시장보고서
상품코드
1864080

신체 착용 온도 센서 시장 : 기술별, 최종사용자별, 폼팩터별, 용도별 - 세계 예측(2025-2032년)

Body-Worn Temperature Sensors Market by Technology, End User, Form Factor, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 195 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

신체 착용 온도 센서 시장은 2032년까지 연평균 복합 성장률(CAGR) 16.45%로 7억 3,733만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 2억 1,800만 달러
추정 연도 : 2025년 2억 5,360만 달러
예측 연도 : 2032년 7억 3,733만 달러
CAGR(%) 16.45%

기술 발전, 이해관계자의 요구, 연결성이 신체 부착형 온도 센서 시스템을 통한 지속적인 생리적 모니터링을 어떻게 재정의하고 있는지에 대한 간략한 개요

신체 부착형 온도 센서의 채택은 임상의, 연구자, 운동 트레이너, 간병인이 중추신경계 신호를 실시간으로 모니터링하는 방법을 재구성하고 있습니다. 센서 설계, 저전력 전자기기, 무선 연결 기술의 발전으로 과거 순간적인 측정은 더 넓은 디지털 건강 생태계와 통합할 수 있는 지속적이고 맥락에 맞는 데이터 세트로 변모했습니다. 이들 장치는 임상 등급의 센싱과 소비자 편의성을 결합하여 신생아 병동에서 지구력 스포츠에 이르기까지 다양한 환경에서 새로운 모니터링 패러다임을 가능하게 하고 있습니다.

이해관계자들의 고정밀화, 저지연화, 환자 편의성 향상을 요구하는 가운데, 제품 개발 계획에서 소형화, 피부 접촉면 소재 개선, 장치 내 신호 처리를 통한 강력한 아티팩트 제거가 점점 더 강조되고 있습니다. 소프트웨어 분야, 특히 데이터 융합, 클라우드 분석, 프라이버시 보호 아키텍처의 동시적인 발전으로 연속적인 체온 데이터 스트림에서 실용적인 임상적 및 성능적 통찰력을 도출할 수 있게 되었습니다. 이 소개 섹션에서는 임상 워크플로우와 소비자 이용 사례를 재정의하는 주요 기술 요소, 최종 사용자 측면의 촉진요인, 규제적 고려 사항을 개괄하고, 나머지 Executive Summary의 내용을 정리합니다.

센서 기술, 엣지 분석, 규제 명확화, 상호운용성 관련 협업의 발전이 제품 전략과 임상 도입 경로를 근본적으로 변화시키는 방법

기술, 규제, 사용자 기대의 수렴력에 의해 신체 부착형 온도 센서의 상황은 변혁적인 변화를 겪고 있습니다. 센서 기술은 다양해지고 있습니다. 광학 및 서미스터 방식 외에도 보다 견고한 열전대 및 열전대가 통합되어 다양한 형태와 환경에서의 작동 범위가 확대되고 있습니다. 이 기술의 다양성으로 인해 원격 의료를 위한 저전력 연속 모니터링, 임상 분류를 위한 고속, 단시간, 고정밀 측정 등 용도에 최적화된 디바이스를 구현할 수 있습니다.

동시에, 기기에서의 지능화와 엣지 분석의 통합으로 인해 의사결정 프로세스가 센서에 가까워지고 있습니다. 이를 통해 신생아 모니터링, 운동 후 회복 상황 등에서 대역폭 비용을 절감하고 응답성을 향상시킬 수 있습니다. 규제 프레임워크도 계속 진화하고 있으며, 각 기관은 디지털 헬스 액세서리의 분류를 명확히 하고, 검증 프로세스에 대한 보다 구체적인 지침을 제공합니다. 이로 인해 제조업체들은 개별 인증이 가능한 모듈식 설계를 추구하게 되었습니다. 마지막으로, 상호운용성과 안전한 데이터 교환에 대한 요구가 높아지면서 센서 OEM 제조업체, 원격 의료 플랫폼, 전자 건강 기록 제공업체 간의 협력이 진행되어 지속적인 치료를 지원하는 엔드 투 엔드 솔루션 구축이 가속화되고 있습니다.

2025년 미국의 관세 조치가 웨어러블 온도 센서의 전체 밸류체인에서 조달 전략, 가격 책정 역학, 설계 우선순위를 어떻게 재구성했는지에 대한 전략적 평가

2025년 시행된 미국 관세의 누적된 영향은 신체 부착형 온도 센서 생태계에서 조달, 제품 아키텍처, 상업 전략 등 전 영역에 걸쳐 다층적인 고려 사항을 가져왔습니다. 장치 제조업체의 초기 대응으로는 부품표(BOM) 구성 재평가를 통해 관세 차이에 가장 큰 영향을 받는 부품 식별, 관세 면제 지역공급업체 우선순위 재조정, 비용 변동성을 완화하기 위한 장기 공급업체 계약 협상 등이 있습니다. 이러한 공급측의 대응은 유리한 무역 분류를 유지하고 관세 인상의 영향을 줄이기 위해 조립 공정과 최종 통합 공정의 현지화에 대한 논의도 가속화되고 있습니다.

유통 측면에서는 채널 파트너와 국제 유통업체들이 전략적 우선순위와 경쟁적 입장에 따라 증분 비용을 선택적으로 분담하거나 흡수하는 가격 책정 방식과 계약 조건의 재구성을 통해 대응하고 있습니다. 조달 조직은 조달 전략에 관세 시나리오 분석을 통합하고, 공급업체의 내성 및 리드타임 변동성에 대한 스트레스 테스트를 강화하고 있습니다. 제품 계획의 관점에서 관세는 제조가능성 설계의 선택 가치를 재인식하게 했습니다. 이를 통해 관세의 영향을 받기 쉬운 서브 컴포넌트에 대한 의존도를 낮추고, 전체 디바이스의 리뉴얼이 아닌 모듈 단위의 업그레이드를 가능하게 합니다. 이러한 변화들은 종합적으로 고관세 환경에서 중요한 리스크 완화 수단으로서 업무 유연성과 전략적 공급업체 관계의 중요성을 강조하고 있습니다.

센서 기술, 최종 사용자 요구사항, 폼 팩터, 용도 프로파일을 일치시키는 종합적인 세분화 기반 프레임워크를 통해 제품 개발 및 임상 검증 전략의 우선순위를 정할 수 있습니다.

미묘한 차이를 고려한 세분화 프레임워크는 제품 포지셔닝, 투자 우선순위 결정, 임상 검증 활동의 명확화에 기여합니다. 기술 기반에서는 적외선, 서미스터, 열전대, 열전대, 써모파일 접근법이 대상 영역이 되며, 각각 응답성, 전력 소비, 환경 내성에서 트레이드오프가 존재하여 연속 모니터링과 간헐적 모니터링의 적합성을 좌우합니다. 최종 사용자 기반 상황에서는 동물 모니터링, 의료, 연구, 스포츠 및 피트니스가 포함됩니다. 의료 분야는 클리닉, 홈케어, 병원 환경으로 세분화되고, 연구 분야는 학술기관과 산업 연구소로, 스포츠&피트니스 분야는 소비자 피트니스와 프로 스포츠용으로 구분됩니다. 각 최종 사용자 클러스터는 인증, 내구성, 데이터 액세스와 관련하여 고유한 요구 사항을 제시합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 신체 착용 온도 센서 시장 : 기술별

  • 적외선
  • 서미스터
  • 열전대
  • 열전소자

제9장 신체 착용 온도 센서 시장 : 최종사용자별

  • 동물 모니터링
  • 헬스케어
    • 진료소
    • 홈케어
    • 병원
  • 연구
    • 학술기관
    • 산업
  • 스포츠 및 피트니스
    • 소비자 피트니스
    • 프로스포츠

제10장 신체 착용 온도 센서 시장 : 폼팩터별

  • 클립온
  • 귀 장착
  • 패치
    • 일회용
    • 재이용 가능
  • 손목 장착형

제11장 신체 착용 온도 센서 시장 : 용도별

  • 지속적 모니터링
    • 온사이트
    • 원격
  • 발열 모니터링
  • 피트니스 추적
    • 사이클링
    • 런닝
    • 수영
  • 유아 모니터링
    • 신생아
    • 소아

제12장 신체 착용 온도 센서 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 신체 착용 온도 센서 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 신체 착용 온도 센서 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Apple Inc.
    • Fitbit, Inc.
    • Garmin Ltd.
    • Oura Health Oy
    • BioIntelliSense, Inc.
    • Cosinuss GmbH
    • Blue Spark Technologies, Inc.
    • Sensium Healthcare Ltd.
    • iHealth Labs, Inc.
    • VitalConnect, Inc.
LSH 25.11.20

The Body-Worn Temperature Sensors Market is projected to grow by USD 737.33 million at a CAGR of 16.45% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 218.00 million
Estimated Year [2025] USD 253.60 million
Forecast Year [2032] USD 737.33 million
CAGR (%) 16.45%

A concise orientation to how technological advances, stakeholder needs, and connectivity are redefining continuous physiological monitoring with body-worn temperature sensor systems

The adoption of body-worn temperature sensors is reshaping how clinicians, researchers, athletic trainers, and caregivers monitor core physiological signals in real time. Advances in sensor design, energy-efficient electronics, and wireless connectivity have transformed what were once point-in-time measurements into continuous, contextualized datasets that can be integrated with broader digital health ecosystems. These devices bridge clinical-grade sensing with consumer convenience, enabling new monitoring paradigms across a range of environments from neonatal units to endurance sports.

As stakeholders demand higher fidelity, lower latency, and better patient comfort, product roadmaps are increasingly focused on miniaturization, improved skin-interface materials, and robust artifact rejection through on-device signal processing. Parallel progress in software-particularly in data fusion, cloud analytics, and privacy-preserving architectures-has made it feasible to derive actionable clinical and performance insights from continuous temperature streams. This introductory section frames the remainder of the executive summary by outlining the principal technological levers, end-user drivers, and regulatory considerations that are redefining clinical workflows and consumer use cases.

How advancements in sensor technology, edge analytics, regulatory clarity, and interoperability collaborations are fundamentally altering product strategies and clinical adoption pathways

The landscape for body-worn temperature sensors is undergoing transformative shifts driven by converging forces across technology, regulation, and user expectations. Sensor technologies are diversifying: optical and thermistor approaches are being complemented by more robust thermopile and thermocouple integrations that extend operational envelopes for different form factors and environments. This technological plurality is enabling devices that can be purpose-optimized-favoring low-power continuous monitoring for remote care or high-speed, short-term accuracy for clinical triage.

Concurrently, the integration of on-device intelligence and edge analytics is moving more decisioning closer to the sensor, reducing bandwidth costs and improving responsiveness in situations such as neonatal monitoring or athletic recovery. Regulatory frameworks are also evolving; agencies are clarifying categories for digital health accessories and providing more explicit guidance on validation pathways, which in turn is encouraging manufacturers to pursue modular designs that can be independently certified. Finally, the push for interoperability and secure data exchange has intensified, prompting alliances between sensor OEMs, telehealth platforms, and electronic health record providers to create end-to-end solutions that support longitudinal care.

A strategic assessment of how the 2025 United States tariff measures have reshaped sourcing strategies, pricing dynamics, and design priorities across the wearable temperature sensor value chain

The cumulative impact of United States tariffs enacted in 2025 has introduced layered considerations across sourcing, product architecture, and commercial strategy within the body-worn temperature sensors ecosystem. Early responses from device manufacturers include re-evaluating bill-of-materials compositions to identify components most affected by tariff differentials, re-prioritizing suppliers in tariff-exempt jurisdictions, and negotiating longer-term supplier contracts to buffer cost volatility. These supply-side responses are also accelerating discussions around localizing assembly or final integration steps to retain favorable trade classifications and to reduce exposure to tariff escalations.

On the distribution side, channel partners and international distributors are adapting by restructuring pricing approaches and contractual terms to share or absorb incremental costs selectively, depending on strategic priorities and competitive positioning. Procurement organizations are increasingly incorporating tariff scenario analysis into their sourcing playbooks, stress-testing supplier resilience and lead-time variability. From a product planning perspective, the tariffs have reinforced the value of design-for-manufacturability choices that reduce reliance on tariff-sensitive subcomponents and enable modular upgrades rather than complete device refreshes. Taken together, these shifts emphasize operational flexibility and strategic supplier relationships as critical risk-mitigation levers in a higher-tariff environment.

A comprehensive segmentation-driven framework that aligns sensor technology, end-user requirements, form factors, and application profiles to prioritize product development and clinical validation strategies

A nuanced segmentation framework provides clarity for product positioning, investment prioritization, and clinical validation efforts. Based on Technology the field spans Infrared, Thermistor, Thermocouple, and Thermopile approaches, each offering trade-offs in responsiveness, power consumption, and environmental resilience that influence suitability for continuous versus episodic monitoring. Based on End User the landscape includes Animal Monitoring, Healthcare, Research, and Sports & Fitness, with Healthcare further differentiated into Clinics, Home Care, and Hospital settings; Research subdivided into Academic and Industrial laboratories; and Sports & Fitness partitioned into Consumer Fitness and Professional Sports applications-each end-user cluster driving distinct requirements around certification, durability, and data access.

Based on Form Factor product types encompass Clip-On, Ear Wearable, Patch, and Wrist Wearable devices, with the Patch category bifurcated into Disposable and Reusable options that have implications for cost-per-use, hygiene protocols, and environmental considerations. Based on Application the principal use cases are Continuous Monitoring, Fever Monitoring, Fitness Tracking, and Infant Monitoring; Continuous Monitoring can be executed Onsite or Remotely, Fitness Tracking is frequently focused on Cycling, Running, and Swimming subdomains where moisture and motion artifacts present unique challenges, and Infant Monitoring differentiates between Neonatal and Pediatric pathways where regulatory rigor and clinical validation demands vary substantially. This segmentation structure allows stakeholders to map competitive sets, specify validation criteria, and align commercialization timelines with buyer expectations and reimbursement realities.

How divergent regulatory regimes, healthcare funding models, and manufacturing ecosystems across global regions influence adoption, supply chains, and commercialization priorities

Regional dynamics play a pivotal role in determining adoption curves, regulatory requirements, and supply chain topology for body-worn temperature sensor solutions. In the Americas, demand is shaped by a mix of advanced clinical deployments and consumer health adoption, supported by a dense network of reimbursement pathways and digital health investment, which creates fertile ground for integrated remote monitoring solutions. In Europe, Middle East & Africa heterogeneous regulatory regimes and varying healthcare funding models incentivize modular product strategies and partnerships with local distributors to accelerate clinical acceptance and market access.

The Asia-Pacific region is characterized by manufacturing scale, rapid adoption of telehealth platforms, and a diversity of use cases from neonatal care centers to high-performance sports programs, which together drive both volume production and iterative innovation. Cross-region supply chain considerations and regional regulatory variances underscore the importance of geographically informed product roadmaps, the selection of certification targets, and strategic localization of manufacturing and clinical evidence generation to optimize time-to-adoption and mitigate cross-border compliance risks.

An industry-level examination of how OEMs, component suppliers, startups, and platform partners are realigning product portfolios, partnerships, and commercialization models to capture emerging opportunities

Key company-level dynamics center on the repositioning of traditional medical-device manufacturers, sensor component suppliers, and emergent digital health entrants. Established OEMs are leveraging scale, regulatory experience, and channel relationships to expand beyond discrete devices into bundled services that include analytics and clinical support. Component suppliers are investing in sensor fidelity, robustness, and integration-ready modules to allow system OEMs to accelerate time-to-market. Meanwhile, specialized startups and software-first players are concentrating on algorithmic differentiation, data interoperability, and user experience to capture niche clinical and consumer segments.

Partnership models are evolving: design houses and system integrators are collaborating more closely with clinical institutions for iterative validation, and strategic alliances between platform providers and device manufacturers are becoming common to deliver turnkey solutions. This ecosystem movement favors modular architectures, clear API-based data contracts, and commercially aligned clinical validation pathways to enable faster integration into care pathways and athletic performance workflows. Investors and corporate development teams continue to evaluate vertical integration versus partner-led models based on distribution reach, regulatory burden, and the potential for recurring software revenue streams.

Actionable strategic interventions for device makers, platform providers, and channel partners to strengthen resilience, accelerate clinical acceptance, and create recurring revenue through solution-led approaches

Industry leaders should take decisive, coordinated actions that balance innovation, regulatory compliance, and supply chain resilience. First, prioritize modular design and component standardization to enable rapid substitution of tariff-sensitive parts, facilitate local assembly, and reduce dependency on single-source suppliers. Second, invest in robust clinical evidence generation that is aligned with clear regulatory pathways and targeted reimbursement discussions; selective investment in high-accreditation studies will accelerate trust among clinicians and institutional buyers.

Third, embed privacy-by-design and interoperability standards from product inception to simplify integrations with electronic health records and telehealth platforms, thereby enhancing adoption. Fourth, pursue strategic partnerships with regional distributors and service providers to address localized regulatory and procurement requirements, while maintaining control over critical IP and quality standards. Fifth, diversify commercialization models by pairing device sales with subscription-based analytics or managed monitoring services to capture recurring value and deepen client relationships. Together, these actions will position leaders to move from product-centric offers to outcome-focused solutions that meet the evolving needs of providers, researchers, and consumers.

A transparent, multi-method approach combining primary stakeholder engagement, secondary technical analysis, and scenario-based validation to ensure robust and actionable insights across technologies and use cases

The research methodology underpinning this analysis combines qualitative inquiry with rigorous data validation to generate actionable insights. Primary research incorporated structured interviews with device engineers, clinical stakeholders, procurement specialists, and platform integrators to capture real-world constraints and adoption drivers. Secondary research drew on technical literature, regulatory guidance documents, and public filings to map technology trajectories, certification pathways, and competitive positioning. Triangulation methods were used to cross-validate findings from multiple sources and to surface consistent themes across stakeholders and geographies.

Scenario analysis was applied to assess supply chain sensitivities and tariff exposure, while use-case mapping connected form-factor and technology choices to specific clinical and consumer requirements. Where applicable, technology readiness and risk profiles were developed to help prioritize development tasks and validation efforts. Limitations are acknowledged: proprietary commercial terms and confidential procurement arrangements can limit visibility into some pricing dynamics, and rapid technological change may alter competitive positions; to mitigate these limitations, the methodology emphasizes transparent assumptions and provides a framework for updating conclusions as new data becomes available.

A closing synthesis emphasizing the critical balance between tactical supply chain resilience and strategic investments in validation, interoperability, and service-oriented product differentiation

In summary, body-worn temperature sensors are at an inflection point where advances in sensing, edge analytics, and integration with digital health platforms enable new models of care and performance optimization. Success in this evolving space will depend on the ability to align product designs with end-user contexts, to validate solutions through appropriate clinical and usability evidence, and to design supply chains and commercial models that are resilient to geopolitical and tariff-related disruptions.

Stakeholders that adopt modular architectures, pursue strategic partnerships for regional access, and invest in interoperable, privacy-preserving data infrastructures will be best positioned to translate technological potential into sustained adoption. The path forward is iterative: short-term tactical moves to secure supply chain continuity should be paired with medium- to long-term investments in clinical validation, product differentiation, and service delivery models that together create defensible competitive advantages.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Adoption of continuous body-worn temperature sensors for remote patient monitoring in telehealth
  • 5.2. Integration of AI algorithms with wearable temperature sensors for early fever detection and diagnosis
  • 5.3. Development of flexible and skin-conformable thermosensing materials for enhanced user comfort
  • 5.4. Expansion of pediatric body-worn temperature monitoring devices to support neonatal intensive care units
  • 5.5. Growing demand for multi-parameter wearable patches combining temperature heart rate and activity tracking
  • 5.6. Emerging regulatory frameworks for clinical approval of wearable temperature monitoring medical devices
  • 5.7. Advancements in energy harvesting technologies to power body-worn temperature sensors for extended use

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Body-Worn Temperature Sensors Market, by Technology

  • 8.1. Infrared
  • 8.2. Thermistor
  • 8.3. Thermocouple
  • 8.4. Thermopile

9. Body-Worn Temperature Sensors Market, by End User

  • 9.1. Animal Monitoring
  • 9.2. Healthcare
    • 9.2.1. Clinics
    • 9.2.2. Home Care
    • 9.2.3. Hospital
  • 9.3. Research
    • 9.3.1. Academic
    • 9.3.2. Industrial
  • 9.4. Sports & Fitness
    • 9.4.1. Consumer Fitness
    • 9.4.2. Professional Sports

10. Body-Worn Temperature Sensors Market, by Form Factor

  • 10.1. Clip-On
  • 10.2. Ear Wearable
  • 10.3. Patch
    • 10.3.1. Disposable
    • 10.3.2. Reusable
  • 10.4. Wrist Wearable

11. Body-Worn Temperature Sensors Market, by Application

  • 11.1. Continuous Monitoring
    • 11.1.1. Onsite
    • 11.1.2. Remote
  • 11.2. Fever Monitoring
  • 11.3. Fitness Tracking
    • 11.3.1. Cycling
    • 11.3.2. Running
    • 11.3.3. Swimming
  • 11.4. Infant Monitoring
    • 11.4.1. Neonatal
    • 11.4.2. Pediatric

12. Body-Worn Temperature Sensors Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Body-Worn Temperature Sensors Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Body-Worn Temperature Sensors Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Apple Inc.
    • 15.3.2. Fitbit, Inc.
    • 15.3.3. Garmin Ltd.
    • 15.3.4. Oura Health Oy
    • 15.3.5. BioIntelliSense, Inc.
    • 15.3.6. Cosinuss GmbH
    • 15.3.7. Blue Spark Technologies, Inc.
    • 15.3.8. Sensium Healthcare Ltd.
    • 15.3.9. iHealth Labs, Inc.
    • 15.3.10. VitalConnect, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제