시장보고서
상품코드
1864042

크롬 시장 : 제품 유형별, 공급원별, 최종 이용 산업별, 순도 등급별, 유통경로별 - 세계 예측(2025-2032년)

Chromium Market by Product Type, Source, End Use Industry, Purity Grade, Distribution Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 181 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

크롬 시장은 2032년까지 연평균 복합 성장률(CAGR) 5.64%로 409억 1,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 263억 6,000만 달러
추정 연도 : 2025년 278억 6,000만 달러
예측 연도 : 2032년 409억 1,000만 달러
CAGR(%) 5.64%

산업 리더십에서 공급망, 기술 적용, 의사결정 우선순위에서 크롬의 전략적 역할에 대한 간결하고 권위 있는 개요를 제공합니다.

크롬 산업은 합금 생산에서 내식성 마감에 이르기까지 중요한 용도를 지원하며, 견고한 산업 생태계를 가능하게 하는 핵심적인 역할을 담당하고 있습니다. 본 Executive Summary는 가치사슬 전반에 걸쳐 나타나는 본질적인 트렌드, 구조적 변화, 전략적 요구사항을 압축하여 경영진, 조달팀, 기술 전문가들에게 정보를 제공하는 것을 목적으로 합니다. 물리적 공급 역학, 변화하는 무역 정책의 영향, 최종 용도 수요 동향에 초점을 맞추어 사업 위험과 상업적 기회가 집중되는 영역을 명확하게 제시합니다.

본 도입부에서는 크롬을 단순한 상품 원료가 아닌, 다운스트림 공정의 성능과 비용 동학을 좌우하는 차별화된 제품 특성 및 순도 프로파일을 가진 소재로 포지셔닝합니다. 이해관계자들이 보다 전문적인 등급과 지속가능성 중심의 조달로 전환함에 따라, 단기적인 공급 변동과 장기적인 합금 품질 및 공정 적합성 요건을 양립시켜야 합니다. 따라서 이 보고서는 지역과 산업 부문을 아우르는 조달 탄력성, 제품 최적화, 규제 대응을 지원하는 실무적 통찰력에 초점을 맞추었습니다.

이 보고서는 기술 사양과 공급원을 최종 용도의 성능에 연결하는 데 중점을 두어 의사 결정자가 조달 전략, 공급업체와의 파트너십, 선광 및 재활용 인프라에 대한 자본 투자를 평가할 수 있도록 돕습니다. 또한, 정책 전환과 기술 도입이 크롬 생태계 전반의 비용 구조와 가치 창출을 어떻게 재구성할 것인지에 대해 살펴보고, 후속 섹션의 토대를 제공합니다.

진화하는 지속가능성에 대한 기대, 디지털 품질 관리, 지정학적 재편이 크롬 공급 관계와 가치 창출을 재구축하는 방법

정책, 기술 및 최종 시장 요구 사항의 여러 요인이 결합되어 크롬 산업은 혁신적인 전환기를 맞이하고 있습니다. 첫째, 탈탄소화 및 청정 제조 공정에 대한 추진으로 고순도 원료와 라이프사이클 배출량을 줄이는 재활용 자원에 대한 관심이 높아지고 있습니다. 이러한 전환으로 인해 구매자는 전통적인 야금 사양 외에도 내장 탄소 및 공정 에너지 강도를 고려하게 되면서 조달 기준이 변화하고 있습니다.

둘째, 디지털화 및 공정 분석 기술을 통해 합금 제조 및 전기도금 공정에서 보다 세밀한 품질 관리가 가능해져 일관된 특성을 가진 원료의 가치 제안이 증가하고 있습니다. 그 결과, 추적성, 온라인 품질 모니터링, 엄격한 사양 준수에 투자하는 생산자 및 정제업체는 고부가가치 응용 분야에서 프리미엄 가격을 받을 수 있는 유리한 위치에 있습니다. 이러한 투자는 규제 준수를 지원하고, 불투명한 공급망에 따른 평판 리스크를 줄이는 데 기여합니다.

셋째, 무역과 지정학적 재편으로 인해 기업은 조달처의 다변화와 일부 하류 가공 공정의 니어쇼어링을 추진하고 있습니다. 이러한 재조정은 물류 네트워크와 재고 전략에 영향을 미치고, 업스트림 광산 회사, 컨버터, 최종 사용자 간의 장기적인 파트너십과 공동 위험 분담의 틀을 촉진하고 있습니다. 이러한 변화를 종합하면, 상품 거래에서 신뢰성, 지속가능성 증명, 기술 협력을 중시하는 차별화된 서비스 중심공급 관계로 전환하고 있음을 알 수 있습니다.

2025년 미국의 관세 조치가 크롬 밸류체인 전반의 조달, 물류, 전략적 공급 탄력성에 미치는 다각적인 영향 평가

2025년 미국이 도입한 관세 조치는 크롬 가치사슬 전체에 다층적인 영향을 미치고 있으며, 조달 결정, 물류 경제성, 공급업체 전략에 영향을 미치고 있습니다. 최근의 영향으로는 특정 수입 원료의 착륙 비용 상승을 들 수 있으며, 이로 인해 바이어들은 국내 조달 옵션과 2차 재료 활용에 대한 재평가를 촉구하고 있습니다. 많은 기업들이 대체 공급업체를 빠르게 인증하거나 최종 가공 현장과 가까운 곳에 재고를 배치하는 방식으로 관세 관련 변동 리스크에 대한 노출을 줄이고 있습니다.

최근의 비용 압박과 더불어 관세 환경은 가치사슬의 탄력성 강화와 실현 가능한 범위 내에서 수직적 통합에 대한 투자를 촉진하고 있습니다. 일부 하류 생산자들은 원료 공급의 연속성을 확보하고 부가가치 가공을 통한 마진 확보를 위해 자체 선광처리 및 업스트림 사업자와의 긴밀한 제휴를 모색하고 있습니다. 동시에 중개업체와 유통업체가 계약 조건과 헤지 수단을 조정하여 정책 리스크 증가에 대응하는 가운데, 관세는 무역 루트의 재구축을 촉진하고 있습니다.

경쟁 측면에서는 정책 변경으로 인해 인근에 시설을 보유한 공급업체나 신속한 컴플라이언스 대응 및 관세 최적화에 대한 전문성을 보여줄 수 있는 업체가 우위를 점하게 되었습니다. 반대로 수입에 의존하는 기업들은 재활용 경로 모색, 공급업체 선정 강화, 현지 가공 능력에 대한 공동 투자 등 보다 적극적인 대응이 요구되고 있습니다. 전반적으로 지리적 위험, 가공 능력, 계약의 고도화 등의 축을 따라 시장이 전략적으로 세분화되는 누적 영향이 발생하고 있습니다.

제품 유형, 원산지, 최종 용도 요건, 순도 분류, 유통 경로가 경쟁적 위치를 결정하는 메커니즘을 파악하는 종합적인 세분화 분석

주요 세분화 분석은 제품 사양, 공급원 특성, 최종 용도 수요, 순도 요건, 유통 경로가 어떻게 상호 작용하여 상업적 역동성과 기술적 제약을 형성하는지를 보여줍니다. 제품 유형에 따라 시장은 크롬 금속, 크롬 광석, 크롬 산화물, 페로크롬으로 분류되며, 크롬 금속은 다시 전해질 제품, 분말 제품, 열처리 제품으로 나뉩니다. 크롬 광석은 일반적으로 농축광, 미분광, 덩어리광으로 분류되며, 산화크롬은 α형과 β형으로 구분됩니다. 페로크롬은 고탄소 등급과 저탄소 등급으로 나뉘며, 저탄소 등급은 다시 표준 저탄소와 초저탄소로 세분화됩니다. 이러한 제품 특성은 각각 다운스트림 공정의 가공성과 합금의 성능에 영향을 미칩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 크롬 시장 : 제품 유형별

  • 크롬 금속
    • 전해 크롬
    • 분말
    • 열처리
  • 크롬 광석
    • 농축물
    • 미분
    • 덩어리
  • 산화 크로늄
    • 알파 크롬 산화물
    • 베타 크롬 산화물
  • 페로크롬
    • 고탄소
    • 저탄소
      • 표준 저탄소
      • 초저탄소

제9장 크롬 시장 : 소스별

  • 1차 원료
  • 2차 원료
    • 여과 케이크
    • 고스크랩

제10장 크롬 시장 : 최종 이용 산업별

  • 합금 생산
  • 전기도금
  • 내화물
  • 스테인리스 스틸
    • 오스테나이트계
    • 페라이트계
    • 마르텐사이트계

제11장 크롬 시장 : 순도 등급별

  • 고순도 등급
    • 실험실용 등급
    • 반도체 등급
  • 표준 등급

제12장 크롬 시장 : 유통 채널별

  • 직접 판매
  • 유통업체 경유 판매
  • 온라인 판매

제13장 크롬 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 크롬 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 크롬 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Eurasian Resources Group S.A.
    • Glencore plc
    • South32 Limited
    • Samancor Chrome(Proprietary) Limited
    • Tata Steel Limited
    • Eramet S.A.
    • Xinfa Group Co., Ltd.
    • Jindal Stainless Limited
    • Dongkuk Steel Mill Co., Ltd.
    • International Ferro Metals Limited
LSH 25.11.20

The Chromium Market is projected to grow by USD 40.91 billion at a CAGR of 5.64% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 26.36 billion
Estimated Year [2025] USD 27.86 billion
Forecast Year [2032] USD 40.91 billion
CAGR (%) 5.64%

A succinct, authoritative overview of chromium's strategic role across supply chains, technical applications, and decision-making priorities for industrial leadership

The chromium landscape occupies a central role in enabling resilient industrial ecosystems, underpinning critical applications from alloy production to corrosion-resistant finishes. This executive summary distills the essential trends, structural shifts, and strategic imperatives emerging across the value chain, designed to inform senior leaders, procurement teams, and technical specialists. By focusing on the physical supply dynamics, evolving trade policy impacts, and end-use demand signals, the narrative highlights where operational risks and commercial opportunities are concentrating.

This introduction frames chromium not merely as a commodity input but as a material with differentiated product and purity profiles that drive downstream performance and cost dynamics. As stakeholders transition toward more specialized grades and sustainability-driven sourcing, they must reconcile short-term supply volatility with longer-term requirements for alloy quality and process compatibility. Consequently, this report centers on actionable intelligence that supports sourcing resilience, product optimization, and regulatory alignment across geographies and industry segments.

Throughout, emphasis is placed on linking technical specifications and supply origins to end-use performance, thus enabling decision-makers to evaluate procurement strategies, supplier partnerships, and capital investments in beneficiation or recycling infrastructure. The framing also anticipates how policy shifts and technological adoption will reshape cost structures and value capture across the chromium ecosystem, providing a foundation for the subsequent sections.

How evolving sustainability expectations, digital quality controls, and geopolitical realignments are reshaping chromium supply relationships and value creation

The chromium landscape is undergoing transformative shifts driven by converging forces in policy, technology, and end-market requirements. First, the push for decarbonization and cleaner manufacturing processes is accelerating interest in higher-purity inputs and in recycled sources that reduce lifecycle emissions. This transition is altering procurement criteria as buyers weigh embedded carbon and process energy intensity alongside traditional metallurgical specifications.

Second, digitalization and process analytics are enabling more granular quality control in alloy production and electroplating, which raises the value proposition of consistently characterized feedstocks. As a result, producers and refiners who invest in traceability, online quality monitoring, and tighter specification adherence are better positioned to capture premium placements in high-value applications. These investments also support regulatory compliance and help mitigate reputational risk associated with opaque supply chains.

Third, trade and geopolitical realignments are prompting firms to diversify sourcing and nearshore certain stages of downstream processing. This rebalancing affects logistics networks and inventory strategies, encouraging longer-term partnerships and collaborative risk-sharing arrangements between upstream miners, converters, and end-users. Taken together, these shifts signify a move from commodity trading toward differentiated, service-oriented supply relationships that emphasize reliability, sustainability credentials, and technical collaboration.

Assessing the multifaceted consequences of United States tariff actions introduced in 2025 on sourcing, logistics, and strategic supply resilience across the chromium value chain

Tariff measures introduced by the United States in 2025 have created layered effects across the chromium value chain, influencing sourcing decisions, logistics economics, and supplier strategy. Immediate implications include increased landed costs for certain imported feedstocks, which in turn have incentivized buyers to reassess domestic sourcing options and secondary material utilization. In many cases, firms have accelerated qualification of alternate suppliers or shifted inventory staging closer to final processing sites to dampen exposure to tariff-related volatility.

Beyond immediate cost pressures, the tariff landscape has encouraged investment in supply chain resilience and vertical integration where feasible. Some downstream producers are exploring in-house beneficiation or closer partnerships with upstream operators to secure feedstock continuity and to capture margin through value-added processing. At the same time, the tariffs have prompted a reconfiguration of trade lanes as intermediaries and distributors adapt contract terms and hedging instruments to accommodate greater policy risk.

From a competitive standpoint, the policy changes have advantaged suppliers with proximate facilities or those able to demonstrate rapid compliance and tariff optimization expertise. Conversely, firms dependent on affected import sources face heightened incentive to pursue recycling pathways, intensify supplier qualification efforts, or co-invest in local processing capacity. In sum, the cumulative impact is a market that is more strategically segmented along lines of geographic exposure, processing capability, and contractual sophistication.

Comprehensive segmentation insights revealing how product variants, source origins, end-use requirements, purity distinctions, and distribution channels determine competitive positioning

Key segmentation insights reveal how product specifications, source characteristics, end-use demands, purity requirements, and distribution channels together shape commercial dynamics and technical constraints. Based on product type, the market differentiates between chromium metal, chromium ore, chromium oxide, and ferrochrome, with chromium metal further characterized by electrolytic, powder, and thermal variants. Chromium ore is commonly categorized into concentrate, fine, and lumpy fractions, while chromium oxide is distinguished by alpha and beta forms. Ferrochrome spans high carbon and low carbon grades, with low carbon further divided into standard low carbon and ultra low carbon, and each of these product distinctions affects downstream processability and alloy performance.

Based on source, the sector differentiates primary origin materials from secondary streams, where secondary feedstocks include filter cake and old scrap; these secondary sources increasingly contribute to circularity and can alter impurity profiles that downstream processors must manage. Based on end use industry, demand arises from alloy production, electroplating, refractories, and stainless steel, with stainless steel itself segmented into austenitic, ferritic, and martensitic subtypes that impose distinct metallurgical requirements. Based on purity grade, differentiation between high purity grade and standard grade matters, as high purity classifications further separate into laboratory grade and semiconductor grade, each commanding stringent contaminant and trace element controls. Based on distribution channel, procurement flows through direct sales, distributor sales, and online sales channels, and these routes influence lead times, contractual terms, and service levels.

Taken together, these segmentation axes reveal that competitive positioning rests not only on scale but on the ability to consistently meet narrowly defined specifications, to offer reliable logistics and quality traceability, and to provide technical support tailored to end-use applications. Accordingly, strategic choices around investment in purification, recycling, and certification capabilities are increasingly determinative of market access and margin.

Regional dynamics and strategic implications across the Americas, Europe Middle East & Africa, and Asia-Pacific shaping sourcing, processing, and trade patterns

Regional dynamics in the chromium market reflect a mix of resource endowments, industrial demand centers, and regulatory regimes that shape trade flows and investment priorities. In the Americas, proximity to major stainless steel producers and integrated alloy manufacturers supports a focus on processed ferroalloys and value-added metal supplies, while North-South trade relationships and logistics considerations influence feedstock routing. In Europe, the Middle East & Africa, diverse resource basins and a concentration of high-end manufacturing drive demand for certified high-purity inputs and recycling infrastructure, with regulatory scrutiny on environmental performance guiding procurement practices and supplier selection.

In the Asia-Pacific region, a combination of large stainless steel capacity, integrated refining systems, and proximity to raw mineral sources creates a complex tapestry of competitive strengths and logistical efficiencies. This region is also a focal point for technological investment in smelting and refining, which has implications for product mix and export patterns. Across all regions, policies related to trade, sustainability reporting, and local content can meaningfully alter supplier economics and spur relocation of certain processing stages.

Consequently, firms operating across multiple regions must tailor commercial strategies and technical offerings to regional priorities, aligning certification, logistics, and partnership structures with localized regulatory and market realities. Strategic localization of inventory, selective nearshoring of processing, and regional supplier development programs are among the options organizations pursue to navigate these differentiated regional landscapes.

How leading producers and processors are winning through metallurgical excellence, supply chain integration, and demonstrated environmental and quality credentials

Leading companies across the chromium ecosystem are differentiating through investments in technical capabilities, sustainability credentials, and integrated supply solutions. Producers that have prioritized traceability, emissions intensity reduction, and consistent quality control are increasingly favored by high-specification end-users. These firms are also leveraging process optimization and automation to improve yields and to reduce impurity levels that can complicate downstream alloying and plating operations.

On the commercial front, key companies have developed flexible distribution networks that blend direct contractual relationships with distributors and digital platforms to meet variable demand patterns and to shorten lead times. Strategic partnerships between miners, refiners, and frontend manufacturers are becoming more common as firms seek to share risk and to secure feedstock volumes under more predictable terms. Additionally, there is growing activity in the secondary materials space, where specialized recyclers and processors have emerged to capture value from filter cake and scrap streams by applying advanced separation and purification techniques.

Collectively, these corporate moves highlight that competitive advantage increasingly arises from a combination of metallurgical expertise, supply chain integration, and demonstrable environmental management. Firms that can articulate and verify these capabilities through robust documentation and third-party certification position themselves to win long-term contracts with demanding industrial users.

Practical, high-impact recommendations for industry leaders to enhance resilience, secure high-quality feedstock access, and capture value through technical and sustainability investments

Industry leaders should prioritize a portfolio of actions to safeguard supply continuity, optimize product quality, and capitalize on shifting demand for specialized grades. First, invest in enhanced traceability and quality assurance systems that link feedstock attributes to downstream performance metrics, thereby enabling premium pricing for reliably specified outputs and reducing rejection risk. Second, accelerate development of secondary processing capabilities and partnerships focused on filter cake and scrap recovery to strengthen circularity and to lower exposure to constrained primary supply lines.

Third, diversify sourcing strategies by combining geographic diversification with contractual mechanisms such as longer-term offtake agreements and strategic inventory placement to reduce tariff and trade disruption exposure. Fourth, pursue selective vertical integration or joint ventures with upstream operators where economic alignment exists to secure critical feedstocks and to capture added value from beneficiation. Fifth, elevate sustainability reporting and certifications to meet buyer expectations and regulatory requirements, prioritizing transparency on emissions, waste management, and worker safety.

Finally, focus R&D and capital allocation on process innovations that reduce energy intensity, improve impurity removal, and enable higher yields for premium grades. By undertaking these actions in concert, industry leaders can increase resilience, create differentiation, and position their organizations to serve an increasingly specification-driven customer base efficiently.

An explanation of the rigorous mixed-methods research approach combining expert interviews, technical literature, and supply chain verification to support reliable conclusions

This research employed a mixed-methods approach that integrates primary stakeholder engagement, technical literature review, and supply chain analysis to construct a robust understanding of the chromium ecosystem. Primary engagement included structured interviews with metallurgists, procurement executives, and operations leaders across mining, refining, alloy production, and end-use manufacturing. These qualitative insights were triangulated with published technical standards, regulatory texts, and process engineering literature to ensure that conclusions reflected both practice and codified requirements.

Analytical techniques focused on mapping product and purity interdependencies, tracing trade and logistics pathways, and assessing policy-induced cost and timing impacts on procurement strategies. Data validation was achieved through cross-referencing supplier specifications, process yield reports, and publicly available trade statistics, with attention to variance in reporting standards across regions. Where appropriate, scenario analysis illuminated how changes in trade policy or supply disruptions could alter supplier selection and processing choices.

Throughout the research, emphasis was placed on reproducibility and transparency in methodology. Assumptions and data sources were documented to enable users to evaluate the applicability of findings to specific operational or strategic contexts. The methodological rigor ensures that recommendations are grounded in observable practice and technical realities rather than conjecture.

A forward-looking synthesis highlighting how technical excellence, circularity, and supply resilience will determine competitive advantage in the chromium sector

In conclusion, chromium occupies a strategic intersection of materials science, industrial policy, and commercial risk management. The industry is transitioning toward higher specification products, greater circularity, and more resilient supply arrangements in response to sustainability mandates, technological advancements, and evolving trade regimes. These dynamics favor suppliers who can demonstrate consistent quality, low environmental intensity, and the ability to provide integrated services that reduce complexity for buyers.

Moving forward, stakeholders should treat chromium procurement and processing decisions as strategic levers that influence product performance, regulatory compliance, and cost stability. Organizations that adopt rigorous quality control, invest in secondary recovery pathways, and proactively manage regional exposure will be better equipped to navigate policy shocks and technological shifts. By aligning technical investments with commercial strategies, firms can both mitigate near-term disruption and position themselves to capture the higher-value segments of the market as demand for specialized grades grows.

Ultimately, the most resilient and successful operators will be those that combine metallurgical capability with supply chain sophistication and credible environmental stewardship to meet the exacting needs of modern industrial users.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Increasing adoption of AMD and Intel GPU integration in Chromium for enhanced graphics performance
  • 5.2. Rising prevalence of AI-driven performance optimization extensions in Chromium ecosystems
  • 5.3. Growing demand for secure hardware-backed sandboxing in Chromium-based enterprise deployments
  • 5.4. Integration of open source WebGPU APIs into Chromium to accelerate cross platform graphics development
  • 5.5. Expansion of Progressive Web App capabilities in Chromium to support offline and push notification features

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Chromium Market, by Product Type

  • 8.1. Chromium Metal
    • 8.1.1. Electrolytic
    • 8.1.2. Powder
    • 8.1.3. Thermal
  • 8.2. Chromium Ore
    • 8.2.1. Concentrate
    • 8.2.2. Fine
    • 8.2.3. Lumpy
  • 8.3. Chromium Oxide
    • 8.3.1. Alpha Chrome Oxide
    • 8.3.2. Beta Chrome Oxide
  • 8.4. Ferrochrome
    • 8.4.1. High Carbon
    • 8.4.2. Low Carbon
      • 8.4.2.1. Standard Low Carbon
      • 8.4.2.2. Ultra Low Carbon

9. Chromium Market, by Source

  • 9.1. Primary
  • 9.2. Secondary
    • 9.2.1. Filter Cake
    • 9.2.2. Old Scrap

10. Chromium Market, by End Use Industry

  • 10.1. Alloy Production
  • 10.2. Electroplating
  • 10.3. Refractories
  • 10.4. Stainless Steel
    • 10.4.1. Austenitic
    • 10.4.2. Ferritic
    • 10.4.3. Martensitic

11. Chromium Market, by Purity Grade

  • 11.1. High Purity Grade
    • 11.1.1. Laboratory Grade
    • 11.1.2. Semiconductor Grade
  • 11.2. Standard Grade

12. Chromium Market, by Distribution Channel

  • 12.1. Direct Sales
  • 12.2. Distributor Sales
  • 12.3. Online Sales

13. Chromium Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Chromium Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Chromium Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Eurasian Resources Group S.A.
    • 16.3.2. Glencore plc
    • 16.3.3. South32 Limited
    • 16.3.4. Samancor Chrome (Proprietary) Limited
    • 16.3.5. Tata Steel Limited
    • 16.3.6. Eramet S.A.
    • 16.3.7. Xinfa Group Co., Ltd.
    • 16.3.8. Jindal Stainless Limited
    • 16.3.9. Dongkuk Steel Mill Co., Ltd.
    • 16.3.10. International Ferro Metals Limited
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제