시장보고서
상품코드
1866960

엘리베이터 안전 시스템 시장 : 안전 시스템 유형별, 엘리베이터 유형별, 최종사용자별, 설치 유형별, 기술별, 서비스 유형별 - 세계 예측(2025-2032년)

Elevator Safety System Market by Safety System Type, Elevator Type, End User, Installation Type, Technology, Service Type - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 192 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

엘리베이터 안전 시스템 시장은 2032년까지 연평균 복합 성장률(CAGR) 10.56%로 123억 4,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 55억 2,000만 달러
추정 연도 : 2025년 61억 1,000만 달러
예측 연도 : 2032년 123억 4,000만 달러
CAGR(%) 10.56%

엘리베이터 안전 시스템의 기초, 기술 발전, 규제 기대치, 조달 및 혁신을 형성하는 전략적 촉진요인에 대한 권위 있는 개관

엘리베이터 안전 시스템의 상황은 건축 환경의 회복력, 사용자 안전, 수직 운송의 가속화되는 디지털화라는 중요한 접점에 위치하고 있습니다. 본 보고서에서는 제품 혁신, 규제 당국의 감시, 조달 행동을 형성하는 수렴적 힘에 대해 설명하고, 건물 소유주, 자산 관리자 및 제조업체가 안전 투자를 우선시하는 방식에 영향을 미치는 요인에 대해 설명합니다. 엘리베이터 하드웨어는 수년 동안 견고한 기계 공학에 의존해 왔지만, 최신 단계에서는 통합 전자 제어, 센서 융합, 소프트웨어 기반 진단에 중점을 두어 전통적인 안전 기능을 지속적인 상태 모니터링 및 자동화된 사고 대응으로 확장하고 있습니다.

성숙한 건축 시장부터 신흥 시장까지, 이해관계자들은 안전 시스템에 대해 고장 시 안전한 대응뿐만 아니라 다운타임과 라이프사이클 비용을 절감할 수 있는 운영상의 통찰력도 기대합니다. IoT 지원 센서와 AI 기반 이상 감지 등의 혁신 기술로 인해 시스템은 사후 대응형 교체에서 상태 기반 개입으로 전환되고 있습니다. 동시에, 규제 프레임워크와 기준도 고층 빌딩, 의료시설, 중요 인프라 환경에서 거주자 보호에 대한 기대가 높아짐에 따라 진화하고 있습니다. 그 결과, 조달 결정에 있어 기본 성능 지표 외에도 상호운용성, 사이버 보안, 유지보수성 등이 점점 더 중요해지고 있습니다.

본 보고서의 서론에서는 주요 용어와 기술군을 명확히 하고, 엘리베이터 안전 시스템을 빌딩 자동화, 탄력적 설계, 도시 모빌리티와 같은 광범위한 흐름 속에 위치시킴으로써 보다 심층적인 분석의 토대를 마련하고자 합니다. 이어지는 각 장에서는 기술 변화, 무역 정책의 변화, 세분화의 역학, 지역적 전개, 경쟁적 행동이 어떻게 교차하며 가치사슬 전반의 이해관계자들에게 새로운 위험과 기회를 창출하고 있는지를 살펴볼 것입니다.

통합 디지털 아키텍처, IoT 도입, 진화하는 공급망 전략, 첨단 서비스 모델이 엘리베이터 안전 시스템 설계 및 제공을 재구성하는 방법

엘리베이터 안전 시스템 환경은 기술 융합, 규제 감시 강화, 신뢰성과 복원력에 대한 이해관계자의 기대치 변화로 인해 혁신적인 전환기를 맞이하고 있습니다. 핵심적인 변화 중 하나는 기계적인 페일 세이프 기능을 디지털 모니터링 및 자동화된 사고 관리와 결합한 통합 안전 아키텍처로 전환하는 것입니다. 이러한 하이브리드화는 제품 설계, 테스트 프로토콜, 애프터마켓 서비스 제공에 영향을 미치고 있으며, 이해관계자들은 결정론적 안전 대응과 데이터에 기반한 진단 기능을 모두 제공하는 시스템을 요구하고 있습니다.

이와 함께 IoT 대응 솔루션의 급속한 보급이 진행되고 있으며, 개보수 공사와 신규 설치 모두에서 도입이 증가하고 있습니다. IoT 아키텍처는 지연에 민감한 안전 기능을 위해 클라우드 기반 분석과 엣지 컴퓨팅을 가능하게 합니다. 동시에 안전한 데이터 처리, 펌웨어 라이프사이클 관리, 타사 통합에 대한 새로운 요구사항도 생겨나고 있습니다. 이에 따라 공급업체들은 보안 통신, 디바이스 관리 플랫폼, 인증된 사이버 보안 조치에 투자하여 고도의 분석을 가능하게 하면서도 안전을 보장하기 위해 노력하고 있습니다.

공급망 트렌드도 변화하고 있습니다. 제조업체와 통합업체들은 연속성 유지와 변화하는 무역정책에 대응하기 위해 조달 전략의 다양화와 부품의 추적성 확보를 우선시하고 있습니다. 동시에 서비스 모델은 시간 기반의 예방적 유지보수에서 센서 데이터와 AI를 활용한 예지보전 및 상태 모니터링 방식으로 진화하고 있습니다. 이러한 변화는 종합적으로 복잡한 건축 환경에서 안전성이 신뢰성과 적응성을 동시에 확보하기 위해 시스템 엔지니어링, 다학제적 시험, 이해관계자 협력에 대한 새로운 역량을 요구하고 있습니다.

2025년 관세 개정이 가져온 복잡한 운영 및 조달 영향은 공급망 현지화, 모듈식 설계 조정, 안전 시스템의 위험 관리 재구축을 촉진했습니다.

2025년까지 미국에서 시행 및 개정된 관세는 엘리베이터 안전 시스템 밸류체인에 다각적인 압력을 가하여 조달 전략, 부품 공급처, 제품 디자인 선택에 영향을 미쳤습니다. 관세 관련 비용 압박으로 인해 공급업체들은 세계 조달 체제의 재평가를 가속화했고, 많은 제조업체들이 공급 연속성을 보장하기 위해 공급업체 계약 감사, 단일 공급원에 대한 의존도 재평가, 이중 소싱 체제의 구축을 추진했습니다. 그 결과, 조달 부서는 총착륙비용 분석, 리드타임 예측가능성, 계약의 유연성을 더욱 중요하게 생각하게 되었습니다.

이에 제조업체들은 가능한 범위 내에서 현지 생산과 니어쇼어링을 강화하고, 관세 변동 리스크를 줄이기 위한 생산 전환을 우선시했습니다. 이러한 운영 조정은 제품 로드맵에도 영향을 미쳤으며, 설계팀은 안전 성능 및 인증 적합성을 유지하면서 대체 부품을 사용할 수 있는 부품 교체 및 모듈화 아키텍처를 모색했습니다. 동시에, 엔지니어링 및 품질 보증 부서는 관련 안전 표준을 준수하면서 공급망의 유연성을 보장하기 위해 공급업체 인증 프로세스를 엄격하게 강화했습니다.

최종사용자 및 사양 수립자는 잠재적인 비용 변동 및 납기 지연에 대비하기 위해 조달 일정을 조정하고, 공급업체와의 계약 기간 연장 및 무역 정책 변동에 대응하기 위한 명시적 계약 조항을 도입했습니다. 한편, 서비스 제공업체는 애프터마켓 재고를 확충하고 예측 유지보수 전략을 중시하여 관세로 인한 리드타임 급증으로 인해 복잡해질 수 있는 긴급 교체를 줄였습니다. 종합하면, 2025년 관세 변경의 누적 효과는 공급망 탄력성, 설계의 모듈성, 계약상 위험 관리를 안전 시스템 전략의 핵심 요소로 우선시하는 전체 생태계의 구조적 대응을 촉진했습니다.

안전 서브시스템 설계, 설치 환경, 서비스 모델을 다양한 엘리베이터 유형 및 최종 사용자의 기대에 맞게 조정, 심층 세분화에 기반한 통찰력

세분화에 대한 이해는 이해관계자들이 제품 개발, 시장 출시 전략, 서비스 모델을 다양한 사용자 요구와 기술 요구사항에 맞게 조정하는 데 필수적입니다. 안전 시스템 유형에 따라 도어 인터록 시스템, 비상 경보 시스템, 방화문, 과속 방지 장치, 안전 브레이크, 지진 센서와 같은 핵심 구성 요소를 분석 대상으로 삼는다. 각 구성 요소는 고유한 인증 요건과 유지보수 프로파일을 가지고 있으며, 라이프사이클 계획과 통합 비용에 영향을 미칩니다. 화물용 엘리베이터, 승객용 엘리베이터, 주거용 엘리베이터, 서비스용 엘리베이터 등 엘리베이터의 유형에 따라 견고성, 처리량, 객실 제어 기능의 우선순위가 결정됩니다. 이는 안전 시스템 사양과 서비스 수준 계약에 영향을 미칩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 엘리베이터 안전 시스템 시장 안전 시스템 유형별

  • 도어 인터락 시스템
  • 긴급 경보 시스템
  • 내화 도어
  • 속도 제한 장비
  • 안전 브레이크
  • 지진 센서

제9장 엘리베이터 안전 시스템 시장 : 엘리베이터 유형별

  • 화물용 엘리베이터
  • 승용 엘리베이터
  • 주택용 엘리베이터
  • 서비스 엘리베이터

제10장 엘리베이터 안전 시스템 시장 : 최종사용자별

  • 상업
  • 헬스케어
  • 호스피탈리티
  • 산업
  • 주택

제11장 엘리베이터 안전 시스템 시장 : 설치 유형별

  • 현대화
  • 신규 설치

제12장 엘리베이터 안전 시스템 시장 : 기술별

  • 기존
  • IoT 대응
    • 클라우드 기반
    • 엣지 기반

제13장 엘리베이터 안전 시스템 시장 : 서비스 유형별

  • 예지보전
    • AI 기반
    • 센서 기반
  • 예방 보전
  • 사후 대응형 유지보수

제14장 엘리베이터 안전 시스템 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 엘리베이터 안전 시스템 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 엘리베이터 안전 시스템 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Otis Elevator Company
    • Schindler Holding AG
    • KONE Corporation
    • TK Elevator GmbH
    • Mitsubishi Electric Corporation
    • Hitachi, Ltd.
    • Fujitec Co., Ltd.
    • Toshiba Elevator and Building Systems Corporation
    • Hyundai Elevator Co., Ltd.
    • Canny Elevator Co., Ltd.
LSH 25.11.24

The Elevator Safety System Market is projected to grow by USD 12.34 billion at a CAGR of 10.56% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 5.52 billion
Estimated Year [2025] USD 6.11 billion
Forecast Year [2032] USD 12.34 billion
CAGR (%) 10.56%

An authoritative overview of elevator safety system fundamentals, technological evolution, regulatory expectations, and the strategic drivers shaping procurement and innovation

The elevator safety systems landscape occupies a critical nexus between built-environment resilience, occupant safety, and the accelerating digitization of vertical transportation. This introduction outlines the converging forces shaping product innovation, regulatory scrutiny, and procurement behavior that influence how building owners, asset managers, and original equipment manufacturers prioritize safety investments. While elevator hardware has long relied on robust mechanical engineering, the latest phase emphasizes integrated electronic controls, sensor fusion, and software-driven diagnostics that extend traditional safety functions into continuous condition monitoring and automated incident response.

Across mature and emerging building markets, stakeholders now expect safety systems to offer not only fail-safe responses but also operational insights that reduce downtime and lifecycle cost. Innovations such as IoT-enabled sensors and AI-driven anomaly detection allow systems to transition from reactive replacement to condition-based interventions. At the same time, regulatory frameworks and codes are evolving to reflect heightened expectations for occupant protection, particularly in high-rise, healthcare, and critical infrastructure contexts. Consequently, procurement decisions increasingly weigh interoperability, cybersecurity, and serviceability alongside baseline performance metrics.

This report's introduction sets the stage for deeper analysis by clarifying key terminologies and technology families, and by situating elevator safety systems within broader trends in building automation, resilient design, and urban mobility. The subsequent sections interrogate how technological shifts, trade policy changes, segmentation dynamics, regional footprints, and competitive behaviors intersect to create new risks and opportunities for stakeholders across the value chain.

How integrated digital architectures, IoT adoption, evolving supply chain strategies, and advanced service models are reshaping elevator safety system design and delivery

The landscape for elevator safety systems is undergoing transformative shifts driven by technological convergence, heightened regulatory scrutiny, and evolving stakeholder expectations for reliability and resilience. One central change is the migration from isolated safety components toward integrated safety architectures that combine mechanical fail-safes with digital monitoring and automated incident management. This hybridization has implications for product design, testing protocols, and aftermarket service offerings, as stakeholders demand systems that provide both deterministic safety responses and data-rich diagnostics.

Parallel to this is the rapid adoption of IoT-enabled solutions, which are increasingly deployed in both retrofit and new-installation contexts. IoT architectures enable cloud-based analytics and edge computing for latency-sensitive safety functions; they also introduce new requirements for secure data handling, firmware lifecycle management, and third-party integration. In response, suppliers are investing in secure communications, device management platforms, and certified cybersecurity practices to ensure safety integrity while enabling advanced analytics.

Supply chain dynamics are also shifting. Manufacturers and integrators are diversifying sourcing strategies and prioritizing component traceability as a means to maintain continuity and comply with evolving trade policies. At the same time, service models are evolving from time-based preventive maintenance to predictive and condition-based approaches that leverage sensor data and AI. Collectively, these shifts require new capabilities in systems engineering, cross-disciplinary testing, and stakeholder collaboration to ensure that safety remains both reliable and adaptive in complex built environments.

The complex operational and procurement consequences of 2025 tariff revisions that prompted supply chain localization, modular design adjustments, and renewed risk management in safety systems

The imposition and revision of tariffs in the United States throughout 2025 have exerted multifaceted pressures on the elevator safety system value chain, influencing procurement strategies, component sourcing, and product design choices. Tariff-related cost pressures accelerated supplier reassessment of global sourcing footprints, prompting many manufacturers to audit supplier agreements, re-evaluate single-source dependencies, and pursue dual-sourcing arrangements to preserve continuity of supply. As a result, procurement teams have placed greater emphasis on total landed cost analysis, lead-time predictability, and contractual flexibility.

Manufacturers responded by intensifying localization and nearshoring efforts where feasible, prioritizing production shifts that reduce exposure to tariff volatility. These operational adjustments, in turn, influenced product roadmaps: design teams sought component substitutions and modular architectures that enable alternative parts without compromising safety performance or certification compliance. At the same time, engineering and quality assurance functions increased the rigor of supplier qualification processes to maintain compliance with relevant safety standards while accommodating supply-chain flexibility.

End users and specifiers adapted procurement schedules to buffer for potential cost and timing variability, moving toward longer supplier engagement cycles and more explicit contractual clauses addressing trade policy contingencies. Meanwhile, service providers expanded aftermarket inventories and emphasized predictive maintenance strategies to reduce emergency replacements that could be complicated by tariff-driven lead-time spikes. Taken together, the cumulative effect of tariff changes in 2025 catalyzed a structural response across the ecosystem that prioritized supply chain resilience, design modularity, and contractual risk management as central elements of safety system strategy.

Deep segmentation-driven insights that align safety subsystem engineering, installation contexts, and service paradigms to varied elevator types and end-user expectations

Understanding segmentation is essential for stakeholders to align product development, go-to-market approaches, and service models with distinct user needs and technical requirements. Based on Safety System Type, analysis spans core components such as Door Interlock Systems, Emergency Alarm Systems, Fire Rated Doors, Overspeed Governors, Safety Brakes, and Seismic Sensors, each carrying unique certification and maintenance profiles that influence lifecycle planning and integration costs. Based on Elevator Type, differences between Freight Elevator, Passenger Elevator, Residential Elevator, and Service Elevator use cases determine prioritization of robustness, throughput, and cabin control features, which in turn affect safety system specifications and service-level agreements.

Based on End User, deployments vary significantly across Commercial, Healthcare, Hospitality, Industrial, and Residential environments, with healthcare and high-occupancy commercial settings typically commanding more stringent redundancy and monitoring requirements. Based on Installation Type, the dichotomy between Modernization and New Installation drives contrasting product strategies: modernization projects emphasize interoperability with legacy control systems and minimally invasive retrofits, while new installations allow for integrated safety stacks and centralized building automation integration. Based on Technology, solutions split between Conventional and IoT Enabled approaches, with IoT Enabled offerings further differentiated into Cloud Based and Edge Based architectures that balance analytic depth against latency and privacy concerns.

Based on Service Type, maintenance approaches include Predictive Maintenance, Preventive Maintenance, and Reactive Maintenance, where Predictive Maintenance is further studied across AI Based and Sensor Based modalities that determine the sophistication of diagnostics and the types of data required. These segmentation lenses reveal that successful products and services must be tailored not only to the technical characteristics of safety subsystems, but also to the operational realities of elevator type, end-user expectations, installation constraints, technological architecture, and the selected maintenance paradigm.

How regional regulatory diversity, retrofit priorities, and urbanization trends drive differentiated adoption of IoT-enabled safety architectures and service models globally

Regional dynamics shape priorities for regulation, technology adoption, and supplier footprints in ways that materially affect strategy. In the Americas, regulatory enforcement, retrofit activity in aging building stocks, and a strong emphasis on service contracting have driven active demand for robust maintenance offerings and IoT-enabled monitoring. Transitions toward condition-based maintenance are visible among large property portfolios seeking to reduce unplanned downtime and improve tenant safety metrics. In this region, procurement decisions increasingly emphasize long-term service agreements and clear uptime guarantees.

Across Europe, Middle East & Africa, regulatory heterogeneity and rapid urbanization in select markets create a complex environment for compliance and standardization. Western European markets exhibit advanced adoption of integrated safety solutions and stringent certification requirements, while emerging markets in the region prioritize scalable, cost-effective systems adapted for local building practices. In several jurisdictions, seismic risk considerations and energy-efficiency mandates also influence safety system specifications and installation choices.

In the Asia-Pacific region, a combination of large-scale construction activity, dense urban centers, and a fast-evolving technology ecosystem has driven substantial interest in IoT-enabled safety stacks and edge analytics. High-rise residential and commercial developments often demand sophisticated redundancy and rapid response capabilities, and local manufacturers are increasingly competitive on both price and integrated services. Across regions, supply-chain strategies, regulatory interpretation, and end-user expectations converge to create differentiated adoption patterns for product and service innovations.

Competitive advantage arises from integrating proven mechanical safety engineering with scalable digital services, retrofit-friendly IoT solutions, and resilient supply chain strategies

Competitive dynamics in the elevator safety system ecosystem center on the ability to combine engineering excellence with software-enabled services and resilient supply chains. Established OEMs and specialist suppliers are investing in cross-functional capabilities that bridge mechanical safety hardware with digital diagnostics, emphasizing product modularity, certified integration pathways, and extended service contracts. Strategic differentiation is emerging through proprietary sensor suites, validated interoperability layers, and cloud or edge analytics that enable predictive maintenance and remote diagnostics.

At the same time, a growing cohort of technology entrants and system integrators is challenging legacy models by offering lightweight, retrofit-friendly IoT platforms and AI-driven anomaly detection services that can be deployed without full system replacement. These entrants focus on rapid time-to-value and flexible commercial models that appeal to owners seeking incremental upgrades. Partnerships between hardware suppliers and software firms have become common, enabling bundling of sensors, connectivity, analytics, and service delivery under performance-based agreements.

Competitive advantage increasingly depends on demonstrated compliance with safety standards, the scalability of aftersales networks, and the ability to provide transparent evidence of reliability and uptime. Suppliers that can articulate clear total-cost-of-ownership narratives, streamline installation and commissioning processes, and offer interoperable solutions for mixed-vendor estates hold strategic leverage. Finally, corporate strategies around local manufacturing, parts availability, and training for certified technicians will remain decisive in securing long-term contracts in both retrofit and new-installation segments.

Practical steps to enhance product modularity, secure IoT practices, predictive maintenance capabilities, supplier agreements, and field training to mitigate risk and boost resilience

Industry leaders can take immediate, actionable steps to strengthen product resilience, accelerate adoption of advanced safety paradigms, and de-risk procurement exposure. First, prioritize architectural modularity in product roadmaps to enable graceful substitution of components and to ease certification pathways when supply constraints arise. Modular designs reduce dependency on single-source parts and facilitate field upgrades that extend asset life without complete system replacement. Second, embed secure-by-design principles across IoT-enabled offerings, including authenticated device provisioning, encrypted telemetry, and robust over-the-air update mechanisms to preserve safety integrity and maintain regulatory compliance.

Third, expand service capabilities toward predictive maintenance by investing in sensor suites and AI models that provide early detection of degradation. Transitioning maintenance portfolios from time-based schedules to condition-based regimes improves uptime and reduces emergency interventions. Fourth, renegotiate supplier and procurement contracts to include clauses that address tariff volatility and lead-time variability while increasing transparency on component provenance. This will require tighter collaboration between procurement, legal, and engineering teams.

Finally, enhance training programs for certified technicians and integrators to ensure consistent installation quality and rapid troubleshooting. Coupled with digital tools for remote diagnostics and guided repair, a skilled field force will improve uptime performance and client satisfaction. Implementing these recommendations will position organizations to respond nimbly to regulatory shifts, supply-chain disruptions, and evolving customer expectations.

A rigorous mixed-methods research framework combining expert interviews, operational data validation, standards review, and scenario analysis to ensure robust, actionable insights

This research synthesizes primary and secondary evidence using a rigorous mixed-methods approach designed to surface actionable insights while preserving technical and regulatory accuracy. Primary inputs include structured interviews with safety engineers, procurement leaders, facility managers, and certified installation technicians, supplemented by anonymized operational data from installation and service records to validate maintenance-related propositions. These inputs were triangulated with technical standards, certification frameworks, and manufacturer documentation to ensure that product and service claims align with prevailing safety requirements.

Secondary research entailed a systematic review of publicly available regulatory guidance, standards bodies' publications, and technical white papers on IoT security, sensor performance, and predictive analytics in vertical-transportation contexts. Where applicable, methodological steps included assessment of failure modes, root-cause analysis of common safety incidents, and evaluation of interoperability challenges during modernization projects. Data integrity measures involved cross-validation of interview findings with documented case studies and an audit trail for source materials.

Analytical techniques employed range from qualitative thematic coding of stakeholder interviews to scenario-based assessment of supply-chain disruptions and sensitivity analysis of service model adoption pathways. The methodology emphasizes transparency: appendices provide a description of sample frames, interview protocols, and criteria for inclusion, enabling readers to assess the applicability of insights to their operational context. Ethical safeguards included informed consent for interview participants and anonymization of proprietary operational data.

A strategic synthesis emphasizing integration of certified mechanical safety, digital monitoring, supply-chain resilience, and service excellence to meet modern building demands

In conclusion, elevator safety systems are entering a phase defined by integration, digitization, and resilience. The combination of IoT-enabled monitoring, AI-assisted predictive maintenance, and modular hardware architectures is reshaping expectations for safety, uptime, and lifecycle management. Stakeholders who proactively align design, procurement, and service strategies to these trends will be better positioned to manage regulatory complexity, supply-chain disruption, and evolving end-user demands.

The evidence indicates that success will depend on the ability to deliver certified safety performance while enabling flexible upgrade paths and secure data practices. Procurement teams should prioritize suppliers that demonstrate both mechanical reliability and digital competency, while engineering teams should accelerate validation of edge and cloud architectures for latency-sensitive safety functions. Finally, service organizations that invest in predictive capabilities and field technician enablement will capture measurable gains in uptime and customer trust.

This executive summary synthesizes the principal themes that inform strategic decision-making for product managers, facility operators, and executive leadership. It underscores the importance of a holistic approach that integrates engineering rigor with data-driven services and resilient operational practices to meet the safety demands of modern built environments.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of predictive maintenance algorithms using IoT sensors to reduce elevator downtime and maintenance costs
  • 5.2. Adoption of artificial intelligence powered condition monitoring systems for predictive elevator fault detection
  • 5.3. Implementation of contactless elevator control panels and touchless call function for improved hygiene and safety
  • 5.4. Deployment of blockchain based maintenance records to enhance transparency and compliance in elevator servicing
  • 5.5. Integration of advanced lidar and camera based obstruction detection to prevent entrapment and accidents in elevator shafts

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Elevator Safety System Market, by Safety System Type

  • 8.1. Door Interlock Systems
  • 8.2. Emergency Alarm Systems
  • 8.3. Fire Rated Doors
  • 8.4. Overspeed Governors
  • 8.5. Safety Brakes
  • 8.6. Seismic Sensors

9. Elevator Safety System Market, by Elevator Type

  • 9.1. Freight Elevator
  • 9.2. Passenger Elevator
  • 9.3. Residential Elevator
  • 9.4. Service Elevator

10. Elevator Safety System Market, by End User

  • 10.1. Commercial
  • 10.2. Healthcare
  • 10.3. Hospitality
  • 10.4. Industrial
  • 10.5. Residential

11. Elevator Safety System Market, by Installation Type

  • 11.1. Modernization
  • 11.2. New Installation

12. Elevator Safety System Market, by Technology

  • 12.1. Conventional
  • 12.2. IoT Enabled
    • 12.2.1. Cloud Based
    • 12.2.2. Edge Based

13. Elevator Safety System Market, by Service Type

  • 13.1. Predictive Maintenance
    • 13.1.1. AI Based
    • 13.1.2. Sensor Based
  • 13.2. Preventive Maintenance
  • 13.3. Reactive Maintenance

14. Elevator Safety System Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Elevator Safety System Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Elevator Safety System Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Otis Elevator Company
    • 17.3.2. Schindler Holding AG
    • 17.3.3. KONE Corporation
    • 17.3.4. TK Elevator GmbH
    • 17.3.5. Mitsubishi Electric Corporation
    • 17.3.6. Hitachi, Ltd.
    • 17.3.7. Fujitec Co., Ltd.
    • 17.3.8. Toshiba Elevator and Building Systems Corporation
    • 17.3.9. Hyundai Elevator Co., Ltd.
    • 17.3.10. Canny Elevator Co., Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제