탄, 폴리우레탄, 실리콘의 각 화학물질에 주목하며, 각각 다른 용도에 맞는 접착력, 탄성, 열 안정성, 내화학성의 균형을 제공합니다. 예를 들어 에폭시 수지는 기계적 보호와 높은 접착력이 요구되는 경우 자주 사용되며, 실리콘 수지는 우수한 유연성과 온도 안정성을 제공하여 까다로운 열 사이클 환경에 대응할 수 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 봉지제 시장 : 유형별

  • 아크릴
  • 에폭시
  • 폴리우레탄
  • 실리콘

제9장 봉지제 시장 : 용도별

  • 코팅
    • 컨포멀 코팅
    • 보호 코팅
  • 포팅
    • 에폭시 포팅
    • 실리콘 포팅
  • 실링
    • 에폭시 실링
    • 실리콘 실링
  • 언더필
    • BGA 언더필
    • 플립칩 언더필

제10장 봉지제 시장 : 최종 용도 산업별

  • 항공우주·방위
  • 자동차
  • CE(Consumer Electronics)
  • 산업용
  • 의료용

제11장 봉지제 시장 : 형태별

  • 액체
  • 페이스트
  • 고체

제12장 봉지제 시장 경화 : 방법별

  • 실온 경화
  • 열경화
  • UV 큐어
    • 다파장 UV
    • 단파장 UV

제13장 봉지제 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 봉지제 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 봉지제 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • The Dow Chemical Company
    • Henkel AG & Co. KGaA
    • 3M Company
    • Wacker Chemie AG
    • Shin-Etsu Chemical Co., Ltd.
    • Evonik Industries AG
    • Momentive Performance Materials Inc.
    • H.B. Fuller Company
    • KCC Corporation
    • Master Bond Inc.
KSA 25.11.13

The Encapsulants Market is projected to grow by USD 2.42 billion at a CAGR of 6.53% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.46 billion
Estimated Year [2025] USD 1.56 billion
Forecast Year [2032] USD 2.42 billion
CAGR (%) 6.53%

A comprehensive orientation to encapsulant materials and manufacturing dynamics that clarifies technical trade-offs, regulatory pressures, and strategic sourcing considerations

Encapsulants play a foundational role across modern electronics assembly, protecting components from mechanical stress, moisture ingress, thermal cycling, and chemical exposure while enabling increasingly compact and reliable systems. As devices shrink and integration density rises, engineers are balancing competing priorities-mechanical protection, thermal management, optical properties, and manufacturability-when selecting encapsulant solutions. These materials are now evaluated not only on traditional performance metrics but also on their compatibility with automated dispensing, reworkability, and long-term reliability in harsh operating environments.

Against this backdrop, formulation innovation has moved from incremental performance gaps to targeted solutions for specific assembly challenges. For instance, polymers that deliver tailored elasticity while maintaining adhesion to diverse substrates are enabling new packaging architectures. Meanwhile, advances in cure chemistry and hybrid systems are shortening cycle times and reducing energy demands in manufacturing lines. Consequently, decision-makers in procurement and product development need a nuanced view of material attributes, processing constraints, and end-use requirements to make informed trade-offs between upfront processing costs and lifecycle performance.

In parallel, regulatory frameworks and environmental expectations are reshaping the landscape. Materials selection is increasingly influenced by restrictions on certain chemistries, supplier transparency obligations, and corporate sustainability goals. This broader context elevates the importance of traceability, supplier auditability, and validated substitute chemistries that preserve performance while meeting compliance and circularity goals. Therefore, a comprehensive assessment of encapsulants must integrate technical performance, manufacturing fit, regulatory posture, and supply chain resilience to support robust, future-ready product strategies.

How material innovation, advanced manufacturing, and sustainability expectations are jointly redefining encapsulant selection, qualification, and supply strategies

The encapsulant landscape is being reshaped by a set of transformative shifts that span material science breakthroughs, manufacturing automation, and evolving end-user expectations. Novel chemistries and hybrid formulations are moving the needle on multi-functional performance, enabling materials that simultaneously address thermal conductivity, mechanical damping, and optical clarity. These advances are particularly consequential where miniaturization and high-power density converge, creating needs for encapsulants that manage heat while preserving electrical isolation.

Manufacturing transformations are accelerating adoption of precision dispensing, in-line curing, and advanced quality inspection techniques, which together reduce variation and improve throughput. As a result, product designers are more willing to specify specialized encapsulant formulations because the manufacturing ecosystem can now reliably implement them at scale. In addition, digitalization and process analytics are enabling tighter correlation between material properties and field performance, allowing suppliers and OEMs to shorten qualification cycles through data-driven validation.

Simultaneously, sustainability is emerging as a material selection criterion on par with performance. Stakeholders across supply chains are demanding lower-emission manufacturing processes, reduced use of restricted substances, and improved end-of-life options. This is prompting suppliers to invest in greener cure chemistries, recyclable or reworkable systems, and transparent disclosure of material ingredients. The confluence of these trends means the market is evolving from one dominated by raw material performance toward an integrated proposition that combines chemistry, processing compatibility, regulatory clarity, and lifecycle impact.

The multifaceted repercussions of U.S. tariff changes in 2025 on encapsulant sourcing, supply chain resilience, and strategic procurement planning under shifting trade regimes

Tariff actions and trade policy shifts implemented in 2025 in the United States have introduced material complexities that reverberate along encapsulant value chains, influencing sourcing strategies, supplier risk assessments, and near-term procurement decisions. Increased tariffs on certain polymer intermediates and imported formulated compounds have elevated landed costs for manufacturers that rely on global supply networks. In turn, this has prompted many organizations to revisit supplier diversification, expand local qualification efforts, and reassess just-in-time inventory approaches in favor of buffer strategies that provide operational continuity.

These policy adjustments have also accelerated conversations about nearshoring and regionalization. While reshoring production can mitigate exposure to cross-border levies and logistical disruptions, it also requires investment in local processing capabilities, workforce training, and certification timelines that can strain project schedules. Consequently, firms weighing regional production options are increasingly conducting scenarios that compare the total cost of ownership against the strategic value of supply security and shortened lead times. Furthermore, procurement teams are engaging more closely with R&D and quality functions to validate alternative formulations available from domestic or allied suppliers to ensure performance parity under new sourcing configurations.

Compliance burdens have grown, as tariff policy often interacts with customs classifications and regulatory documentation. Companies are investing in tariff engineering-reviewing product taxonomies, material bill of materials, and declaration strategies-to identify lawful pathways that minimize duties without compromising product integrity. At the same time, there is greater emphasis on contractual protections, such as price adjustment clauses and supply continuity provisions, to share risk between manufacturers and customers. Taken together, these effects underscore the necessity for integrated commercial, technical, and legal responses to trade policy shifts that materially affect encapsulant supply and production economics.

Detailed segmentation intelligence linking encapsulant chemistries, application types, form factors, cures, and end-use industry demands to practical material selection strategies

Segmentation-driven insights illuminate where performance demands, processing constraints, and end-use requirements intersect to shape product strategies and supplier specialization. Based on Type, attention centers on acrylic, epoxy, polyurethane, and silicone chemistries, each offering distinct balances of adhesion, elasticity, thermal stability, and chemical resistance that map to different application niches. For example, epoxies are often specified where rigid mechanical protection and high adhesion are required, while silicones provide superior flexibility and temperature stability for demanding thermal cycling environments.

Based on Application, coating, potting, sealing, and underfill present discrete technical and processing challenges. Coating applications split into conformal coating and protective coating routes, where conformal coatings prioritize thin, uniform dielectric protection while protective coatings may emphasize abrasion resistance and optical clarity. Potting subdivides into epoxy potting and silicone potting, with epoxies favoring structural encapsulation and silicones delivering resilience and vibration damping. Sealing similarly differentiates between epoxy sealing and silicone sealing, reflecting trade-offs between rigidity and elasticity. Underfill strategies encompass BGA underfill and flip chip underfill approaches that address differing thermal expansion and gap-filling requirements in high-density assemblies.

Based on End Use Industry, aerospace & defense, automotive, consumer electronics, industrial, and medical segments each drive unique performance matrices and regulatory regimes. Aerospace and defense demand extreme reliability, traceability, and qualification rigor, while automotive requires high-temperature endurance and compatibility with automated manufacturing. Consumer electronics prioritize cost-effective processability and optical requirements for visible components, whereas medical and industrial applications emphasize biocompatibility, chemical resistance, and long-term stability. Based on Form, liquid, paste, and solid formats influence dispensing strategies, cure kinetics, and in-line inspection capabilities; liquids offer ease of flow for automated redistribution, pastes suit controlled deposition for gap filling, and solids may be chosen for pre-formed encapsulation needs.

Based on Curing Method, room temperature cure, thermal cure, and UV cure each create different manufacturing footprints and product performance envelopes. UV cure techniques, further distinguished by multi-wavelength UV and single-wavelength UV approaches, enable rapid surface cure and precise processing control, whereas thermal cures typically provide deeper through-cure and robust crosslinking networks. Room temperature cures can reduce energy consumption and simplify processing equipment, but may impose longer cycle times or require specialized chemistries to meet environmental exposure criteria. Understanding these segmentation layers together allows product architects to align material choice with assembly process capabilities and end-use reliability requirements.

Regional dynamics and supply strategies for encapsulants that reconcile local regulatory demands, manufacturing capabilities, and market-specific innovation imperatives

Regional dynamics are shaping the supply and adoption patterns for encapsulants, with important distinctions across the Americas, Europe, Middle East & Africa, and Asia-Pacific that affect sourcing, regulatory compliance, and innovation pipelines. In the Americas, there is significant emphasis on near-term supply resilience and rapid qualification of alternative suppliers, driven by strong demand from automotive electronics and industrial automation markets. Policy shifts and customer expectations are prompting localized sourcing and increased collaboration between OEMs and domestic formulators to shorten qualification cycles and secure critical materials.

Across Europe, Middle East & Africa, regulatory stringency and sustainability initiatives are major drivers. Teams operating in these markets are placing greater weight on material transparency, regulatory compliance documentation, and lifecycle considerations. As a result, suppliers that can demonstrate low-emission processes, clear substance declarations, and robust environmental management systems have a competitive advantage. In contrast, Asia-Pacific remains a hub for high-volume consumer electronics manufacturing and advanced materials research. Its dense manufacturing ecosystem supports rapid scale-up of new encapsulant formulations, and close proximity between material producers, assembly houses, and testing laboratories accelerates iteration and qualification.

These regional differences mean that global supply strategies must be tailored to local regulatory realities, customer expectations, and manufacturing capabilities. Multi-regional firms are increasingly adopting hybrid models that combine centralized R&D with regionally optimized supply and production footprints, thereby capturing the benefits of both innovation concentration and local responsiveness.

How supplier specialization, vertical integration, and collaborative validation are shaping competitive advantages and long-term partnerships in the encapsulant ecosystem

Competitive dynamics among companies in the encapsulant ecosystem are being shaped by specialization, vertical integration, and collaborative innovation. Suppliers that pair proprietary chemistry platforms with scalable manufacturing and strong quality systems are better positioned to win long-term OEM partnerships. At the same time, firms that focus on niche strengths-such as high-temperature silicones, low-modulus epoxies, or UV-curable hybrid systems-can capture premium positions in applications that require specialized performance or rapid qualification.

Strategic moves in the sector increasingly include partnerships with equipment manufacturers and testing laboratories to shorten qualification cycles and reduce adoption friction. Companies are investing in co-validation programs that jointly demonstrate process compatibility on customer lines, thereby converting proof-of-concept trials into production contracts more quickly. Additionally, some organizations are pursuing selective vertical integration to control critical intermediates or proprietary curing technologies, improving their ability to guarantee supply and accelerate new product introductions.

Finally, leadership in sustainability credentials and transparent supply practices is becoming a differentiator. Firms that can provide documented supply chain traceability, lower-emission production pathways, and credible end-of-life options are increasingly attractive to large OEM customers who face their own regulatory and sustainability obligations. Together, these competitive behaviors suggest a market where technical excellence, process enablement, and supply reliability determine strategic positioning rather than simple scale alone.

Concrete, cross-functional recommendations for procurement, R&D, and quality teams to accelerate adoption of advanced encapsulants while strengthening supply resilience

Industry leaders should take a proactive, cross-functional approach to capitalize on technological advances while mitigating supply and regulatory risks. First, align R&D, procurement, and quality functions to create validated material substitution pathways so that alternative suppliers or chemistries can be qualified rapidly when geopolitical or tariff shifts affect supply lines. This coordination reduces time-to-reaction and preserves production continuity without compromising performance objectives.

Second, invest in process enablement and co-validation initiatives with material suppliers and equipment vendors. Joint development and on-line validation shorten adoption cycles and reduce integration risk, particularly for novel cure chemistries or form factors. Such collaborations can also yield manufacturing know-how that provides competitive differentiation, for example by enabling higher process yields or faster cycle times.

Third, prioritize sustainability and regulatory transparency as integral selection criteria. Incorporate environmental impact considerations, substance declarations, and end-of-life plans into procurement specifications to reduce future compliance disruptions and to meet downstream OEM requirements. In parallel, develop contractual terms that share tariff and supply disruption risks, including price adjustment clauses and defined contingency response plans.

Finally, adopt a regionalized sourcing strategy that balances the benefits of innovation clusters with the security of localized production. Identify critical intermediates and evaluate nearshoring or strategic stockholding for those items, while leveraging global suppliers for advanced formulations where local capability is limited. By combining these actions, leaders can increase agility, protect margins against policy volatility, and accelerate the path from material innovation to scalable production.

An evidence-driven methodology combining primary expert interviews, technical literature review, and process-centric analysis to generate actionable encapsulant intelligence

This research synthesizes insights derived from a structured, multi-method approach that integrates primary interviews, technical literature, and trade practice analysis. Primary engagement included structured conversations with materials scientists, process engineers, procurement leaders, and quality assurance professionals across multiple end-use industries to capture real-world qualification experiences, processing constraints, and supplier selection criteria. These interviews were supplemented with technical whitepapers, peer-reviewed publications, and patent filings to validate emergent trends in chemistries and curing technologies.

Secondary data collection encompassed regulatory filings, standards documentation, and product datasheets to corroborate claims about performance envelopes and processing requirements. In addition, manufacturing case studies and equipment vendor technical notes were analyzed to understand integration patterns for dispensing, curing, and inspection. Cross-referencing these sources allowed the research team to triangulate evidence, identify common adoption barriers, and highlight successful risk mitigation strategies.

Analytical methods included qualitative thematic synthesis, scenario analysis for supply chain disruptions, and comparative process mapping to evaluate the fit between material properties and assembly line capabilities. Wherever possible, findings were validated through follow-up consultations with subject-matter experts to ensure accuracy and practical relevance. The result is an evidence-based, practitioner-focused assessment designed to inform strategic decisions around material selection, supplier partnerships, and manufacturing investments.

Strategic closure synthesizing technical, operational, and regulatory imperatives that will determine competitive advantage in the evolving encapsulant landscape

Encapsulant selection and supply strategies are at an inflection point where chemistry innovation, manufacturing capability, regulatory change, and trade policies converge to influence product reliability and procurement agility. Organizations that proactively align cross-functional teams, validate alternative formulations, and invest in co-validation with suppliers and equipment partners will be best positioned to translate material advances into dependable production outcomes. At the same time, attention to regional sourcing dynamics and regulatory transparency will remain critical to managing risk and meeting customer expectations.

Looking ahead, the most successful firms will be those that treat encapsulants not as a commodity input but as an integrated component of product architecture and manufacturing process design. By adopting a strategic posture that blends technical rigor, supply chain foresight, and sustainability commitments, companies can reduce exposure to trade and policy volatility while unlocking performance gains that support next-generation electronic systems. Ultimately, disciplined execution across R&D, procurement, and operations will determine who captures value as the landscape continues to evolve.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rise of fluoropolymer encapsulants enabling superior chemical resistance in harsh environments
  • 5.2. Development of biodegradable epoxy encapsulants to address electronic waste concerns in consumer devices
  • 5.3. Increasing integration of UV curable acrylic encapsulants for rapid assembly in photovoltaic modules
  • 5.4. Surge in demand for low refractive index silicones improving optical performance in LED lighting
  • 5.5. Advancement in hybrid organic-inorganic encapsulants for enhanced moisture barrier in automotive sensors
  • 5.6. Growing application of thermally conductive polymer encapsulants in power electronics for electric vehicles
  • 5.7. Innovation in self-healing encapsulant formulations extending lifespan of wearable medical sensors
  • 5.8. Shift towards low-outgassing silicone encapsulants for spacecraft and satellite electronic protection
  • 5.9. Emergence of flame-retardant halogen-free encapsulants meeting stricter safety standards in appliances
  • 5.10. Adoption of nano-filled epoxy encapsulants offering superior mechanical strength in aerospace electronics

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Encapsulants Market, by Type

  • 8.1. Acrylic
  • 8.2. Epoxy
  • 8.3. Polyurethane
  • 8.4. Silicone

9. Encapsulants Market, by Application

  • 9.1. Coating
    • 9.1.1. Conformal Coating
    • 9.1.2. Protective Coating
  • 9.2. Potting
    • 9.2.1. Epoxy Potting
    • 9.2.2. Silicone Potting
  • 9.3. Sealing
    • 9.3.1. Epoxy Sealing
    • 9.3.2. Silicone Sealing
  • 9.4. Underfill
    • 9.4.1. Bga Underfill
    • 9.4.2. Flip Chip Underfill

10. Encapsulants Market, by End Use Industry

  • 10.1. Aerospace & Defense
  • 10.2. Automotive
  • 10.3. Consumer Electronics
  • 10.4. Industrial
  • 10.5. Medical

11. Encapsulants Market, by Form

  • 11.1. Liquid
  • 11.2. Paste
  • 11.3. Solid

12. Encapsulants Market, by Curing Method

  • 12.1. Room Temperature Cure
  • 12.2. Thermal Cure
  • 12.3. UV Cure
    • 12.3.1. Multi-Wavelength UV
    • 12.3.2. Single-Wavelength UV

13. Encapsulants Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Encapsulants Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Encapsulants Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. The Dow Chemical Company
    • 16.3.2. Henkel AG & Co. KGaA
    • 16.3.3. 3M Company
    • 16.3.4. Wacker Chemie AG
    • 16.3.5. Shin-Etsu Chemical Co., Ltd.
    • 16.3.6. Evonik Industries AG
    • 16.3.7. Momentive Performance Materials Inc.
    • 16.3.8. H.B. Fuller Company
    • 16.3.9. KCC Corporation
    • 16.3.10. Master Bond Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제