시장보고서
상품코드
1864098

자동 조제 기기 시장 : 유형별, 용도별, 최종사용자별, 유통 채널별, 소프트웨어 유형별, 워크플로우 유형별 - 세계 예측(2025-2032년)

Automated Compounding Devices Market by Type, Application, End User, Distribution Channel, Software Type, Workflow Type - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 185 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

자동 조제 기기 시장은 2032년까지 CAGR 10.86%로 58억 5,000만 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 25억 6,000만 달러
추정연도 2025 28억 4,000만 달러
예측연도 2032 58억 5,000만 달러
CAGR(%) 10.86%

헬스케어 분야의 의사결정권자를 위해 자동조제장치의 역할, 운영 우선순위, 안전 기대치, 통합 고려사항에 대해 간략하게 설명

자동 조제 장비는 정밀성, 재현성 및 안전성이 엄격한 임상 요구 사항을 충족하기 위해 통합되는 현대의 무균 조제 워크플로우에서 점점 더 핵심적인 역할을 하고 있습니다. 이 기술 상황은 수작업으로 인한 편차를 줄이고, 투약 정확도를 향상시키고, 오염 위험을 줄이기 위해 설계된 다양한 기계 구조와 소프트웨어 계층에 걸쳐 있습니다. 이러한 시스템은 약국 업무, 임상 거버넌스, 공급망 관리의 교차점에서 전략적 역할을 수행하며, 급성기 의료시설, 소매 및 전문 조제 약국, 재택 수액 프로그램 등 다양한 현장에서 도입이 진행되고 있습니다.

임상적 복잡성, 인적 자원의 제약, 규제 강화, 소프트웨어 중심의 통합이 조제 분야의 조달 우선순위와 운영 모델을 재구성하는 방법

임상의 복잡성, 인력 부족, 무균 조제 공정에 대한 규제 강화 등의 요인으로 인해 자동 조제 환경은 변화하고 있습니다. 첨단 종양학 치료 요법과 확대되는 생물제제 포트폴리오에는 엄격한 봉쇄 및 무균 프로파일을 유지하면서 점점 더 다양해지는 약제군에 대응할 수 있는 조제 시스템이 요구됩니다. 동시에 인력 부족과 고도로 훈련된 약사 직원의 임상 업무로의 재배치 요구는 수작업으로 인한 조제 부담을 줄이고 고위험 작업 중 인지적 부하를 최소화하는 자동화에 대한 관심을 가속화하고 있습니다.

2025년 관세 조정이 조달 전략, 벤더 협상 동향, 의료기기 조달의 수명주기 비용 고려 사항에 미치는 영향

2025년 미국에서 시행된 관세 정책 변경 및 무역 조치는 자동조제 장비의 조달 전략, 공급업체 선정, 총소유비용에 구체적인 영향을 미쳤습니다. 특정 수입 의료기기 및 부품에 대한 관세 인상에 따라 의료 기관과 유통업체들은 조달 옵션을 재평가하고 관세 리스크를 줄이기 위해 국내 제조 대체품 및 지역 공급업체로의 전환을 가속화하려는 움직임이 나타나고 있습니다. 이러한 변화는 장기 서비스 계약, 예비 부품 재고 정책, 보증 조건에 대한 협상에 영향을 미치고 있으며, 구매자는 공급망 혼란과 비용 상승으로부터 비즈니스를 보호하려고 노력하고 있습니다.

기기 유형, 임상 이용 사례, 최종사용자 환경, 유통 경로, 소프트웨어 모델, 워크플로우 방식을 조달 로직로 연결하는 종합적인 세분화 분석

미묘한 차이를 고려한 세분화 프레임워크를 통해 기술 유형, 임상 적용, 사용자 환경, 유통 채널, 소프트웨어 아키텍처, 워크플로우 방식에 따라 기기 선택과 도입 우선순위가 어떻게 달라지는지 알 수 있습니다. 장치를 유형별로 분류할 때, 연동식, 피스톤 구동식, 용적식 아키텍처는 각각 뚜렷한 장점이 있습니다. 연동식 설계는 폐쇄형 및 오염 관리형 양식에서 선호되는 경향이 있습니다. 피스톤 구동식 시스템은 점도가 높거나 점도가 변동하는 제제에 대한 고정밀 투여를 실현할 수 있습니다. 용적형 솔루션은 일반적으로 고처리량 액체 처리 작업에서 선택됩니다. 이러한 기술적 차이는 치료적 및 운영상의 필요에 따라 적합성 차이로 반영됩니다.

미주, EMEA, 아시아태평양 헬스케어 시장의 조달 선택, 컴플라이언스 요구사항, 서비스 모델을 형성하는 지역별 동향 및 도입 촉진요인

지역적 동향은 세계 상황에서의 도입 패턴, 규제 우선순위, 벤더 전략에 실질적인 영향을 미칩니다. 북미와 남미에서는 첨단 병원 인프라, 외래환자 정맥주사 시장 확대, 종양학 및 전문 약국 분야의 우수한 의료센터 집중화가 수요를 형성하고 있습니다. 이러한 환경에서는 엄격한 현지 규제 기준을 준수하고, 전자 건강 기록 및 바코드 검증 시스템과 긴밀하게 연동되는 솔루션이 선호됩니다. 또한 대규모 통합 의료 네트워크는 여러 기관에 걸쳐 중앙 집중식 지원과 표준화된 워크플로우를 제공하는 벤더 파트너십을 추구하는 경향이 있습니다.

통합 솔루션, 검증된 워크플로우, 지역 서비스 체계의 강점, 임상 및 운영상의 니즈에 대응하는 혁신 로드맵을 중심으로 한 경쟁적 차별화 요소

자동조제 분야에서의 경쟁은 강력한 하드웨어와 상호 운용 가능한 소프트웨어, 신속한 서비스 네트워크, 검증된 워크플로우 패키지를 결합한 엔드투엔드 솔루션을 제공할 수 있는 능력에 의해 점점 더 좌우되고 있습니다. 주요 기업은 인체공학에 대한 투자, 유해 약물 봉쇄 기술, 약국 정보 시스템 및 전자 건강 기록과의 안전한 데이터 교환을 가능하게 하는 강력한 상호운용성 프레임워크를 통해 차별화를 꾀하고 있습니다. 또한 종합적인 검증 지원, 사용자 교육 프로그램, 예측 가능한 유지보수 서비스 계약을 제공할 수 있는 능력은 첨단 의료 시스템 구매자에 대한 벤더의 신뢰성을 강화합니다.

검증된 시스템 확보, 서비스 연속성 강화, 자동화를 통한 임상적, 업무적 이익 실현을 위한 리더를 위한 실용적인 조달 및 도입 가이드

업계 리더는 조달 결정을 임상 거버넌스 목표, 운영 현실, 장기적인 서비스 복원력과 일치시키는 전략적 접근 방식을 채택해야 합니다. 먼저, 약제부서 리더십, 감염관리, 의료기기 관리, 조달 부서를 포함한 범부서적 평가위원회를 구성하여 의료기기 선정이 임상적, 안전적, 기술적 우선순위를 반영할 수 있도록 보장합니다. 이 위원회는 봉쇄 능력, 상호운용성, 검증 지원, 현지 서비스 가용성을 고려한 객관적인 기준을 정의해야 합니다.

대상별 이해관계자 인터뷰, 규제 및 표준 검토, 벤더 검증 자료를 결합한 조사 방식을 통해 실무 중심의 견고한 조사 결과를 확보

본 Executive Summary를 지원하는 연구 통합은 임상 의약품 부문 리더, 의료기기 기술자 및 유통 파트너와의 1차 인터뷰, 무균 조제 관련 규제 지침 및 기준의 2차 분석, 공급업체의 기술 문헌 및 제품 검증 자료의 체계적 검토를 결합한 삼각측량 방법을 통해 구축되었습니다. 구축되었습니다. 1차 조사에서는 대규모 3차 병원부터 지역 밀착형 조제 약국까지 다양한 시설 유형에 대한 실제 운영 과제, 요구되는 기능 세트, 서비스 기대치를 탐색하도록 설계되었습니다.

자동화를 프로그램적 투자로 포지셔닝하는 전략적 요구사항의 통합: 거버넌스, 상호운용성, 지속적인 성능 관리가 필요함.

자동 조제 기기는 적절한 거버넌스와 지원하에 도입될 경우, 정확도 향상, 안전성 강화, 운영상의 확장성을 실현할 수 있는 경로를 제공함으로써 현대의 무균 조제 전략에 없어서는 안 될 필수적인 요소로 자리 잡고 있습니다. 장비의 아키텍처, 소프트웨어 기능, 최종사용자 환경의 상호 작용이 자동화가 임상적, 운영적 가치를 제공하는 정도를 결정합니다. 따라서 조달 결정은 기술 적합성, 규제 준수, 공급업체의 유지보수성, 인력 준비 상태를 통합한 종합적인 관점에서 이루어져야 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 자동 조제 기기 시장 : 유형별

  • Peristaltic
  • 피스톤 구동식
  • 용적식

제9장 자동 조제 기기 시장 : 용도별

  • 진통
  • 화학요법
    • 일반 종양학
    • 표적치료
  • 정맥 영양
    • 중심 정맥
    • 말초 정맥

제10장 자동 조제 기기 시장 : 최종사용자별

  • 조제 약국
  • 재택 의료
  • 병원 약국
    • 대규모 병원
    • 소규모 병원
  • 소매 약국

제11장 자동 조제 기기 시장 : 유통 채널별

  • 직접 판매
  • 판매 대리점
    • 전국 판매 대리점
    • 지역 판매 대리점
  • 온라인 판매

제12장 자동 조제 기기 시장 : 소프트웨어 유형별

  • 통합형
  • 스탠드얼론

제13장 자동 조제 기기 시장 : 워크플로우 유형별

  • 배치
  • 연속식

제14장 자동 조제 기기 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 자동 조제 기기 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 자동 조제 기기 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Baxter International Inc.
    • Fresenius Kabi AG
    • B. Braun Melsungen AG
    • ICU Medical, Inc.
    • Omnicell, Inc.
    • Ivenix, Inc.
    • Qcore Medical, Inc.
    • Telstar S.A.
    • Swisslog AG
    • Capsa Healthcare, Inc.
KSA 25.12.09

The Automated Compounding Devices Market is projected to grow by USD 5.85 billion at a CAGR of 10.86% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 2.56 billion
Estimated Year [2025] USD 2.84 billion
Forecast Year [2032] USD 5.85 billion
CAGR (%) 10.86%

A concise orientation to automated compounding device roles, operational priorities, safety expectations, and integration considerations for healthcare decision-makers

Automated compounding devices are increasingly central to contemporary sterile preparation workflows, where precision, repeatability, and safety converge to meet stringent clinical demands. The technology landscape spans a range of mechanical architectures and software layers designed to reduce manual variability, improve dosing accuracy, and mitigate contamination risks. These systems occupy a strategic role at the intersection of pharmacy operations, clinical governance, and supply chain management, and they are being deployed across acute care settings, retail and specialty compounding pharmacies, and home infusion programs.

As decision-makers consider investments in automated compounding solutions, they are balancing clinical imperatives against operational realities: device integration with existing information systems, compatibility with clinical workflows, staff training needs, and the evolving regulatory scrutiny on aseptic processing. Stakeholders are also observing growing emphasis on traceability and auditability, driven by the need to document chain-of-custody for high-risk preparations. Consequently, procurement evaluation extends beyond the hardware to include software interoperability, vendor support models, and lifecycle maintenance commitments.

In this context, understanding device typologies, application domains, and end-user requirements is essential for framing deployment strategies. Technology choices influence throughput, error rates, and the ability to scale services to meet changing demand patterns. Therefore, an informed introduction to automated compounding must highlight the practical trade-offs between device capabilities, workflow fit, and clinical governance obligations to enable responsible, high-value adoption across care settings.

How clinical complexity, workforce constraints, regulatory rigor, and software-driven integration are reshaping procurement priorities and operational models in compounding

The landscape for automated compounding is undergoing transformative shifts driven by clinical complexity, workforce pressures, and heightened regulatory focus on aseptic processing. Advanced oncology regimens and the widening portfolio of biologics require compounding systems that can handle increasingly diverse drug classes while maintaining stringent containment and sterility profiles. At the same time, labor shortages and the need to reallocate highly trained pharmacy staff toward clinical tasks have accelerated interest in automation that reduces manual preparation burden and minimizes cognitive load during high-risk activities.

Recent technology maturation has emphasized modularity and software-driven orchestration, enabling tighter integration with pharmacy information systems and electronic health records. These developments support improved dose verification, barcode-enabled verification, and electronic batch records that together strengthen quality assurance pathways. Parallel to these technological trends, regulatory authorities are intensifying their expectations for process validation, environmental monitoring, and traceability, prompting providers to prioritize systems with robust audit trails and validated workflows.

Operationally, there is a notable move toward solutions that facilitate decentralized compounding and hybrid service models, where centralized sterile production coexists with point-of-care preparation in outpatient and home settings. This shift is accompanied by renewed attention to supply chain resilience and service continuity, encouraging buyers to evaluate vendor ecosystems for spare parts, local service presence, and software update strategies. Taken together, these factors are reshaping procurement criteria and influencing which device architectures and vendor partnerships are most likely to deliver sustainable clinical and commercial value over time.

Implications of 2025 tariff adjustments on sourcing strategies, vendor negotiation dynamics, and lifecycle cost considerations for device procurement

Tariff policy changes and trade measures enacted in the United States in 2025 have introduced tangible implications for procurement strategies, vendor selection, and total cost of ownership for automated compounding devices. In response to increased duties on certain imported medical devices and components, healthcare organizations and distributors reassessed sourcing options, with some accelerating moves toward domestically manufactured alternatives or regional suppliers to mitigate tariff exposure. These shifts have influenced negotiations around long-term service agreements, spare parts stocking policies, and warranty conditions as buyers sought to insulate operations from supply chain disruptions and cost escalations.

Manufacturers with diversified production footprints or established assembly facilities within tariff-advantaged jurisdictions were relatively better positioned, enabling them to preserve competitive pricing for core devices. Conversely, suppliers reliant on single-country manufacturing faced pressure to absorb higher landed costs or to pass them on to customers, prompting discussions about value-based contracting and extended service commitments to justify revised pricing. For health systems, procurement teams increasingly emphasized total lifecycle assessments, capturing not only acquisition price but also ongoing serviceability, lead times for consumables, and the availability of validated software updates.

Looking ahead, purchasers are incorporating tariff risk into supplier scorecards and contingency planning, evaluating options such as multi-sourcing, local assembly partners, and inventory buffering for critical consumables. These pragmatic responses aim to maintain operational continuity while preserving the clinical benefits of automation. In doing so, organizations are refining procurement policies to balance near-term cost fluctuations against long-term clinical and compliance priorities.

Comprehensive segmentation analysis linking device typologies, clinical use-cases, end-user settings, distribution pathways, software models, and workflow modalities to procurement logic

A nuanced segmentation framework reveals how device selection and deployment priorities vary across technical typologies, clinical applications, user settings, distribution channels, software architectures, and workflow modalities. When categorizing devices by type, peristaltic, piston driven, and volumetric architectures present distinct advantages: peristaltic designs are often favored for closed-system, contamination-controlled modalities; piston driven systems can deliver high-precision dosing for viscous or variable-viscosity formulations; and volumetric solutions are commonly selected for high-throughput liquid handling tasks. These technical differences translate into differential suitability depending on therapeutic and operational needs.

Application-focused segmentation further refines purchasing logic, especially where oncology creates special requirements for containment and hazardous drug handling. Analgesia preparations emphasize dose personalization and rapid turnaround, whereas chemotherapy compounding necessitates secure containment and strict environmental control; within chemotherapy, general oncology regimens and targeted therapies impose divergent requirements for preparation complexity and dose verification. Parenteral nutrition introduces another layer of complexity, where central venous and peripheral venous formulations demand differing volumetric accuracy and compatibility with multi-component mixing protocols.

End-user context shapes operational priorities as well. Compounding pharmacies often prioritize throughput and regulatory documentation; home healthcare services emphasize portability and simplified user interfaces for community nurses; hospital pharmacies need devices that integrate with large electronic ecosystems and accommodate both large hospital and small hospital workflows, each with varying staffing models and physical spaces. Distribution channel dynamics influence access and support models, with direct sales offering close vendor alignment, distributors-whether national or regional-providing reach and aftersales networks, and online sales facilitating transactional procurement for consumables and peripheral software licenses. Software architecture choices between integrated and standalone systems determine how tightly device controls and batch records can be woven into broader pharmacy information systems. Lastly, workflow typologies such as batch and continuous processing define throughput planning and the degree of human oversight required, shaping the physical layout and staffing models around compounding operations. Altogether, this segmentation perspective helps align technical capability with clinical need and operational reality.

Regional dynamics and adoption drivers that shape procurement choices, compliance expectations, and service models across Americas, EMEA, and Asia-Pacific healthcare markets

Regional dynamics exert a material influence on adoption patterns, regulatory priorities, and vendor strategies across the global landscape. In the Americas, demand is shaped by a combination of advanced hospital infrastructure, a growing outpatient infusion market, and concentrated centers of excellence in oncology and specialty pharmacy. This environment favors solutions that demonstrate compliance with rigorous local regulatory standards and that integrate tightly with electronic health records and barcode verification systems. Moreover, large integrated delivery networks often seek vendor partnerships that provide centralized support and standardized workflows across multiple facilities.

In Europe, the Middle East & Africa, regulatory harmonization across certain jurisdictions coexists with notable variations in procurement practices and reimbursement pressures. Providers tend to prioritize clinical safety and environmental controls, while procurement teams evaluate total cost of ownership and service availability across heterogeneous healthcare delivery systems. Regional distributors and localized service organizations play a pivotal role in bridging multinational vendor offerings with local compliance needs and training requirements.

The Asia-Pacific region is characterized by a mix of advanced urban centers with high adoption potential and emerging markets where incremental automation is gaining traction as healthcare capacity expands. In mature urban healthcare systems, integration with hospital information technology and support for high-throughput oncology centers drive demand for robust automation platforms. Meanwhile, in other regional markets, buyers are focused on scalable solutions that balance upfront affordability with modular upgrade paths, enabling phased adoption as clinical volumes and technical capabilities mature. Across all regions, considerations such as local manufacturing, aftersales support footprint, and the availability of regulatory-compliant consumables materially influence vendor competitiveness and adoption velocity.

Competitive differentiators centered on integrated solutions, validated workflows, regional service strength, and innovation roadmaps that address clinical and operational needs

Competitive positioning in the automated compounding space is increasingly influenced by the ability to deliver end-to-end solutions that combine robust hardware with interoperable software, responsive service networks, and validated workflow packages. Leading firms differentiate through investments in human factors engineering, containment technologies for hazardous drugs, and strong interoperability frameworks that enable secure data exchange with pharmacy information systems and electronic health records. In addition, capability to provide comprehensive validation support, user training programs, and predictable maintenance service contracts strengthens vendor credibility with sophisticated health system buyers.

Partnerships between device manufacturers and software integrators are becoming more commonplace, as stakeholders expect seamless batch record generation, barcode verification, and electronic audit trails. Companies that offer modular systems with configurable options for oncology, analgesia, and parenteral nutrition applications are better positioned to address heterogeneous customer needs. Regional service networks and distributor alliances are critical for ensuring timely spare parts delivery and on-the-ground technical support, particularly in markets with complex regulatory or logistical challenges.

Innovation roadmaps that emphasize cloud-enabled analytics, predictive maintenance, and enhanced user interfaces are emerging as differentiators, but they must be balanced against data security and regulatory compliance requirements. Ultimately, providers that demonstrate a commitment to validated workflows, continuous improvement, and transparent post-sale support tend to earn the trust of pharmacy and clinical leaders tasked with safeguarding sterile preparation quality and operational resilience.

Practical procurement and deployment playbook for leaders to secure validated systems, fortify service continuity, and realize clinical and operational gains from automation

Industry leaders should adopt a strategic approach that aligns procurement decisions with clinical governance objectives, operational realities, and long-term service resilience. First, establish a cross-functional evaluation committee that includes pharmacy leadership, infection control, biomedical engineering, and procurement to ensure that device selection reflects clinical, safety, and technical priorities. This committee should define objective criteria that account for containment capabilities, interoperability, validation support, and local service availability.

Second, prioritize vendors who can demonstrate robust integration with existing enterprise systems and who provide validated workflows for the primary clinical applications of interest. Where tariff risk or supply chain fragility exists, consider contractual protections such as price-stability clauses, local assembly options, or predefined parts consignment arrangements to mitigate operational exposure. Additionally, require clear post-sale service-level agreements with measurable response times and defined spare parts availability, so that uptime expectations are aligned with clinical dependency on compounding outputs.

Third, invest in training and change management to ensure effective adoption. Automation gains are realized only when staff are proficient in device operation, troubleshooting, and in reconciling electronic batch records with clinical documentation. Implement phased rollouts-starting with pilot deployments in controlled settings-before scaling across larger hospital or network environments. Finally, embed continuous improvement processes that capture performance metrics, near-miss events, and user feedback to iteratively refine workflows and vendor partnerships. These actions will help leaders transform technology investments into demonstrable improvements in safety, efficiency, and clinical reliability.

Methodological approach combining targeted stakeholder interviews, regulatory and standards review, and vendor validation materials to ensure robust, practice-oriented insights

The research synthesis underpinning this executive summary was developed through a triangulated methodology combining primary interviews with clinical pharmacy leaders, biomedical engineers, and distribution partners; secondary analysis of regulatory guidance and standards relevant to sterile compounding; and a structured review of vendor technical literature and product validation materials. Primary engagements were designed to explore real-world operational challenges, desired feature sets, and service expectations across a spectrum of facility types, from large tertiary hospitals to community-based compounding pharmacies.

Secondary research focused on regulatory frameworks, standard operating procedures for aseptic processing, and best-practice guidance that informs device validation and environmental monitoring. This contextual analysis provided a lens for assessing how product capabilities align with compliance requirements and clinical safety imperatives. Vendor documentation was examined to understand architectural differences between device types, software interoperability options, and service models, with special attention paid to evidence of validated workflows and traceability features.

Synthesis involved iterative validation, where preliminary findings were reviewed with subject-matter experts to ensure accuracy and relevance. The methodology emphasized transparency and reproducibility, documenting assumptions and evidence chains so that stakeholders can assess the provenance of insights. Collectively, this approach supports robust, practice-oriented conclusions while acknowledging the variability in local practice and regulatory interpretation.

Synthesis of strategic imperatives that frame automation as a programmatic investment requiring governance, interoperability, and continuous performance management

Automated compounding devices are now integral to modern sterile preparation strategies, offering pathways to improved precision, enhanced safety, and operational scalability when deployed with appropriate governance and support. The interplay between device architecture, software capabilities, and end-user context determines the degree to which automation delivers clinical and operational value. Consequently, procurement decisions should be informed by a comprehensive view that integrates technical fit, regulatory compliance, vendor serviceability, and workforce readiness.

The current environment presents both opportunities and complexities: advanced therapies and shifting care delivery models increase the clinical need for reliable compounding solutions, while evolving regulatory expectations and supply chain uncertainties demand vigilant procurement and contract design. Organizations that adopt a disciplined, cross-functional approach to evaluation, prioritize interoperability and validated workflows, and secure resilient service arrangements are better positioned to translate automation investments into measurable improvements in safety and efficiency.

In closing, the imperative is clear: treat automation not as an isolated capital purchase but as a strategic program that requires deliberate planning, stakeholder alignment, and continuous performance management. With this posture, healthcare organizations can harness the technical benefits of automated compounding while sustaining the clinical excellence and patient safety that underpin sterile preparation operations.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of artificial intelligence for predictive maintenance and process optimization within sterile compounding workflows
  • 5.2. Expansion of robotic compounding systems with barcode verification to reduce human error and enhance patient safety measures
  • 5.3. Development of closed-system transfer devices integrated within pharmacy automation for hazardous drug handling compliance
  • 5.4. Adoption of cloud-based software platforms for remote monitoring and real-time data analytics of compounding operations
  • 5.5. Customizable dose preparation modules for high-risk chemotherapy and biologics with inline gravimetric verification
  • 5.6. Shift towards modular and scalable compounding units designed for point-of-care applications in hospital pharmacies
  • 5.7. Implementation of disposables and single-use sterile cassettes to streamline cleaning validation and reduce cross-contamination risks
  • 5.8. Collaboration between compounding device manufacturers and electronic health record vendors for seamless prescription to production workflows
  • 5.9. Growing regulatory scrutiny driving adoption of ISO 5 compliant compounding enclosures with automated environmental monitoring
  • 5.10. Emergence of decentralized compounding hubs leveraging networked automation to meet personalized medicine demand

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Automated Compounding Devices Market, by Type

  • 8.1. Peristaltic
  • 8.2. Piston Driven
  • 8.3. Volumetric

9. Automated Compounding Devices Market, by Application

  • 9.1. Analgesia
  • 9.2. Chemotherapy
    • 9.2.1. General Oncology
    • 9.2.2. Targeted Therapy
  • 9.3. Parenteral Nutrition
    • 9.3.1. Central Venous
    • 9.3.2. Peripheral Venous

10. Automated Compounding Devices Market, by End User

  • 10.1. Compounding Pharmacy
  • 10.2. Home Healthcare
  • 10.3. Hospital Pharmacy
    • 10.3.1. Large Hospital
    • 10.3.2. Small Hospital
  • 10.4. Retail Pharmacy

11. Automated Compounding Devices Market, by Distribution Channel

  • 11.1. Direct Sales
  • 11.2. Distributors
    • 11.2.1. National Distributors
    • 11.2.2. Regional Distributors
  • 11.3. Online Sales

12. Automated Compounding Devices Market, by Software Type

  • 12.1. Integrated
  • 12.2. Standalone

13. Automated Compounding Devices Market, by Workflow Type

  • 13.1. Batch
  • 13.2. Continuous

14. Automated Compounding Devices Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Automated Compounding Devices Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Automated Compounding Devices Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Baxter International Inc.
    • 17.3.2. Fresenius Kabi AG
    • 17.3.3. B. Braun Melsungen AG
    • 17.3.4. ICU Medical, Inc.
    • 17.3.5. Omnicell, Inc.
    • 17.3.6. Ivenix, Inc.
    • 17.3.7. Qcore Medical, Inc.
    • 17.3.8. Telstar S.A.
    • 17.3.9. Swisslog AG
    • 17.3.10. Capsa Healthcare, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제