시장보고서
상품코드
1858125

초경 재료 시장 : 재료 유형, 제품 형태, 용도, 최종사용자 산업, 생산 기술별 - 세계 예측(2025-2032년)

Superhard Materials Market by Material Type, Product Form, Application, End-User Industry, Production Technology - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

초경 재료 시장은 2032년까지 연평균 복합 성장률(CAGR) 7.04%로 121억 2,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 70억 3,000만 달러
추정 연도 : 2025년 75억 1,000만 달러
예측 연도 : 2032년 121억 2,000만 달러
CAGR(%) 7.04%

초경합금 소재가 고성능 산업에서 중요한 이유, 공급망 및 가공 압력이 채택에 미치는 영향을 설명하는 명확한 전략 개요

초경합금 재료의 영역은 첨단 제조, 고성능 엔지니어링 및 중요한 공급망 복잡성의 교차점에 위치하고 있습니다. 합성 다이아몬드에서 붕소 및 탄화물을 기반으로 한 세라믹에 이르기까지 이러한 인공 고체는 내마모성, 열 안정성, 극한의 경도가 요구되는 분야 전반에서 기초적인 실현 재료로서 역할을 하고 있습니다. 산업 공정이 더 빠른 속도, 더 미세한 공차, 더 까다로운 사용 환경으로 발전함에 따라 초경합금에 대한 수요의 원동력은 원자재 대체가 아닌 성능의 통합에 점점 더 의존하고 있습니다.

이 소개는 독자가 재료 자체뿐만 아니라 기술 혁신과 상업화를 형성하는 밸류체인의 압력을 이해할 수 있도록 도와줍니다. 업스트림에서는 합성 공정과 원료 확보가 고성능 제품의 일관성과 비용 구조를 결정합니다. 연마 공구, 코팅, 분말 등 제품 형태의 결정이 재료 특성을 제조 가능한 부품으로 변환하는 과정입니다. 다운스트림에서는 항공우주, 자동차, 전자기기 등 최종 사용자의 요구사항이 맞춤형 재료 배합 및 가공 경로를 촉진하는 용도별 사양을 요구합니다.

레거시 사양에서 차세대 성능으로의 전환은 연구팀, OEM 엔지니어링 그룹, 조달 리더가 동시에 진행하고 있습니다. 이 분석의 목적은 이러한 전환을 매핑하고, 경쟁의 변곡점을 명확히 하고, 기술적 차별화와 공급의 탄력성이 교차하는 지점에서 전략적 우위를 창출할 수 있는 지점을 파악하는 것입니다.

기술, 규제, 공급 탄력성의 수렴이 전체 초경합금 생태계의 개발 우선순위와 경쟁 역학을 재구성하는 방법

초경합금을 둘러싼 환경은 기술 혁신의 우선순위, 조달 전략, 제조 발자국을 재구성하는 등 몇 가지 혁신적인 변화가 일어나고 있습니다. 성막 및 합성 기술의 발전으로 실험실에서의 개념 증명에서 산업적 인증까지의 주기가 단축되어 재료 화학 및 미세 구조의 빠른 반복이 가능해졌습니다. 동시에, 수명 성능과 에너지 효율에 대한 기대치가 높아짐에 따라 엔지니어들은 부품 수준의 설계를 재검토하고, 재료와 형상이 드롭인 대체품으로 존재하는 것이 아니라 함께 진화하도록 유도하고 있습니다.

동시에, 공급망의 탄력성은 비용적 고려사항에서 전략적 역량으로 전환되고 있습니다. 기업들은 조달 지역을 재검토하고, 공급업체 기반을 다양화하며, 장기적인 서비스 연속성이 자본 배분을 정당화할 수 있는 경우 사내 합성에 투자하고 있습니다. 규제와 환경적 요인으로 인해 더 깨끗한 생산 경로와 더 엄격한 라이프사이클 문서의 채택이 가속화되고 있으며, 이는 공급업체 선정과 인증의 타임라인을 재구성하고 있습니다.

산업의 디지털화와 첨단 특성화 도구는 제품 인증에도 변화를 가져오고 있습니다. in-situ 모니터링, 모델 기반 설계, 가속 테스트 프로토콜은 새로운 구성 및 제품 형태 인증까지 걸리는 시간을 단축하고 있습니다. 이러한 변화를 종합하면, 재료에 대한 전문성을 공정 엔지니어링 및 품질 시스템과 결합할 수 있는 종합 공급업체가 유리한 반면, 성능과 인증 능력을 바탕으로 프리미엄 틈새 시장을 확보할 수 있는 전문 기업에게 기회가 주어질 것입니다.

최근 관세 정책과 무역 역학이 초경합금 소재의 밸류체인 전반에 걸쳐 조달 전략, 투자 결정, 공급업체 선택에 어떻게 영향을 미치고 있는지 살펴봅니다.

최근 수입 산업 투입물에 영향을 미치는 관세 조치로 인해 여러 제조 부문에서 비용 구조와 공급업체 선택이 재조정되고 있습니다. 특정 소재 및 완제품에 대한 관세 인상으로 인해 구매자는 총 상륙 비용을 재평가하고, 조달 발자국을 재구성하고, 중요한 초경합금 소재에 대한 근해 또는 국내 생산 옵션을 모색하게 되었습니다. 실제로 조달팀은 현재 공급업체 적격성 평가와 장기 계약의 핵심 입력으로 관세 노출과 관세 분류 위험을 포함시키고 있습니다.

관세 조치의 누적 영향은 즉각적인 가격 조정에 그치지 않습니다. 관세 인상은 자본 집약적 생산 기술에 대한 투자 계산을 변화시키고, 안정적인 무역 정책과 지원적인 산업 인센티브가 있는 관할권에서 현지 생산을 더욱 매력적으로 만듭니다. 다운스트림 생산자에게는 관세가 마진을 확보하고 공급의 연속성을 제어하기 위한 수직 통합 전략을 가속화할 수 있습니다. 동시에 일부 고객은 부품과 공정을 재설계하여 무역 마찰이 적은 형태와 재료로 대체하거나 향후 정책 전환을 헤지하는 장기 계약을 협상하여 대응합니다.

중요한 것은 관세 주도 역학은 공급업체의 컴플라이언스 능력에 대한 평가도 높인다는 것입니다. 고객이 예측가능성을 우선시하는 경우, 강력한 관세 분류, 특혜 원산지 문서, 전략적 유통 거점을 증명할 수 있는 기업은 경쟁 우위를 확보할 수 있습니다. 순효과는 파트너를 선택할 때 정책적 위험과 물류의 민첩성이 기술적 성능만큼이나 중요한 보다 세분화된 소싱 맵입니다.

재료 유형, 제품 유형, 생산 기술, 최종 용도가 기술 요구 사항 및 상업적 포지셔닝을 결정하는 방법을 설명하고 세분화를 기반으로 한 심층적인 통찰력을 제공합니다.

미묘한 세분화 프레임워크는 기술 수요가 제품 아키텍처 및 최종 용도 요구사항과 어떻게 교차하는지를 명확히 하고, 타겟팅된 시장 세분화 전략을 가능하게 합니다. 재료 유형별로는 탄화붕소, 입방정 질화붕소, 다이아몬드, 실리콘 카바이드, 텅스텐 카바이드가 있으며, 다이아몬드는 결정 품질, 결함 제어, 적용 가능한 공정 윈도우의 차이를 반영하여 천연, 합성 CVD, 합성 HPHT로 세분화됩니다. 재료의 선택은 다운스트림의 화학적 특성, 열적 특성, 마모 특성에 영향을 미치며, 그 결과 제품이 특정 작업을 위해 어떻게 설계되는지 결정합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 초경 재료 시장 : 소재 유형별

  • 탄화붕소
  • 입방정 질화붕소
  • 다이아몬드
    • 천연
    • 합성 CVD
    • 합성 HPHT
  • 탄화규소
  • 탄화 텅스텐

제9장 초경 재료 시장 : 제품 형태별

  • 연마 공구
    • 발리
    • 절삭 인서트
    • 디스크
    • 연삭숫돌
  • 벌크
  • 코팅
  • 필름
  • 분체

제10장 초경 재료 시장 : 용도별

  • 절삭
  • 드릴 가공
  • 연삭
  • 프라이즈 가공
  • 연마
  • 내마모성

제11장 초경 재료 시장 : 최종사용자 업계별

  • 항공우주
  • 자동차
    • 보디
    • 브레이크 시스템
    • 엔진 부품
    • 변속기
  • 일렉트로닉스
  • 산업용 제조
  • 의료
  • 석유 및 가스

제12장 초경 재료 시장 : 제조 기술별

  • 화학 증착
  • 고압 고온

제13장 초경 재료 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 초경 재료 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 초경 재료 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Sumitomo Electric Industries, Ltd.
    • Element Six(UK) Limited
    • Kennametal Inc.
    • Sandvik AB
    • Saint-Gobain S.A.
    • Morgan Advanced Materials plc
    • Hyperion Materials & Technologies, LLC
    • Washington Mills Company
    • UltraTech International Limited
    • Henan Huanghe Whirlwind Co., Ltd.
LSH 25.11.13

The Superhard Materials Market is projected to grow by USD 12.12 billion at a CAGR of 7.04% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 7.03 billion
Estimated Year [2025] USD 7.51 billion
Forecast Year [2032] USD 12.12 billion
CAGR (%) 7.04%

A clear strategic overview explaining why superhard materials are critical across high-performance industries and how supply chain and processing pressures influence adoption

The superhard materials domain sits at the intersection of advanced manufacturing, high-performance engineering and critical supply chain complexity. These engineered solids-ranging from synthetic diamond constructs to boron- and carbide-based ceramics-serve as foundational enabling materials across sectors where wear resistance, thermal stability and extreme hardness are non-negotiable. As industrial processes push toward higher speeds, finer tolerances and more demanding service environments, demand drivers for superhard materials increasingly hinge on performance integration rather than commodity replacement.

This introduction positions the reader to understand not only the materials themselves but also the value chain pressures that shape innovation and commercialization. Upstream, synthesis processes and feedstock security determine the consistency and cost structure of high-performance products. Midstream, product form decisions-whether abrasive tools, coatings or powders-translate material properties into manufacturable components. Downstream, end-user requirements in aerospace, automotive and electronics impose application-specific specifications that drive customized material formulations and processing routes.

Transitions from legacy specifications to next-generation performance are being navigated by research teams, OEM engineering groups and procurement leaders simultaneously. The objective of this analysis is to map those transitions, clarify competitive inflection points and highlight where technical differentiation and supply resilience intersect to create strategic advantage.

How converging technological, regulatory, and supply resilience forces are reshaping development priorities and competitive dynamics across the superhard materials ecosystem

The landscape for superhard materials is undergoing several transformative shifts that realign innovation priorities, procurement strategies and manufacturing footprints. Advances in deposition and synthesis technologies are compressing cycles from laboratory proof-of-concept to industrial qualification, enabling rapid iteration of material chemistries and microstructures. At the same time, rising expectations for lifetime performance and energy efficiency are prompting engineers to rethink component-level design so that materials and geometries co-evolve rather than existing as drop-in substitutions.

Concurrently, supply chain resilience has moved from a cost-plus consideration to a strategic capability. Organizations are reassessing sourcing geographies, diversifying supplier bases and investing in in-house synthesis where long-term service continuity justifies capital allocation. Regulatory and environmental drivers are accelerating adoption of cleaner production routes and more rigorous lifecycle documentation, which together reshape supplier selection and certification timelines.

Industrial digitalization and advanced characterization tools are also transforming product qualification. In-situ monitoring, model-driven design and accelerated testing protocols are reducing time-to-certification for new compositions and product forms. Collectively, these shifts favor integrated suppliers that can pair materials expertise with process engineering and quality systems, while creating opportunities for specialized players to capture premium niches based on performance and certification capabilities.

Examination of how recent tariff policies and trade dynamics are recalibrating sourcing strategies, investment decisions, and supplier selection across the superhard materials value chain

Recent tariff actions affecting imported industrial inputs have created a recalibration of cost structures and supplier selection across multiple manufacturing sectors. Higher duties on certain material classes and finished components have prompted buyers to reassess total landed cost, reshuffle sourcing footprints and explore near-shore or domestic production options for critical superhard materials. In practice, procurement teams are now including tariff exposure and customs classification risk as core inputs to supplier qualification and long-term contracts.

The cumulative impact of tariff measures extends beyond immediate price adjustments. Increased duties alter investment calculus for capital-intensive production technologies, making localized production more attractive in jurisdictions with stable trade policies and supportive industrial incentives. For downstream producers, tariffs can accelerate vertical integration strategies to capture margin and control supply continuity. At the same time, some customers respond by redesigning parts and processes to substitute toward forms or materials that face lower trade friction, or by negotiating long-term agreements that hedge future policy shifts.

Importantly, tariff-driven dynamics also increase the valuation of supplier compliance capabilities. Companies that can demonstrate robust customs classification, preferential origin documentation and strategic distribution points gain a competitive advantage when clients prioritize predictability. The net effect is a more fragmented sourcing map in which policy risk and logistics agility are as important as technical performance when selecting partners.

In-depth segmentation-driven insights explaining how material types, product forms, production technologies and end-use applications determine technical requirements and commercial positioning

A nuanced segmentation framework clarifies where technical demand intersects with product architecture and end-use requirements, enabling targeted go-to-market strategies. Based on material type the universe includes Boron Carbide, Cubic Boron Nitride, Diamond, Silicon Carbide, and Tungsten Carbide, with the diamond category subdivided into Natural, Synthetic CVD and Synthetic HPHT variants to reflect differences in crystal quality, defect control and applicable process windows. Material choice drives downstream chemistry, thermal behavior and wear characteristics, which in turn inform how products are engineered for specific tasks.

Based on product form the landscape spans Abrasive Tools, Bulk material, Coating solutions, Films, and Powder, with Abrasive Tools further categorized as Burrs, Cutting Inserts, Discs, and Grinding Wheels to reflect the diversity of form factors and machining interfaces. Product form decisions balance manufacturability, integration ease and replacement cadence, and they influence the types of qualification testing required by OEMs. Based on application the primary functions are Cutting, Drilling, Grinding, Milling, Polishing and Wear Resistance, each of which imposes distinct mechanical, thermal and chemical demands that guide material selection and heat-treatment protocols.

Based on end-user industry the principal sectors include Aerospace, Automotive, Electronics, Industrial Manufacturing, Medical, and Oil & Gas, with Automotive use cases further parsed into Body, Braking Systems, Engine Components, and Transmission applications to reflect differentiated performance envelopes and regulatory constraints. These end markets determine certification regimes, lifecycle requirements and aftermarket service models. Finally, based on production technology the dominant routes are Chemical Vapor Deposition and High Pressure High Temperature, which yield different microstructures, defect profiles and scale economics. Layering these segmentation axes enables precise targeting of value propositions and helps identify where incremental innovation or supply-chain investments will deliver the greatest commercial return.

Regional demand, production and regulatory contrasts that determine sourcing priorities and innovation focus across the Americas, Europe Middle East & Africa, and Asia-Pacific markets

Regional dynamics shape demand patterns, supply architectures and innovation priorities in ways that inform both strategic investment and tactical sourcing. In the Americas manufacturers place a premium on near-market responsiveness and rapid aftermarket support, with emphasis on operational resilience and domestic qualification capabilities that shorten time-to-deployment for critical components. Localized supply networks and test facilities are especially valued where aerospace and automotive clusters demand validated materials and traceable provenance.

In Europe, Middle East & Africa the market foregrounds stringent regulatory frameworks, lifecycle documentation and environmental compliance. These requirements drive interest in cleaner production processes and recycling pathways, along with certifications that facilitate cross-border trade within the region. Suppliers that can demonstrate robust environmental, health and safety practices and meet OEM certification standards gain preferential consideration among highly regulated end users.

In the Asia-Pacific region rapid industrialization, dense manufacturing ecosystems and aggressive R&D investment create a high-velocity environment for material innovation and scale-up. Cost-competitive production, proximity to major electronics and industrial manufacturing bases, and expanding domestic demand for advanced tooling and coatings make the region a pivotal production hub. Taken together, regional priorities underscore the importance of tailored commercial strategies that account for certification regimes, logistics realities and the local balance between cost and performance.

Strategic company-level dynamics revealing how technical differentiation, scale investments, and collaborative R&D shape competitive advantage and partnership opportunities

Competitive dynamics in the superhard materials sector are governed by a combination of technical differentiation, manufacturing scale and the ability to support demanding qualification processes. Market participants vary from specialized material developers with deep metallurgical and synthetic expertise to integrated manufacturers that combine synthesis, shaping and finishing capabilities. Firms that invest in robust quality systems and in-house characterization capabilities can shorten qualification cycles and command premium positioning with aerospace and medical customers who require rigorous traceability.

Strategic partnerships and collaborative R&D programs are increasingly important as firms seek to de-risk new compositions and expedite certification. Cross-disciplinary alliances between material scientists, equipment suppliers and OEM engineering teams facilitate co-development pathways that align product properties with application-specific testing protocols. Additionally, companies that offer complementary services-such as coating deposition, post-process finishing and application-specific testing-tend to capture greater wallet share because they reduce friction for buyers.

Supply-side consolidation tendencies are evident where scale economies matter most, particularly for capital-intensive production technologies like high-pressure presses and large-scale CVD reactors. At the same time, niche specialists with unique process know-how remain attractive acquisition targets or preferred partners for differentiated applications. Overall, the most resilient companies balance investments in process scale with focused application expertise and strong downstream service propositions.

Actionable strategic priorities for industry leaders to enhance supply resilience, accelerate application-driven innovation, and deliver integrated customer value propositions

Industry leaders should pursue a balanced approach that simultaneously strengthens supply resilience, accelerates application-driven innovation and improves customer intimacy. Prioritize building multi-sourcing strategies and qualifying alternate feedstock pathways to mitigate geopolitical and tariff-induced disruptions while investing selectively in localized capacity where long-term demand and certification needs justify capital deployment. Strengthening customs and compliance capabilities will also reduce procurement friction and enhance predictability for buyers in regulated sectors.

From a technology perspective, accelerate integration of advanced process monitoring and model-based design to reduce qualification cycles for new material formulations and product forms. Investing in pilot-scale CVD or HPHT capabilities alongside robust lab characterization shortens the path from concept to certified part. Complement these technical investments with stronger application engineering teams that co-design materials and component geometries, thereby creating defensible differentiation through systems-level performance rather than raw material properties alone.

Commercially, deepen value through bundled offerings that combine materials, coatings and service agreements to simplify customer procurement and improve lifecycle economics. Pursue targeted partnerships with OEMs and Tier 1 suppliers to co-develop validated solutions for high-value applications, and maintain a disciplined M&A appetite for niche specialists that bring unique process knowledge or certification advantages. These combined actions will enhance resilience, create premium positioning and accelerate uptake in mission-critical environments.

Transparent multi-source research methodology that integrates technical literature, stakeholder interviews, and regulatory review to validate strategic implications and practical levers

This research synthesizes publicly available technical literature, industry patent filings, supplier technical bulletins and primary interviews with procurement and engineering stakeholders to triangulate insights on materials, process technologies and commercial dynamics. The methodology emphasizes cross-validation: technical claims are corroborated against independent characterization reports and supplier datasheets, while commercial themes are tested through qualitative interviews with purchasing and application engineering professionals across target end-use industries.

Data collection included a systematic review of open-source regulatory documentation and trade classifications to understand how policy measures influence logistics and supplier qualification. Where appropriate, secondary evidence from trade and customs filings was used to validate reported shifts in sourcing patterns. The analytical approach combined thematic content analysis with process-mapping to identify bottlenecks in qualification and opportunities for vertical integration.

Limitations are acknowledged: proprietary manufacturing details and confidential customer agreements are outside the scope of public disclosure and were not accessed directly. To mitigate this, the research prioritized multiple independent sources and sought corroboration from subject-matter experts. The resulting methodology produces a pragmatic, industry-focused view that emphasizes operational levers and strategic implications rather than proprietary cost structures.

Conclusive synthesis highlighting the enduring strategic importance of technical integration, supply resilience, and customer-aligned innovation in superhard materials

Superhard materials remain essential enablers of higher-performance manufacturing and durable, mission-critical components across numerous industries. The cumulative picture is one of accelerated technical maturation, evolving supply-chain expectations and growing emphasis on lifecycle and regulatory compliance. Organizations that align material innovation with application engineering, invest in qualification capabilities and proactively manage policy exposure will capture disproportionate value as markets demand both performance and predictability.

Key thematic takeaways emphasize the need for integrated offerings that reduce friction for OEMs, targeted investment in production technologies that enable scale without compromising microstructure control, and strategic supply diversification to insulate operations from tariff and geopolitical shocks. Additionally, regional differentiation in regulation and industrial policy underscores the importance of locally informed commercial strategies that balance cost competitiveness with certification and environmental credentials.

In conclusion, sustained competitive advantage in the superhard materials arena will accrue to firms that combine deep technical know-how with operational agility and strong customer engagement models. Executives should therefore prioritize cross-functional investments that optimize the interface between material performance, product architecture and supply continuity to meet the increasingly exacting demands of modern industrial ecosystems.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising adoption of nanopolycrystalline diamond composites for precision machining tools
  • 5.2. Developments in cubic boron nitride coating processes for enhanced cutting performance in automotive manufacturing
  • 5.3. Growth in research on polycrystalline diamond compact tools for sustainable wood and composite materials processing
  • 5.4. Innovations in high-purity synthetic diamond growth techniques enabling larger wafer substrates for quantum applications
  • 5.5. Market expansion of boron suboxide-based abrasives for precision surface finishing in electronics sector
  • 5.6. Strategic partnerships to develop boron carbide composites with improved thermal stability for nuclear applications
  • 5.7. Increasing integration of superhard coatings in oil and gas drilling bits to enhance abrasion resistance under extreme conditions
  • 5.8. Emerging demand for diamond-coated cutting tools in semiconductor wafer dicing to meet miniaturization challenges
  • 5.9. Development of multifunctional superhard composites combining ceramic reinforcements and metallic matrices for wear parts
  • 5.10. Advancements in ultra-high pressure sintering methods for cost-effective production of synthetic superhard ceramics

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Superhard Materials Market, by Material Type

  • 8.1. Boron Carbide
  • 8.2. Cubic Boron Nitride
  • 8.3. Diamond
    • 8.3.1. Natural
    • 8.3.2. Synthetic CVD
    • 8.3.3. Synthetic HPHT
  • 8.4. Silicon Carbide
  • 8.5. Tungsten Carbide

9. Superhard Materials Market, by Product Form

  • 9.1. Abrasive Tools
    • 9.1.1. Burrs
    • 9.1.2. Cutting Inserts
    • 9.1.3. Discs
    • 9.1.4. Grinding Wheels
  • 9.2. Bulk
  • 9.3. Coating
  • 9.4. Films
  • 9.5. Powder

10. Superhard Materials Market, by Application

  • 10.1. Cutting
  • 10.2. Drilling
  • 10.3. Grinding
  • 10.4. Milling
  • 10.5. Polishing
  • 10.6. Wear Resistance

11. Superhard Materials Market, by End-User Industry

  • 11.1. Aerospace
  • 11.2. Automotive
    • 11.2.1. Body
    • 11.2.2. Braking Systems
    • 11.2.3. Engine Components
    • 11.2.4. Transmission
  • 11.3. Electronics
  • 11.4. Industrial Manufacturing
  • 11.5. Medical
  • 11.6. Oil & Gas

12. Superhard Materials Market, by Production Technology

  • 12.1. Chemical Vapor Deposition
  • 12.2. High Pressure High Temperature

13. Superhard Materials Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Superhard Materials Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Superhard Materials Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Sumitomo Electric Industries, Ltd.
    • 16.3.2. Element Six (UK) Limited
    • 16.3.3. Kennametal Inc.
    • 16.3.4. Sandvik AB
    • 16.3.5. Saint-Gobain S.A.
    • 16.3.6. Morgan Advanced Materials plc
    • 16.3.7. Hyperion Materials & Technologies, LLC
    • 16.3.8. Washington Mills Company
    • 16.3.9. UltraTech International Limited
    • 16.3.10. Henan Huanghe Whirlwind Co., Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제