시장보고서
상품코드
1864095

디지털 전력계 시장 : 용도별, 위상 유형별, 통신 방식별, 설치 방법별, 전력 범위별 - 세계 예측(2025-2032년)

Digital Power Meters Market by Application, Phase Type, Communication, Installation, Power Range - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 189 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

디지털 전력계 시장은 2032년까지 연평균 복합 성장률(CAGR) 12.95%로 298억 5,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 112억 6,000만 달러
추정 연도 : 2025년 127억 5,000만 달러
예측 연도 : 2032년 298억 5,000만 달러
CAGR(%) 12.95%

현대 에너지 시스템 전반의 가시화, 최적화 및 상용화를 위한 인텔리전스 노드로서 디지털 전력계측기의 전략적 역할을 소개합니다.

디지털 전력계측기의 보급은 유틸리티, 산업, 상업 사업자가 전기 에너지를 측정, 관리, 수익화 하는 방법을 재구성하고 있습니다. 디지털 미터는 현재 고정밀 측정, 내장형 인텔리전스, 여러 통신 경로를 통합하여 분산된 전체 자산에 대한 실시간 가시성을 실현합니다. 전력 계통의 분산화와 분산형 에너지 자원의 보급에 따라 이러한 장치는 분석, 제어 루프, 과금 프로세스에 정보를 제공하는 주요 데이터 수집 노드 역할을 합니다. 그 결과, 이해관계자들은 이를 단순한 거래 장치가 아닌 전략적 도구로 인식하는 경향이 강해지고 있습니다.

본 논문은 디지털 전력계를 스마트하고 분산된 에너지 시스템으로의 전환, 실용적이고 상세한 에너지 데이터에 대한 수요 증가, 규제 및 지속가능성 노력의 필요성이라는 세 가지 수렴하는 흐름에 위치시킵니다. 이러한 추세와 함께 계측 솔루션의 정확성, 상호운용성, 보안의 수준이 높아지고 있습니다. 상호운용성과 안전한 데이터 전송에 대한 강조로 인해 통신 프로토콜과 설치 방법의 중요성이 높아지면서 제조업체와 시스템 통합사업자는 모듈성과 표준 준수를 우선순위에 두어야 합니다.

운영 측면에서 디지털 계량기는 수동 개입을 줄이고 고장 감지, 원격 설정 및 요금 체계 적용에 있어 자동화된 워크플로우를 실현합니다. 전략적인 측면에서 생성된 데이터는 에너지 최적화, 수요반응 참여, 자산 수익화를 가능하게 합니다. 기술이 성숙해짐에 따라, 가장 성공적인 도입 사례는 하드웨어 역량과 생태계 서비스 라이프사이클 지원을 일치시켜 계측을 비용 중심에서 가치 창출 자산으로 전환하는 것입니다.

디지털 계측 솔루션의 제품 요구사항, 보안 요구사항, 서비스 모델을 재정의하는 기술적, 규제적, 상업적 변화를 파악합니다.

디지털 전력계측기의 환경은 기술의 융합, 진화하는 통신 요구, 변화하는 도입 환경으로 인해 빠르게 변화하고 있습니다. 엣지 컴퓨팅 기능은 중앙 집중식 플랫폼에서 미터 본체로 이동하여 측정 지점에서의 예비 분석 및 이벤트 필터링을 가능하게 합니다. 이러한 변화는 데이터 전송 부하를 줄이는 동시에 계통 보호 및 시설 관리를 위한 신속한 대응을 가속화할 수 있습니다. 동시에 상호운용성에 대한 요구가 높아지고 있습니다. 이해관계자들은 기존 인프라와 향후 확장에 대응하기 위해 계량기가 다양한 유선 및 무선 프로토콜을 지원하기를 기대하고 있습니다.

또한, 사이버 보안은 단순한 컴플라이언스 요건에서 본질적인 설계 요건으로 진화했습니다. 보안 부팅, 암호화 텔레메트리, ID 관리는 선택적 업그레이드가 아닌 기본 기능이 되어가고 있습니다. 이러한 변화는 제조업체에게는 새로운 시험 및 인증의 필요성을, 유틸리티 및 대규모 최종 사용자에게는 조달 기준의 확립을 요구하고 있습니다. 또 다른 변화의 요소는 발전의 분산화입니다. 분산형 에너지 자원과 마이크로그리드에는 양방향 전력 흐름, 빠른 상태 변화, 복잡한 요금 체계에 대응할 수 있는 계측 솔루션이 필요합니다.

마지막으로, 경쟁 환경은 성과 기반 제공 형태로 전환되고 있습니다. 제조업체는 하드웨어에 분석 기능, 관리형 서비스, 라이프사이클 지원을 결합하여 제공합니다. 이를 통해 단발성 하드웨어 판매에서 데이터 액세스와 장기적인 고객 관계를 보장하는 지속적인 서비스 계약으로 비즈니스 모델을 재구축하고 있습니다. 이러한 변화로 인해 제품 로드맵, 채널 전략, 그리고 구매자가 디지털 측정 솔루션에 요구하는 기술적 요구사항이 재정의되고 있습니다.

2025년 관세가 공급망, 조달 우선순위, 제품 설계 옵션을 재구성하고 현지 조달 및 모듈식 재설계 전략의 가속화를 고려하는 방법을 살펴봅니다.

2025년 미국에서 발효된 관세는 디지털 전력계 공급망 전체에 새로운 제약을 가져왔고, 부품 조달, 공급업체 선정, 총 조달 비용 구조에 영향을 미쳤습니다. 기존 특정 해외 공급업체에 의존하던 제조업체들은 부품 선정과 인증 일정을 즉각적으로 재검토해야 하는 상황에 처했습니다. 이에 따라 많은 공급업체들이 공급처 다변화 전략을 시작했고, 재고 버퍼를 늘리고, 현지 공급업체 인증을 가속화하고, 성능 및 인증 요건을 충족하는 대체 부품을 채택할 수 있는 기판 재설계를 진행했습니다.

이러한 조정으로 인해 공급업체의 투명성과 추적가능성이 더욱 중요하게 여겨지게 되었습니다. 조달팀은 현재 강력한 물류 시스템, 검증된 품질 관리, 장기적인 검증 주기가 필요 없는 대체 조달 경로를 제공할 수 있는 공급업체를 우선적으로 고려하고 있습니다. 이와 동시에 시스템 통합사업자들은 특정 전자 부품 및 측정 등급 센서의 리드타임 연장을 위해 프로젝트 일정을 조정하고, 펌웨어 변경을 최소화하면서 부품 교체가 가능한 모듈화 설계에 투자하고 있습니다.

상업적 측면에서는 관세로 인해 많은 조직이 총 소유 비용과 서비스 제공 모델을 재평가해야 했습니다. 일부 바이어들은 조달 변동성을 완화하는 패키지화된 설치, 유지보수, 보증 서비스를 제공하는 벤더 파트너십을 우선시하는 방향으로 전환했습니다. 한편, 국내 제조 파트너십의 시험 도입을 가속화하거나, 개방형 표준 및 현지 조달 하위 시스템을 통해 관세 영향 부품에 대한 의존도를 낮추는 시스템을 선택하려는 움직임도 보였습니다. 요컨대, 관세는 공급망 민첩성, 설계 유연성, 그리고 공급업체 생태계 전체에서 위험을 공유하는 상업적 계약의 중요성을 재인식시키는 결과를 가져왔습니다.

용도, 위상, 통신, 설치, 전력 범위의 세분화를 이해관계자에게 실용적인 제품 설계 및 도입의 필수 요구사항으로 전환하는 것

통찰력 있는 세분화를 통해 공급업체와 구매자는 다양한 구축 환경의 이용 사례 요구사항에 맞게 제품 기능을 조정할 수 있습니다. 용도에 따라 설계 우선순위는 다음과 같이 달라집니다. - 비용 효율적인 멀티테넌트 과금 및 분석에 중점을 둔 상업용 설치 - 공정 제어를 위한 견고성과 고정밀 로깅을 우선시하는 산업 환경 - 설치 용이성과 소비자 기능이 가장 중요한 주거용 시나리오 - 그리드 관리 시스템과의 상호 운용성 및 규제 준수 정확성을 요구하는 유틸리티 규모의 설치 상호운용성 및 규제 준수 정확성을 요구하는 유틸리티 규모의 설치 이러한 용도에 따른 차이는 펌웨어 기능, 검증 체계, 애프터서비스에 대한 기대치를 결정합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 디지털 전력계 시장 : 용도별

  • 상업
  • 산업
  • 주택
  • 유틸리티

제9장 디지털 전력계 시장 : Phase 유형별

  • Single Phase
  • Three Phase

제10장 디지털 전력계 시장 : 커뮤니케이션별

  • 유선
    • 이더넷
    • 전력선 통신
    • RS-485
  • 무선
    • GSM
    • RF
    • ZigBee

제11장 디지털 전력계 시장 : 설비별

  • 실내
    • 제어반
    • 미터실
  • 야외 설치
    • 키오스크
    • Pole Mount

제12장 디지털 전력계 시장 : 전력 범위별

제13장 디지털 전력계 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 디지털 전력계 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 디지털 전력계 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Schneider Electric SE
    • Siemens AG
    • ABB Ltd
    • General Electric Company
    • Eaton Corporation plc
    • Honeywell International Inc.
    • Landis+Gyr Group AG
    • Itron Inc.
    • Kamstrup A/S
    • Xylem Inc.
LSH 25.11.20

The Digital Power Meters Market is projected to grow by USD 29.85 billion at a CAGR of 12.95% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 11.26 billion
Estimated Year [2025] USD 12.75 billion
Forecast Year [2032] USD 29.85 billion
CAGR (%) 12.95%

Introducing the strategic role of digital power meters as foundational intelligence nodes that enable visibility, optimization, and commercialization across modern energy systems

The proliferation of digital power meters is reshaping how utilities, industries, and commercial operators measure, manage, and monetize electrical energy. Digital meters now combine high-resolution measurement, embedded intelligence, and multiple communications paths to enable real-time visibility across distributed assets. As grids decentralize and distributed energy resources proliferate, these devices serve as the primary data acquisition nodes that feed analytics, control loops, and billing processes. Consequently, stakeholders increasingly view them as strategic instruments rather than simple transactional devices.

This introduction positions digital power meters within three converging trends: the shift toward smart, distributed energy systems; the rising demand for actionable, granular energy data; and the imperative to meet regulatory and sustainability commitments. Together, these dynamics raise the bar for accuracy, interoperability, and security in metering solutions. The emphasis on interoperability and secure data transport has elevated the role of communication protocols and installation practices, forcing manufacturers and system integrators to prioritize modularity and standards compliance.

From an operational perspective, digital meters reduce manual intervention and enable automated workflows for fault detection, remote configuration, and tariff enforcement. From a strategic perspective, the data they generate powers energy optimization, demand response participation, and asset monetization. As the technology matures, the most successful implementations are those that align hardware capability with ecosystem services and lifecycle support, thereby transforming metering from a cost center to a value-generating asset.

Identifying the technological, regulatory, and commercial shifts that are redefining product requirements, security mandates, and service models for digital metering solutions

The landscape for digital power meters is experiencing rapid transformation driven by technological convergence, evolving communication expectations, and changing deployment contexts. Edge compute capabilities are migrating from centralized platforms into the meter itself, enabling preliminary analytics and event filtering at the point of measurement. This shift reduces data transport burdens while accelerating actionable responses for grid protection and facility management. At the same time, interoperability demands are increasing; stakeholders now expect meters to support a spectrum of wired and wireless protocols to accommodate legacy infrastructures and future expansions.

Concurrently, cybersecurity has moved from a compliance checkbox to an intrinsic design requirement. Secure boot, encrypted telemetry, and identity management are becoming baseline features rather than optional upgrades. This change imposes new testing and certification imperatives for manufacturers and procurement standards for utilities and large end users. Another transformative element is the decentralization of power generation-distributed energy resources and microgrids require metering solutions that can handle bidirectional flows, rapid state changes, and complex tariff environments.

Finally, the competitive environment is shifting toward outcome-based offerings where manufacturers bundle hardware with analytics, managed services, and lifecycle support. This is prompting a reconfiguration of commercial models away from one-time hardware sales toward recurring-service arrangements that lock in data access and long-term customer relationships. Taken together, these shifts are redefining product roadmaps, channel strategies, and the technical expectations that buyers apply to digital metering solutions.

Examining how the 2025 tariffs reshaped supply chains, procurement priorities, and product design choices, accelerating local sourcing and modular redesign strategies

The tariffs enacted in the United States in 2025 have introduced new constraints across the digital power meter supply chain, affecting component sourcing, vendor selection, and total procurement cost structures. Manufacturers that historically relied on certain overseas suppliers faced immediate reconsideration of component selection and qualification timelines. In response, many suppliers initiated sourcing diversification strategies, increasing inventory buffers, accelerating local supplier qualification, and redesigning boards to accept alternative components that meet performance and certification requirements.

These adjustments have emphasized supplier transparency and traceability. Procurement teams now prioritize vendors that demonstrate resilient logistics, validated quality controls, and the ability to provide alternate sourcing routes without prolonged validation cycles. In parallel, system integrators adjusted project timelines to accommodate longer lead times for specific electronic components and metrology-grade sensors, while investing in design modularity to swap components with minimal firmware changes.

On the commercial front, tariffs prompted many organizations to reevaluate total cost of ownership and service delivery models. Some buyers shifted toward preferring vendor partnerships that offered installation, maintenance, and warranty services packaged to mitigate procurement volatility. Others accelerated trials of domestic manufacturing partnerships or opted for systems that reduced reliance on tariff-affected components via open standards or locally sourced subsystems. In short, the tariffs reinforced the importance of supply chain agility, design flexibility, and commercial arrangements that share risk across the supplier ecosystem.

Translating application, phase, communication, installation, and power-range segmentation into practical product design and deployment imperatives for stakeholders

Insightful segmentation enables vendors and buyers to align product features with use-case requirements across a variety of deployment environments. Based on application, design priorities diverge between commercial deployments that emphasize cost-effective multi-tenant billing and analytics, industrial contexts that prioritize ruggedization and high-accuracy logging for process control, residential scenarios where ease of installation and consumer-facing functionality matter most, and utility-scale installations that demand interoperability with grid management systems and regulatory-grade accuracy. These application-based distinctions drive differing firmware capabilities, validation regimes, and after-sales service expectations.

Based on phase type, product architecture and measurement circuitry differ between single phase and three phase systems. Single phase meters commonly address residential and small commercial installations where simplified wiring and user-friendly configuration are key, while three phase meters address heavier loads and complex power quality monitoring demands typical in industrial and larger commercial installations. The distinction influences form factor, sampling strategies, and thermal management considerations.

Based on communication, the market separates offerings that support wired modalities and those adopting wireless channels. The wired category includes Ethernet, power line communication (PLC), and RS-485, each with distinct latency, bandwidth, and topology advantages suited for reliable, high-throughput collections in permanent installations. Wireless options such as GSM, RF, and ZigBee provide flexibility for remote or retrofit deployments where cabling is impractical and where network topologies and power budgets favor low-power, mesh-capable solutions.

Based on installation, indoor use cases typically involve control panels and meter rooms where environmental protection and centralized wiring simplify maintenance and security, whereas outdoor installations use kiosks and pole mounts that require weatherproofing, vandal resistance, and extended temperature tolerance. Installation context also shapes mounting options, ingress protection levels, and remote access provisions.

Based on power range, devices are engineered for high, medium, or low power contexts. High power designs emphasize thermal stability and robust current measurement, medium power solutions balance accuracy with cost and integration flexibility, and low power meters prioritize compact design and energy efficiency for constrained applications. These power-range distinctions affect sensor selection, enclosure design, and certification pathways.

Clarifying how regional regulatory regimes, grid architectures, and deployment priorities drive distinct product specifications and go-to-market approaches across global markets

Regional dynamics play a central role in shaping product requirements, deployment strategies, and commercial models for digital power meters. In the Americas, stakeholders exhibit a strong focus on modernization of existing grids, regulatory compliance around metering accuracy, and an appetite for integrated analytics that support demand response and energy efficiency programs. North American and South American projects often emphasize interoperability with utility operational systems, and they value solutions that offer streamlined integration with customer information and billing platforms.

The Europe, Middle East & Africa region presents a diverse policy and regulatory landscape that drives differentiated priorities. Western European markets frequently emphasize stringent certification, cybersecurity standards, and integration with advanced energy markets, including distributed energy resource aggregation. Markets in the Middle East and Africa often prioritize ruggedized hardware, environmental resilience, and solutions that support rapid electrification initiatives; in these areas, full-service offerings and local partner networks can accelerate adoption while ensuring operational continuity.

Asia-Pacific displays a broad spectrum of needs, from high-volume residential and commercial rollouts in large urban centers to utility-driven modernization programs. In several Asia-Pacific markets, rapid urbanization and strong investments in renewable integration drive demand for meters that can handle complex tariff structures and bidirectional energy flow. Across the region, suppliers that offer flexible communication stacks and scalable deployment support often gain competitive advantage, as buyers require devices that can be adapted to a variety of grid architectures and regulatory regimes.

Outlining the competitive and partnership-driven landscape where technical excellence, channel collaborations, and lifecycle services determine supplier differentiation

Competitive dynamics in the digital power meter sector center on technology differentiation, ecosystem partnerships, and service propositions. Leading hardware providers increasingly augment product portfolios with embedded communications stacks, edge analytics, and lifecycle services to capture recurring revenue and to deepen customer relationships. Meanwhile, component suppliers and semiconductor vendors play an outsized role in defining performance ceilings for metering accuracy and connectivity, which in turn shapes how hardware vendors design measurement front-ends and firmware.

Strategic partnerships with systems integrators, utility service providers, and network operators are becoming critical channels for scaling deployments. These partnerships allow suppliers to offer packaged solutions that combine meters, communications gateways, installation services, and managed analytics. In highly regulated environments, certification partners and independent test houses influence purchasing decisions by validating accuracy, safety, and cybersecurity postures. Additionally, aftermarket service providers that can deliver rapid calibration, spare parts, and field maintenance create meaningful differentiation for buyers operating critical infrastructure.

Innovation leaders tend to prioritize open standards in both hardware interfaces and data models to ease integration friction and to support multi-vendor deployments. Companies that can demonstrate robust supply chain practices, clear security roadmaps, and flexible commercial models frequently gain trust with enterprise and utility customers who require long-term support for infrastructure investments. Ultimately, firms that balance technical excellence with pragmatic deployment and support capabilities position themselves as preferred partners for complex metering programs.

Actionable strategic guidance for manufacturers and buyers to strengthen supply chain resilience, secure designs, and evolve commercial and regional go-to-market approaches

Industry leaders should pursue a multifaceted strategy that balances immediate operational resilience with long-term product and commercial innovation. First, diversify supplier networks and qualify alternative components to mitigate the impact of geopolitical disruptions and tariff-driven supply shocks. This should be coupled with modular hardware designs that allow rapid substitution of parts without extensive firmware rewrite, thereby reducing qualification cycles and preserving time-to-market.

Second, invest in secure-by-design principles across the product lifecycle, including secure boot, encrypted telemetry, and robust identity management. Prioritizing third-party security validation and visible certification will ease procurement risk assessments and accelerate adoption by conservative buyers. Third, adopt a flexible communications strategy that supports both wired standards such as Ethernet, PLC, and RS-485 and wireless protocols such as GSM, RF, and ZigBee. This multimodal approach reduces deployment constraints and expands addressable applications.

Fourth, reframe commercial models to pair hardware sales with managed services, analytics subscriptions, and warranty offerings that share risk and create recurring revenue. Fifth, tailor product and channel strategies to installation contexts, ensuring indoor solutions prioritize integration with control panels and meter rooms while outdoor solutions emphasize enclosure rating and field serviceability. Finally, build regional market-entry playbooks that reflect local regulatory expectations, certification needs, and partner ecosystems, enabling faster scaling and reduced compliance friction.

Describing a layered research approach that combined primary interviews, supply chain mapping, standards analysis, and scenario testing to ensure rigorous and actionable insights

The research underpinning this executive analysis combined qualitative and structured methodologies to ensure comprehensive, actionable findings. Primary inputs included in-depth interviews with technical leads across utilities, commercial facility managers, and industrial end users, complemented by discussions with hardware vendors, systems integrators, and component suppliers. These conversations focused on deployment challenges, preferred communications stacks, security expectations, and service model preferences, providing grounded perspectives on real-world tradeoffs and procurement criteria.

Secondary analysis synthesized vendor documentation, standards publications, certification criteria, and public policy announcements to validate technical assertions and to contextualize regional regulatory influences. Supply chain mapping identified critical component dependencies and typical lead-time bottlenecks, while technology benchmarking compared measurement approaches, communications latency, and environmental resilience across representative product classes. Scenario testing explored the operational implications of supply disruptions, rapid tariff changes, and accelerated renewable integration, enabling the derivation of practical mitigation strategies.

Throughout the study, findings were triangulated across sources to ensure robustness and to filter out vendor-specific bias. Expert review panels provided iterative feedback on draft conclusions, and validation calls with end-user stakeholders ensured recommendations aligned with operational realities. This layered methodology prioritized actionable insight and ensured the analysis supports decision-making across procurement, engineering, and executive planning functions.

Summarizing how technical evolution, supply chain resilience, and service-oriented commercial models converge to elevate metering into a strategic infrastructure asset

In conclusion, digital power meters are evolving from isolated measurement devices into intelligent nodes that enable operational efficiency, regulatory compliance, and new revenue streams. The convergence of embedded analytics, flexible communications, and secure design practices is raising buyer expectations and redefining competitive advantage. Suppliers that adopt modular design, prioritize cybersecurity, and pair hardware with recurring service offerings will be best positioned to capture long-term value and to support complex deployment requirements.

Regional and policy dynamics will continue to influence technology requirements and procurement behavior, necessitating market strategies that are both globally informed and locally tailored. The 2025 tariff environment underscored the importance of supply chain agility and the ability to redesign products for alternate sourcing without compromising performance or certification. By implementing the recommended actions-diversifying suppliers, investing in secure-by-design development, supporting multiple communication modalities, and aligning commercial models to customer needs-industry participants can reduce deployment risk and accelerate the transformation of metering into a strategic asset.

Stakeholders that act decisively to integrate technical, commercial, and operational changes will find themselves better equipped to navigate uncertainty and to capitalize on opportunities presented by grid modernization, electrification, and sustainability initiatives.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Implementation of AI-driven load forecasting algorithms in digital power meters for dynamic demand response optimization
  • 5.2. Adoption of advanced cybersecurity frameworks to protect smart energy data transmission and grid resilience
  • 5.3. Integration of blockchain-powered energy trading modules within digital metering platforms for peer-to-peer transactions
  • 5.4. Deployment of multi-parameter sensing capabilities enabling real-time monitoring of voltage quality power factor and harmonics
  • 5.5. Transition toward modular plug-and-play meter hardware supporting seamless firmware updates and scalability
  • 5.6. Utilization of cloud-native architectures for centralized analytics and cross-regional utility performance benchmarking
  • 5.7. Development of bi-directional communication standards to facilitate rapid EV charging station management and vehicle-to-grid services

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Digital Power Meters Market, by Application

  • 8.1. Commercial
  • 8.2. Industrial
  • 8.3. Residential
  • 8.4. Utility

9. Digital Power Meters Market, by Phase Type

  • 9.1. Single Phase
  • 9.2. Three Phase

10. Digital Power Meters Market, by Communication

  • 10.1. Wired
    • 10.1.1. Ethernet
    • 10.1.2. Power Line Communication
    • 10.1.3. RS-485
  • 10.2. Wireless
    • 10.2.1. GSM
    • 10.2.2. RF
    • 10.2.3. ZigBee

11. Digital Power Meters Market, by Installation

  • 11.1. Indoor
    • 11.1.1. Control Panel
    • 11.1.2. Meter Room
  • 11.2. Outdoor
    • 11.2.1. Kiosk
    • 11.2.2. Pole Mount

12. Digital Power Meters Market, by Power Range

  • 12.1. High
  • 12.2. Low
  • 12.3. Medium

13. Digital Power Meters Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Digital Power Meters Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Digital Power Meters Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Schneider Electric SE
    • 16.3.2. Siemens AG
    • 16.3.3. ABB Ltd
    • 16.3.4. General Electric Company
    • 16.3.5. Eaton Corporation plc
    • 16.3.6. Honeywell International Inc.
    • 16.3.7. Landis+Gyr Group AG
    • 16.3.8. Itron Inc.
    • 16.3.9. Kamstrup A/S
    • 16.3.10. Xylem Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제