시장보고서
상품코드
1864761

자동차 트랜시버 시장 : 프로토콜별, 트랜시버 종류별, 인터페이스별, 차종별, 용도별, 최종 용도별 - 세계 예측(2025-2032년)

Automotive Transceivers Market by Protocols, Type of Transceiver, Interface, Vehicle Type, Application, End-Use - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 191 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

자동차 트랜시버 시장은 2032년까지 CAGR 5.63%로 118억 6,000만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 76억 5,000만 달러
추정 연도 2025년 80억 6,000만 달러
예측 연도 2032 118억 6,000만 달러
CAGR(%) 5.63%

대역폭 수요 증가, 존 아키텍처, 안전 요구사항이 트랜시버를 주변 부품에서 현대 차량 설계의 핵심 요소로 승화시키는 방법

오늘날 자동차 전기 아키텍처는 커넥티비티, 전동화, 첨단 운전자 보조 시스템(ADAS)에 의해 주도되는 큰 변화의 한가운데에 있습니다. 제어 모듈, 센서, 외부 네트워크 간의 신호 교환을 가능하게 하는 트랜시버는 차량 설계의 주변 부품에서 기능의 핵심 요소로 전환되고 있습니다. 이러한 변화는 더 높은 데이터 속도 요구 사항, 더 엄격한 전자기 호환성(EMC) 규정, 존 아키텍처의 확산, 기존 필드버스 외에 자동차 이더넷과 같은 새로운 물리 계층의 통합에 의해 주도되고 있습니다.

따라서 엔지니어링 팀과 조달 부서는 레거시 호환성과 미래 지향적인 설계 선택의 균형을 유지해야 합니다. 시간 결정론적 제어 루프에는 여전히 CAN(Controller Area Network) 구현이 중요하지만, 대역폭을 많이 소비하는 애플리케이션에서는 이더넷 기반 트랜시버가 점점 더 중요해지고 있습니다. 동시에, 공급업체들은 통합형 트랜시버 및 마이크로컴퓨터 제품과 차량 수준의 안전 목표에 특화된 견고한 장치로 대응하고 있습니다. 그 결과, 트랜시버 영역에서는 견고하고 확장 가능하며 비용 효율적인 차량 플랫폼을 확보하기 위해 시스템 아키텍트, 사이버 보안 전문가, 공급업체 관리 부서가 협력하여 부서 간 의사결정을 내려야 합니다.

기술, 규제, 공급망 탄력성에 대한 압력이 집중되면서 차량 플랫폼 전반에 걸쳐 트랜시버 요구사항과 공급업체 참여 모델이 재정의되고 있습니다.

자동차 트랜시버의 상황은 제품 로드맵과 공급업체 관계를 재구성하는 여러 상호의존적인 벡터를 따라 변화하고 있습니다. 첫째, 차량용 고속 네트워크의 도입이 가속화되고, 백본 기술로서 차량용 이더넷의 채택이 진행되고 있습니다. 이에 따라 차량 부하 조건에서도 높은 데이터 속도, 낮은 지연, 결정론적 동작을 지원할 수 있는 물리 계층 트랜시버가 요구되고 있습니다. 이와 함께 컨트롤러 영역 네트워크 기술(특히 향상된 CAN FD 변형)의 지속적인 존재는 저지연 제어와 고처리량 센서 영역을 모두 충족시키기 위해 레거시 네트워크와 차세대 네트워크가 공존하는 하이브리드 아키텍처를 보여주고 있습니다.

또한, 전기 파워트레인으로의 전환과 첨단 ADAS 센서의 보급으로 차량 내 통신 시스템에 대한 열 및 전자기적 부하가 증가함에 따라, 공급업체는 트랜시버 설계에서 견고성과 절연성을 우선시해야 합니다. 공급망 복원력 강화 조치와 품질 요건 강화로 인해 제조업체들은 공급처를 다양화하고 인증 프로세스를 강화하는 등 공급망 복원력을 강화하고 있습니다. 마지막으로, V2X(차량과 모든 사물과의 통신) 사용 사례에서 무선 연결의 부상과 진화하는 사이버 보안 규제의 시너지 효과로 인해 통합업체는 물리적 인터페이스 성능과 시스템 레벨의 보안 및 진단 가시성을 통합적으로 고려하여 트랜시버를 선택해야 합니다. 고려하지 않을 수 없습니다. 이러한 변화는 종합적으로 차별화된 제품 전략의 새로운 기회를 창출하는 동시에 검증과 라이프사이클 지원에 대한 더 높은 기준을 요구하고 있습니다.

무역 정책으로 인한 비용 압박과 조달처 변경으로 인해 제조업체는 공급망 다각화, 니어쇼어링, 추적성, 이중 소싱을 중시하는 경향이 있습니다.

최근 시행되거나 제안된 관세 조치 및 무역 정책은 자동차 공급망에 부품을 공급하는 여러 세계 공급업체들의 비용 구조, 공급처 결정 및 지리적 배치에 영향을 미치고 있습니다. 미국에 중요 반도체 부품 및 트랜시버 모듈을 수입하는 기업들은 추가 관세 부과로 인해 공급업체 계약 및 장기 조달 전략의 재검토가 진행되고 있습니다. 대부분의 경우, 조달 부서는 관세의 영향을 받지 않는 지역에서 대체 공급업체를 신속하게 인증하거나 단기적인 비용 부담을 줄이기 위해 전가 계약을 협상하여 대응하고 있습니다.

동시에 자동차 제조업체와 티어 공급업체들은 관세 변동에 영향을 덜 받기 위해 재고 계획과 이중 소싱 전략을 재검토하고 있습니다. 이에 따라 전략적으로 중요한 차량 프로그램의 생산 연속성을 유지하기 위해 공급망 가시성, 장기적인 프레임워크 계약, 그리고 가능한 한 니어쇼어링에 대한 강조가 강화되고 있습니다. 관세 조치는 상업적 역학에 영향을 미치지만, 그 누적된 결과는 공급업체의 투명성, 품질 추적성, 유연한 제조 체제에 대한 프리미엄을 높이는 결과를 낳고 있습니다. 이를 통해 시스템 통합업체는 제품 일정이나 규제 준수에 영향을 주지 않고 정책 주도의 변화에 적응할 수 있습니다.

다차원적 세분화 프레임워크는 프로토콜, 물리적 인터페이스, 차량 클래스, 애플리케이션 포커스, 최종 용도 요구사항이 트랜시버의 선택과 설계 우선순위를 결정하는 방법을 명확히 합니다.

세분화에 대한 인사이트를 얻으려면 프로토콜 요구사항, 트랜시버 폼팩터, 인터페이스 특성, 차량 클래스, 애플리케이션 요구사항, 최종 사용처에 대한 의사결정을 세부적으로 일치시켜야 합니다. 프로토콜 기반 기술 환경은 저지연 제어 영역에서 계속 활용되는 컨트롤러 영역 네트워크 구현, 고처리량 데이터 집약 및 센서 융합을 지원하는 이더넷 트랜시버, 특정 결정성 중심 아키텍처에서 여전히 관련성을 유지하는 FlexRay 트랜시버, 비용 중심의 바디 일렉트로닉스를 위한 로컬 상호연결 네트워크 솔루션을 포함합니다. 비용에 민감한 바디 일렉트로닉스에서 중요성을 유지하는 로컬 상호연결 네트워크 솔루션을 포함하고 있습니다.

자주 묻는 질문

  • 자동차 트랜시버 시장 규모는 어떻게 예측되나요?
  • 자동차 트랜시버의 주요 기술 변화는 무엇인가요?
  • 트랜시버 설계에서 공급업체가 고려해야 할 요소는 무엇인가요?
  • 무역 정책이 자동차 트랜시버 시장에 미치는 영향은 무엇인가요?
  • 자동차 트랜시버의 세분화 기준은 무엇인가요?
  • 자동차 트랜시버 시장의 주요 기업은 어디인가요?

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 자동차 트랜시버 시장 : 프로토콜별

  • 컨트롤러 에어리어 네트워크
  • 이더넷 트랜시버
  • FlexRay 트랜시버
  • 로컬·인터커넥트·네트워크

제9장 자동차 트랜시버 시장 트랜시버 종류별

  • 유선 트랜시버
  • 무선 트랜시버

제10장 자동차 트랜시버 시장 인터페이스별

  • 패러렐 인터페이스
  • 시리얼 인터페이스

제11장 자동차 트랜시버 시장 : 차종별

  • 상용차
  • 승용차

제12장 자동차 트랜시버 시장 : 용도별

  • ADAS 및 자율주행
  • 바디 일렉트로닉스
  • 섀시·파워트레인
  • 인포테인먼트 및 커넥티비티
  • 안전·보안

제13장 자동차 트랜시버 시장 : 최종 용도별

  • 애프터마켓
  • 자동차 제조업체(OEM)

제14장 자동차 트랜시버 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 자동차 트랜시버 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 자동차 트랜시버 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Analog Devices, Inc.
    • Broadcom Inc.
    • Continental AG
    • Denso Corporation
    • Elmos Semiconductor SE
    • Ethernovia Inc.
    • Hella GmbH & Co. KGaA
    • Infineon Technologies AG
    • Kvaser AB
    • Melexis NV
    • Microchip Technology Incorporated
    • Molex LLC
    • MORNSUN Guangzhou Science & Technology Co., Ltd.
    • National Instruments Corporation by Emerson Electric Co.
    • NXP Semiconductors N.V.
    • ON Semiconductor Corporation
    • Qualcomm Incorporated
    • Renesas Electronics Corporation
    • Robert Bosch GmbH
    • ROHM Co., Ltd.
    • STMicroelectronics N.V.
    • Texas Instruments Incorporated
    • Toshiba Corporation
    • Vector Informatik GmbH
    • Vishay Intertechnology, Inc.
KSM 25.11.21

The Automotive Transceivers Market is projected to grow by USD 11.86 billion at a CAGR of 5.63% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 7.65 billion
Estimated Year [2025] USD 8.06 billion
Forecast Year [2032] USD 11.86 billion
CAGR (%) 5.63%

How rising bandwidth demands, zonal architectures, and safety requirements are elevating transceivers from peripheral parts to central enablers of modern vehicle design

Today's automotive electrical architecture is undergoing a profound transformation driven by connectivity, electrification, and advanced driver assistance systems. Transceivers, the components that enable signal exchange between control modules, sensors, and external networks, are moving from peripheral parts of vehicle design to core enablers of functionality. This shift is driven by higher data-rate requirements, stricter electromagnetic compatibility mandates, the proliferation of zonal architectures, and the integration of new physical layers such as automotive Ethernet alongside established fieldbuses.

Consequently, engineering teams and procurement functions must balance legacy compatibility with forward-looking design choices. While Controller Area Network implementations remain critical for time-deterministic control loops, Ethernet-based transceivers are increasingly prominent for bandwidth-intensive applications. At the same time, suppliers are responding with integrated transceiver-MCU offerings and hardened devices tailored to vehicle-level safety objectives. As a result, the transceiver domain now demands coordinated cross-functional decision-making across system architects, cybersecurity specialists, and supplier management to ensure robust, scalable, and cost-effective vehicle platforms.

Converging technological, regulatory, and supply resilience pressures are redefining transceiver requirements and supplier engagement models across vehicle platforms

The landscape for automotive transceivers is shifting along multiple, interdependent vectors that reshape product roadmaps and supplier relationships. First, the deployment of high-speed in-vehicle networks is accelerating the adoption of automotive Ethernet as a backbone technology, which in turn demands physical-layer transceivers capable of supporting higher data rates, lower latency, and deterministic behavior under vehicular stressors. Parallel to this, the persistence of Controller Area Network technologies-especially in enhanced CAN FD variants-illustrates a hybrid architecture where legacy and next-generation networks coexist to satisfy both low-latency control and high-throughput sensor domains.

Moreover, the push toward electrified powertrains and extensive ADAS sensor suites increases thermal and electromagnetic stress on in-vehicle communications, prompting suppliers to prioritize robustness and isolation in transceiver designs. Supply chain resilience initiatives and quality mandates have incentivized manufacturers to diversify sourcing and increase qualification rigor. Finally, the rise of wireless connectivity for vehicle-to-everything use cases, coupled with evolving cybersecurity regulations, compels integrators to consider transceiver selection through a lens that merges physical interface performance with system-level security and diagnostic visibility. Taken together, these shifts create new opportunities for differentiated product strategies while imposing higher standards for verification and lifecycle support.

Trade policy-driven cost pressures and sourcing shifts are causing manufacturers to diversify supply chains and emphasize nearshoring, traceability, and dual sourcing

Tariff actions and trade policy measures enacted or proposed in recent periods have altered cost structures, supplier sourcing decisions, and geographic footprints of several global suppliers whose components populate automotive supply chains. For companies importing critical semiconductor components and transceiver modules into the United States, incremental duties have encouraged a re-evaluation of supplier contracts and long-term procurement strategies. In many instances, procurement teams have responded by accelerating qualification of alternative suppliers outside tariff-impacted geographies or by negotiating passthrough arrangements to mitigate near-term cost exposure.

At the same time, original equipment manufacturers and tier suppliers have re-examined inventory planning and dual-sourcing strategies to reduce vulnerability to tariff volatility. This has resulted in heightened emphasis on supply chain visibility, longer-term framework agreements, and nearshoring where feasible to preserve production continuity for strategically important vehicle programs. While tariff measures influence commercial dynamics, their cumulative consequence is to increase the premium on supplier transparency, quality traceability, and flexible manufacturing arrangements that allow systems integrators to adapt to policy-driven shifts without compromising product timelines or regulatory compliance.

A multi-dimensional segmentation framework clarifies how protocol, physical interface, vehicle class, application focus, and end-use requirements determine transceiver selection and design priorities

Segmentation insight requires granular alignment between protocol requirements, transceiver form factors, interface characteristics, vehicle classes, application demands, and end-use decision-making. Based on protocols, the technology landscape encompasses Controller Area Network implementations that continue to serve low-latency control domains, Ethernet transceivers that address high-throughput data aggregation and sensor fusion, FlexRay transceivers that remain relevant in specific determinism-focused architectures, and Local Interconnect Network solutions that retain importance for cost-sensitive body electronics.

Based on type of transceiver, development paths diverge between wired transceivers that emphasize robustness, deterministic timing, and electromagnetic resilience, and wireless transceivers that introduce flexibility for over-the-air functions and V2X connectivity. Based on interface, design choices reflect the trade-off between parallel interfaces that historically supported higher instantaneous throughput in localized systems and serial interfaces that provide scalability, lower pin counts, and simplified routing in distributed vehicle topologies. Based on vehicle type, functional requirements differ markedly between commercial vehicles, where uptime, ruggedization, and telematics dominate, and passenger vehicles, which prioritize seamless infotainment, ADAS integration, and occupant experience.

Based on application, the range of use cases includes ADAS & Autonomous Driving where deterministic, high-bandwidth links and robust failover are imperative; Body Electronics where cost-efficiency and compact form factors are key; Chassis & Powertrain where real-time control and immunity to harsh electrical environments are essential; Infotainment & Connectivity where bandwidth and quality of service determine user experience; and Safety & Security where diagnostic capabilities and adherence to functional safety standards drive component selection. Finally, based on end-use, procurement dynamics oscillate between aftermarket channels that favor modularity and interchangeability for serviceability and Original Equipment Manufacturers who require long-term lifecycle support, tight qualification processes, and bespoke integration services.

These segmentation dimensions collectively guide suppliers and integrators to align product attributes with use-case priorities, ensuring that protocol choices, transceiver types, and interface selections map to vehicle class and application-specific reliability and performance expectations.

Regional development patterns and regulatory pressures across the Americas, EMEA, and Asia-Pacific create distinct priorities for transceiver performance, sourcing, and compliance

Regional dynamics shape demand drivers, supply options, regulatory expectations, and development priorities in distinct ways. In the Americas, automotive programs emphasize advanced telematics integration, over-the-air update capabilities, and regulatory measures that influence emissions and safety testing; these priorities elevate the value of transceivers that support secure connectivity, remote diagnostics, and robust data-handling for fleet operations. In Europe, Middle East & Africa, stringent safety and emissions regulations, combined with rapid adoption of electrification and advanced driver assistance, push suppliers toward components that meet high functional safety standards and interoperability for diverse OEM ecosystems. Localization strategies in this region often favor multi-layered qualification and compliance with regional homologation requirements.

Across the Asia-Pacific region, fast-paced vehicle production growth, deep semiconductor ecosystems, and an aggressive rollout of EV and ADAS programs create fertile conditions for both incumbent and emerging transceiver suppliers. This region's concentration of manufacturing and testing capacity facilitates rapid prototyping and high-volume production, while also increasing local competition and price sensitivity. Each region's specific regulatory environment, talent base, and manufacturing footprint informs program timelines and supplier selection, requiring global actors to adopt adaptive regional strategies that reconcile global architecture consistency with localized qualification and cost structures.

Supplier strategies are converging on integrated device portfolios, qualification services, and co-engineering support to reduce integration risk and accelerate vehicle program timelines

Key companies in the transceiver space are adapting their product roadmaps to meet evolving automotive architecture demands by focusing on integration, qualification, and lifecycle support. Leading semiconductor firms are investing in hardened physical-layer devices that integrate diagnostic features, power management, and fault isolation compatible with functional safety frameworks. Concurrently, component manufacturers are pursuing partnerships with module integrators and tier suppliers to embed transceivers into higher-level communication modules that simplify OEM integration and reduce qualification burden.

Strategically, several vendors are emphasizing scalable portfolios that span low-cost LIN and CAN transceivers to high-speed Ethernet PHYs, enabling them to serve architectures that mix legacy buses with modern high-bandwidth links. Supply-side consolidation trends are complemented by targeted investments in test-and-measure capabilities, electromagnetic compliance validation, and lifecycle support services. For buyers, supplier selection increasingly evaluates not only device performance but also roadmaps for software support, long-term supply commitments, test coverage, and co-engineering capabilities that mitigate program-level integration risk. These supplier-led initiatives aim to shorten development cycles, enhance cross-domain interoperability, and strengthen after-sales diagnostic and calibration ecosystems.

Practical steps for OEMs and suppliers to align architecture, sourcing, and product qualification practices to reduce integration risk and accelerate time to production

Industry leaders should prioritize architectural strategies that balance existing fieldbus investments with future-proofed high-bandwidth fabrics. Automotive architects ought to define clear segregation between deterministic control domains and aggregated sensor domains, then map transceiver technologies to those functional boundaries to optimize reliability, latency, and maintainability. Procurement and sourcing teams should expand supplier qualification pipelines to include geographically diversified partners and ensure that contractual terms incorporate flexibility for policy-driven shifts and component obsolescence.

From a product perspective, engineering organizations should require transceivers with built-in diagnostic telemetry, enhanced electromagnetic resilience, and documented safety-case support to streamline system-level certification. Cross-functional alignment between systems engineering, cybersecurity, and supplier quality will enable more predictable integration and more rapid response to field issues. Finally, commercial leaders should negotiate lifecycle and support agreements that include access to validation artifacts, extended availability commitments, and collaborative change-management processes so that transceiver selection contributes to sustained program reliability and serviceability over vehicle lifecycles.

A rigorous, multi-method research approach combining primary interviews, technical standards review, and triangulated vendor validation to ensure credible insights and identified limitations

The research approach combined a structured review of technical literature, standards developments, and supplier product disclosures with targeted engagements across design, procurement, and quality functions within vehicle manufacturers and tier suppliers. Primary data collection involved structured interviews with system architects, transceiver engineers, and supply chain leads to validate protocol adoption patterns, assess engineering trade-offs, and document qualification practices. Secondary sources included standards committee outputs, semiconductor datasheets, and regulatory guidance to corroborate technical attributes and certification expectations.

Data synthesis applied triangulation techniques to reconcile vendor claims with practitioner feedback and technical specifications. Segmentation analysis mapped protocol, interface, vehicle-type, application, and end-use dimensions to observed design choices and procurement behaviors. Limitations of the methodology include potential biases from interview samples skewed toward organizations with active transceiver upgrade programs and the rapid evolution of semiconductor roadmaps that may outpace published documentation. To mitigate these limitations, the work emphasized cross-validation across multiple stakeholders and included conservative interpretations where primary evidence was incomplete.

A strategic synthesis showing why transceiver decisions are now central to vehicle-level performance, reliability, and supply resilience in modern automotive programs

Automotive transceivers now occupy a strategic position in vehicle architecture decisions, bridging control systems, sensor suites, and external communications. Their evolution reflects broader industry transitions toward zonal architectures, higher data rates, and integrated safety and cybersecurity requirements. Looking forward, decision-makers must treat transceiver selection as a system-level choice that affects latency budgets, fault management, qualification timelines, and supply continuity.

By aligning procurement strategies with engineering requirements and by demanding greater transparency from suppliers on qualification and lifecycle assurance, manufacturers can reduce integration risk and improve time-to-revenue for new vehicle programs. Suppliers that offer scalable portfolios, enhanced diagnostic visibility, and collaborative support to OEMs will be privileged partners in this environment. Ultimately, the path to resilient, high-performance vehicle architectures depends on cross-functional collaboration, careful segmentation of network domains, and a disciplined approach to supplier management and product qualification.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Adoption of automotive-grade high-speed Ethernet transceivers for advanced driver assistance systems
  • 5.2. Integration of multifunctional system-in-package transceivers to reduce vehicle electronic module footprint
  • 5.3. Development of robust CAN FD transceivers for enhanced in-vehicle network data throughput and diagnostics
  • 5.4. Emergence of silicon photonics transceivers for next-generation automotive LiDAR and optical sensing applications
  • 5.5. Implementation of over-the-air firmware update capabilities via secure telematics transceivers in connected cars
  • 5.6. Adoption of gallium nitride based transceivers to improve thermal efficiency in high-voltage electric vehicles
  • 5.7. Compliance with ISO 26262 safety requirements driving advanced functional safety features in automotive transceivers
  • 5.8. Integration of 5G cellular transceivers for real-time vehicle to cloud communication and edge computing support
  • 5.9. Development of low-power transceiver modules for battery management systems in electric and hybrid vehicles
  • 5.10. Use of artificial intelligence enabled transceiver diagnostics for predictive maintenance in automotive networks

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Automotive Transceivers Market, by Protocols

  • 8.1. Controller Area Network
  • 8.2. Ethernet Transceivers
  • 8.3. FlexRay Transceivers
  • 8.4. Local Interconnect Network

9. Automotive Transceivers Market, by Type of Transceiver

  • 9.1. Wired Transceivers
  • 9.2. Wireless Transceivers

10. Automotive Transceivers Market, by Interface

  • 10.1. Parallel Interfaces
  • 10.2. Serial Interfaces

11. Automotive Transceivers Market, by Vehicle Type

  • 11.1. Commercial Vehicles
  • 11.2. Passenger Vehicles

12. Automotive Transceivers Market, by Application

  • 12.1. ADAS & Autonomous Driving
  • 12.2. Body Electronics
  • 12.3. Chassis & Powertrain
  • 12.4. Infotainment & Connectivity
  • 12.5. Safety & Security

13. Automotive Transceivers Market, by End-Use

  • 13.1. Aftermarket
  • 13.2. Original Equipment Manufacturers (OEMs)

14. Automotive Transceivers Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Automotive Transceivers Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Automotive Transceivers Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Analog Devices, Inc.
    • 17.3.2. Broadcom Inc.
    • 17.3.3. Continental AG
    • 17.3.4. Denso Corporation
    • 17.3.5. Elmos Semiconductor SE
    • 17.3.6. Ethernovia Inc.
    • 17.3.7. Hella GmbH & Co. KGaA
    • 17.3.8. Infineon Technologies AG
    • 17.3.9. Kvaser AB
    • 17.3.10. Melexis NV
    • 17.3.11. Microchip Technology Incorporated
    • 17.3.12. Molex LLC
    • 17.3.13. MORNSUN Guangzhou Science & Technology Co., Ltd.
    • 17.3.14. National Instruments Corporation by Emerson Electric Co.
    • 17.3.15. NXP Semiconductors N.V.
    • 17.3.16. ON Semiconductor Corporation
    • 17.3.17. Qualcomm Incorporated
    • 17.3.18. Renesas Electronics Corporation
    • 17.3.19. Robert Bosch GmbH
    • 17.3.20. ROHM Co., Ltd.
    • 17.3.21. STMicroelectronics N.V.
    • 17.3.22. Texas Instruments Incorporated
    • 17.3.23. Toshiba Corporation
    • 17.3.24. Vector Informatik GmbH
    • 17.3.25. Vishay Intertechnology, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제