시장보고서
상품코드
1867205

건설용 배터리 저장 시스템 시장 : 시스템 유형별, 배터리 화학별, 용도별, 최종사용자별, 설치 유형별, 용량 범위별, 계통 연계별 - 세계 예측(2025-2032년)

Battery Storage System in Construction Market by System Type, Battery Chemistry, Application, End User, Installation Type, Capacity Range, Grid Connection - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 196 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

건설용 배터리 저장 시스템 시장은 2032년까지 CAGR 22.15%로 82억 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 16억 5,000만 달러
추정연도 2025 20억 2,000만 달러
예측연도 2032 82억 달러
CAGR(%) 22.15%

에너지 저장 기술이 건축 프로젝트에 탄력성, 설계 통합성, 운영 가치를 통합하여 건설 프로젝트 제공 방식을 재구성

건설 산업은 배터리 에너지 저장 시스템이 주변적인 파일럿 프로젝트에서 탄력적이고 저탄소적인 건물 및 인프라의 핵심 구성 요소로 전환됨에 따라 근본적인 변화를 겪고 있습니다. 신축 프로젝트와 리노베이션 프로그램 모두에서 스토리지 솔루션은 개발자, 계약자 및 소유주가 에너지 조달, 부지 설계 및 수명주기 운영 전략에 접근하는 방식을 바꾸고 있습니다. 건축 시스템의 전기화 진전, 배출량 감축 목표의 강화, 전력계통 장애에 대한 현장 내결함성 강화 요구가 결합되어 이해관계자들은 기존의 전력 공급 방식을 재평가해야 합니다.

전기 저장 시스템의 사양 수립, 조달 및 건설 프로젝트에 통합하는 방식에 체계적인 변화를 초래하는 새로운 기술적, 규제적, 상업적 요인들

최근 수년간 건설 분야의 축전지 상황은 극적으로 변화했습니다. 이는 기술의 성숙, 규제 압력, 이해관계자의 기대치 변화라는 세 가지 요인이 동시에 작용한 결과입니다. 화학적 구성과 시스템 주변장치의 발전으로 신뢰성이 향상되고 설치의 복잡성이 감소함에 따라 개발자와 계약업체는 보다 자신 있게 축전지 시스템을 사양에 통합할 수 있게 되었습니다. 동시에, 건축 기준 및 복원력(Resilience) 요건에서 에너지 저장 시스템이 배출량 감축 및 신뢰성 목표 달성을 위한 적절한 수단으로 인식되고 있으며, 공공 및 민간을 막론하고 제도적 요구가 증가하고 있습니다.

최근 무역 조치와 관세 동향이 건설 통합형 축전 시스템 도입시 조달 리스크, 공급업체 전략, 계약 프레임워크에 미치는 영향

최근 발표되거나 시행된 무역 조치와 정책 전환은 2025년까지 공급망을 복잡한 환경으로 이끌고 있으며, 누적된 관세 영향은 조달 전략과 수명주기 경제성에 영향을 미치고 있습니다. 수입 배터리 셀, 주요 부품, 전구체 재료에 영향을 미치는 관세는 개발업체와 OEM 제조업체의 가격 변동 위험을 높이고 있으며, 많은 프로젝트 팀이 공급업체 선정의 재검토, 장기 계약 협상, 2차 정보의 조기 인증을 요구하고 있습니다. 이러한 움직임은 조달 기간이 긴 프로젝트나 고정 가격 건설 계약에서 특히 두드러집니다.

상세한 세분화 분석을 통해 시스템 아키텍처, 화학적 특성 선택, 적용 환경, 설치 방법이 기술 요구 사항 및 조달 경로를 결정하는 메커니즘을 파악할 수 있습니다.

부문 수준 분석을 통해 기술 선택과 공급 모델이 프로젝트 목표 및 조달 정책과 교차하는 영역을 파악할 수 있습니다. 시스템 유형 결정은 설치 순서와 상호 운용성 고려에 영향을 미칩니다. AC 결합형 아키텍처는 기존 배전반과의 통합을 간소화하고, DC 결합형 옵션은 특정 인버터 구성의 왕복 효율을 향상시키며, 하이브리드 솔루션은 다중 부하 모드와 계통 연계 모드를 동시에 지원할 수 있습니다. 화학 성분의 선택은 성능과 수명주기의 절충점을 결정합니다. 바나듐 레독스 및 아연 브롬과 같은 흐름 기술은 긴 사이클과 낮은 열화 특성을 제공하며, 납축전지는 예산 제약 하에서 전통적 선택으로 남아 있습니다. LCO, LFP, NMC를 포함한 리튬이온 변종은 서로 다른 에너지 밀도와 안전 특성을 나타내며, 나트륨 황은 더 큰 규모의 고용량 고정식 도입에 고려됩니다.

주요 지역의 규제 제도, 계통 특성, 현지 공급망 생태계에 의해 좌우되는 지역별 도입 패턴 및 조달 행동

지역별 동향은 각기 다른 규제 환경, 송전망 특성, 건설 업계의 관행을 반영하고 있습니다. 북미와 남미에서는 탄력성 수요, 탈탄소화 인센티브, 전력회사 프로그램(계량기 뒤의 분산형 자원에 대한 매출 기회 창출)이 결합되어 도입이 진행되고 있습니다. 북미 프로젝트에서는 전기화 구상과 첨단 에너지 관리 플랫폼과의 통합을 중시하는 경향이 있으며, 조달 주기에서 현지 서비스 네트워크와 규정 준수에 대한 전문성을 입증할 수 있는 벤더가 우대받는 경향이 있습니다.

업계의 경쟁 역학은 건설 납품 및 장기적인 운영을 효율화하는 통합 하드웨어, 제어 시스템 및 서비스 모델의 전략적 우위를 강조

업계 경쟁은 전문 셀 제조업체, 풀스택 시스템 통합사업자, 소프트웨어 플랫폼 공급업체, 건설 전문 서비스 프로바이더가 혼재되어 있습니다. 주요 공급업체들은 입증된 현장 실적, 안전 인증, 종합적인 보증을 결합하여 차별화를 꾀하고 건설 이해관계자들의 위험 인식을 완화하고 있습니다. 동시에, 사전 조립된 모듈 솔루션과 표준화된 설치 패키지를 제공하는 시스템 통합사업자는 복잡한 프로젝트를 관리하는 종합 건설업체에게 특히 가치가 있으며, 일정에 대한 확신을 조기에 확보할 수 있습니다.

경영진이 조달, 설계 및 서비스 모델을 동기화하고 공급망 및 규제 리스크를 줄이기 위한 실용적이고 실행 가능한 전략을 제공

건설 통합형 축전 시스템 선도 기업은 기술 선택을 계약 및 운영 현실에 맞게 조정하는 실용적인 전략을 채택해야 합니다. 첫째, 에너지 전문가와 설계 시공팀과의 조기 협업을 우선시하고, 부지 계획, 구조 프레임, 화재 방지 대책에 축전 요구 사항을 반영합니다. 이 접근 방식은 수고를 줄이고 전기 시운전을 가속화하는 동시에 인터페이스 관리의 책임 범위를 명확히 합니다.

주요 이해관계자와의 대화, 표준 분석, 시나리오 검증을 융합한 투명성 높은 조사 기법을 통해 건설 실행을 위한 실무적 지식을 삼각 측량으로 도출

제시된 연구 결과는 업계 이해관계자들과의 1차적 참여와 기술 표준, 법규 규정, 공공 정책 자료의 체계적인 2차적 조사를 결합한 구조화된 조사 접근법을 통해 도출되었습니다. 1차적인 입력에는 설계, 설치 및 운영을 담당하는 프로젝트 개발자, 종합 계약자, 시스템 통합자 및 기술 전문가와의 인터뷰를 통해 구현상 과제와 위험 완화 방법에 대한 직접적인 관점을 제공합니다.

건설 실무에 축전 시스템 통합이 기술적 엄격성, 조달 유연성, 장기적인 운영 관점의 필요성을 보여주는 전략적 요청의 통합

축전지 기술은 더 이상 건설분야의 틈새기술이 아닌, 탄력적이고 탈탄소화되어 전력계통과 상호 연계되는 건물-인프라를 구현하는 전략적 기반기술입니다. 시스템 아키텍처, 화학 성분의 선택, 도입 방식에 관계없이 성공적인 프로젝트는 초기 다분야 계획 수립과 유연한 조달 전략, 그리고 탄탄한 애프터 서비스 체계를 결합합니다. 변화하는 규제 상황과 무역 환경 속에서 가장 탄력적인 조직은 공급망 가시성, 계약 적응성, 운영 노하우를 핵심 프로젝트 수행 능력에 통합하는 조직이 될 것입니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 건설용 배터리 저장 시스템 시장 : 시스템 유형별

  • 교류 결합형
  • 직류 접속형
  • 하이브리드

제9장 건설용 배터리 저장 시스템 시장 : 배터리 화학별

  • 플로우 배터리
    • 바나듐 레독스
    • 아연 브롬계
  • 납축전지
  • 리튬이온
    • LCO
    • LFP
    • NMC
  • 나트륨 황

제10장 건설용 배터리 저장 시스템 시장 : 용도별

  • 상업용
  • 산업용
  • 마이크로그리드
  • 주택용
  • 전력회사용

제11장 건설용 배터리 저장 시스템 시장 : 최종사용자별

  • 개발업자
  • 종합 건설 업자
  • 소유주
  • 하청업자

제12장 건설용 배터리 저장 시스템 시장 : 설치 유형별

  • 이동식
  • 모듈러식
  • 신축
  • 레트로피트

제13장 건설용 배터리 저장 시스템 시장 : 용량 범위별

  • 10-100kWh
  • 100-1000kWh
  • 10kWh 미만
  • 1000kWh 초과

제14장 건설용 배터리 저장 시스템 시장 : 계통 연계별

  • 계통 연계형
  • 하이브리드
  • 독립형
  • 오프그리드

제15장 건설용 배터리 저장 시스템 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제16장 건설용 배터리 저장 시스템 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제17장 건설용 배터리 저장 시스템 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제18장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Tesla, Inc.
    • LG Energy Solution, Ltd.
    • Panasonic Holdings Corporation
    • BYD Company Limited
    • Samsung SDI Co., Ltd.
    • Fluence Energy, Inc.
    • ABB Ltd
    • Siemens Energy AG
    • Schneider Electric SE
    • Eaton Corporation plc
KSA

The Battery Storage System in Construction Market is projected to grow by USD 8.20 billion at a CAGR of 22.15% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.65 billion
Estimated Year [2025] USD 2.02 billion
Forecast Year [2032] USD 8.20 billion
CAGR (%) 22.15%

How energy storage is reshaping construction delivery by embedding resilience, design integration, and operational value into building projects

The construction sector is undergoing a fundamental transformation as battery energy storage systems move from peripheral pilot projects to core components of resilient, low-carbon buildings and infrastructure. In new builds and retrofit programs alike, storage solutions are changing how developers, contractors, and owners approach energy procurement, site design, and lifecycle operational strategies. Increasing electrification of building systems, tighter emissions targets, and the need for enhanced onsite resilience against grid disruptions are driving stakeholders to re-evaluate traditional approaches to power provision.

This shift elevates storage from a single-asset procurement item to a multi-disciplinary delivery challenge that spans electrical design, structural integration, fire and life-safety engineering, and O&M planning. As projects evolve, decision-makers must balance technical suitability, regulatory compliance, and long-term operability while integrating procurement timelines with broader construction schedules. Moreover, the convergence of digital controls, energy management software, and modular hardware is enabling faster installation cycles and clearer performance verification, which in turn reduces perceived project risk and increases appetite for larger-scale deployments.

In this context, industry participants must align capital planning with operational requirements and prepare for evolving regulatory and supply chain dynamics. Developers and general contractors that adopt integrated planning practices early in the design phase can avoid costly rework, accelerate commissioning, and optimize the value stack extracted from storage assets. Ultimately, the integration of battery storage into construction signifies a strategic pivot: energy systems are now an intrinsic part of the built environment rather than an external service to be layered on post-construction.

Emerging technological, regulatory, and commercial forces driving systemic change in how storage systems are specified, procured, and integrated into construction projects

Over the last several years, the landscape for battery storage in construction has shifted dramatically, driven by three concurrent forces: technology maturation, regulatory pressure, and changing stakeholder expectations. Advances in chemistries and balance-of-system components have increased reliability while reducing installation complexity, enabling developers and contractors to specify storage with greater confidence. At the same time, building codes and resilience mandates are increasingly recognizing storage as an appropriate tool for meeting emissions and reliability objectives, creating stronger institutional demand across public and private sectors.

Operational expectations have also evolved. Owners now expect storage systems to deliver multiple value streams simultaneously, including peak management, resiliency for critical loads, participation in ancillary service programs, and support for electrified heating and mobility infrastructure. This multi-value expectation has shifted procurement toward integrated hardware-plus-software solutions and performance-based contracts that align incentives between suppliers and asset operators. In parallel, financing innovators are creating more flexible structures-ranging from equipment-as-a-service to performance-based leases-that allow projects to manage up-front capital constraints while capturing lifecycle benefits.

Supply chain dynamics are another transformative force. Firms are diversifying sourcing strategies, establishing local assembly and testing facilities, and pursuing supplier partnerships to mitigate component volatility. These shifts are accelerating the industrialization of storage deployment in construction, moving installations from bespoke prototypes to repeatable, scalable solutions across project types and geographies.

How recent trade actions and tariff dynamics have reshaped procurement risk, supplier strategies, and contractual frameworks for construction-integrated storage deployments

Trade measures and policy shifts announced or implemented in recent years have culminated in a complex environment for supply chains entering 2025, with cumulative tariff impacts influencing procurement strategies and lifecycle economics. Tariffs that affect imported battery cells, key components, or precursor materials increase the price volatility for developers and original equipment manufacturers, prompting many project teams to re-evaluate supplier selection, negotiate longer-term contracts, and accelerate qualification of secondary sources. These dynamics are especially pronounced for projects with tight procurement windows or fixed-price construction contracts.

As a result, procurement teams are increasingly assessing total landed cost, lead times, and counterparty risk rather than focusing solely on unit price. This broader evaluation often favors suppliers with regional production footprints or firms that can demonstrate transparent, resilient supply chains. In parallel, some companies are responding by localizing assembly, forging joint ventures with regional cell makers, or investing in vertical integration to reduce exposure to tariff-driven cost shocks.

The regulatory and trade environment also influences contractual structures between developers, contractors, and technology providers. Longer procurement horizons and contingencies for tariff adjustments are becoming standard contract elements, while warranty and performance clauses are being revisited to account for component substitution and repair pathways. In this context, stakeholders that proactively model tariff scenarios and embed flexible procurement mechanisms will mitigate schedule risk and preserve project economics, while also positioning themselves to capitalize on policy-driven incentives for domestic manufacturing and supply chain investment.

In-depth segmentation reveals how system architectures, chemistry choices, application contexts, and installation modalities determine technical requirements and procurement pathways

Segment-level analysis reveals where technical choices and delivery models intersect with project objectives and procurement preferences. System-type decisions influence installation sequencing and interoperability considerations: AC coupled architectures simplify integration with existing distribution panels, DC coupled options improve round-trip efficiency for certain inverter-topologies, and hybrid solutions enable simultaneous support of multiple load and grid-interaction modes. Chemistry selection dictates performance and lifecycle trade-offs; flow technologies such as vanadium redox and zinc bromine offer long-duration cycling and low degradation profiles, lead-acid remains a legacy option for constrained budgets, lithium-ion variants including LCO, LFP, and NMC present differentiated energy density and safety characteristics, and sodium-sulfur is considered for larger, high-capacity stationary deployments.

Application context drives specification and contractual expectations. Commercial and industrial deployments typically prioritize demand charge management and power quality, microgrids emphasize islanding capability and local resiliency, residential applications focus on backup and bill optimization, and utility-scale projects target system services and grid-scale flexibility. End users shape procurement pathways: developers seek turn-key solutions and predictable commissioning schedules, general contractors emphasize installation risk mitigation and coordination with trades, owners focus on lifecycle O&M and total cost of ownership, and subcontractors specialize in niche installation or commissioning workstreams.

Installation type and capacity range further refine project execution. Mobile and modular units accelerate deployment for temporary or staged projects, new construction affords full architectural and systems integration, while retrofit projects require careful site assessment and interfacing. Capacity bands from sub-10 kWh residential packs to systems exceeding 1 megawatt-hour present different electrical protection and thermal management requirements. Finally, grid-connection mode-whether grid-tied, hybrid, island, or off-grid-determines control strategies, regulatory approval pathways, and protective relaying requirements, influencing both design and operational procedures.

Regional deployment patterns and procurement behaviors driven by regulatory regimes, grid characteristics, and local supply chain ecosystems across major global regions

Regional dynamics reflect differing regulatory environments, grid characteristics, and construction industry practices. In the Americas, deployment is driven by a combination of resilience needs, incentives for decarbonization, and utility programs that create revenue opportunities for behind-the-meter and distributed resources. North American projects frequently emphasize integration with electrification initiatives and sophisticated energy management platforms, while procurement cycles tend to favor vendors that can demonstrate local service footprints and code compliance expertise.

Across Europe, the Middle East, and Africa, regulatory heterogeneity and varying grid maturity levels mean project designs must flex between high-reliability microgrids for remote sites and advanced grid-interactive storage for urban developments. European jurisdictions often require strict safety certification and environmental compliance, which influences vendor selection and lifecycle planning. Middle Eastern and African projects may prioritize modularity and robustness to perform in harsh climates, while forging partnerships that address long logistics chains.

The Asia-Pacific region remains a focal point for manufacturing capacity and rapid deployment, with many construction projects integrating storage to support grid stability and urban resiliency. Local content requirements and rapidly evolving standards shape procurement behavior, and the presence of major cell and system manufacturers in the region provides a dense supplier ecosystem. Across these regions, stakeholders must balance local regulatory compliance, supply chain access, and the ability to finance long-term O&M commitments when selecting technologies and delivery partners.

Industry competitive dynamics highlight the strategic advantages of integrated hardware, controls, and service models that streamline construction delivery and long-term operations

Competitive dynamics in the industry revolve around a mix of specialized cell manufacturers, full-stack system integrators, software platform vendors, and construction-focused service providers. Leading suppliers differentiate through combinations of proven field performance, safety certifications, and comprehensive warranties that reduce perceived risk for construction stakeholders. At the same time, system integrators that offer pre-assembled modular solutions and standardized installation packages enable faster schedule certainty, which is particularly valuable for general contractors managing complex projects.

Software and controls providers play an outsized role in enabling value stacking and operational flexibility. Integrated energy management systems that can optimize across resiliency, cost savings, and grid services create a compelling commercial proposition for owners, provided they are backed by reliable telemetry, cybersecurity measures, and open communication standards. Partnerships and M&A activity continue to reshape the supplier landscape as companies seek to combine complementary capabilities-cell production, power electronics, controls, and construction delivery-to offer vertically integrated solutions.

Service models are also evolving. Providers that can demonstrate strong after-sales support, remote monitoring, and performance-based maintenance offerings command preference among asset owners. For construction projects, the ability to coordinate site logistics, commissioning, and handover with minimal disruption to broader works is a competitive differentiator that influences procurement decisions as much as pure technical performance.

Practical, actionable strategies for executives to synchronize procurement, design, and service models and to mitigate supply chain and regulatory exposures

Leaders in construction-integrated storage must adopt a pragmatic strategy that aligns technical selection with contractual and operational realities. First, prioritize early engagement between energy specialists and design-build teams so that storage requirements are embedded into site planning, structural framing, and fire-safety strategies. This approach reduces rework and accelerates electrical commissioning while ensuring clear responsibility for interface management.

Second, diversify procurement pathways to mitigate supply chain and tariff exposures. Qualify multiple suppliers across different geographies and consider modular, containerized solutions that can be assembled regionally to minimize lead times. Complement this diversification with rigorous supplier audits focused on quality management systems, traceability of materials, and demonstrated field performance.

Third, emphasize performance-based contracting and lifecycle service arrangements that align incentives for uptime, safety, and energy optimization. Insist on transparent data access, cybersecurity protections, and clearly defined warranty and spare-part provisions to avoid downstream disputes. Additionally, invest in training and certification programs for installation and commissioning teams to reduce commissioning time and improve handover quality.

Finally, integrate scenario planning for regulatory and tariff changes into procurement contracts and capital planning. Incorporate adaptable clauses that allow for component substitution while protecting performance guarantees, and maintain contingency reserves to account for unexpected supply disruptions. These measures will preserve project timelines and safeguard economic outcomes as the external environment continues to evolve.

A transparent methodology blending primary stakeholder engagement, standards analysis, and scenario testing to triangulate practical insights for construction delivery

The insights presented are derived from a structured research approach combining primary engagements with industry stakeholders and systematic secondary analysis of technical standards, code provisions, and public policy materials. Primary inputs include interviews with project developers, general contractors, system integrators, and technical specialists responsible for design, installation, and operations, providing first-hand perspectives on delivery challenges and risk mitigation practices.

Secondary research encompassed review of technical standards, safety guidance, trade policy announcements, and public procurement documentation to ground findings in actual regulatory and contractual frameworks. Where appropriate, comparative case studies were used to identify repeatable practices across project typologies and geographies. Expert validation workshops were conducted with independent engineers and construction specialists to test assumptions, refine segmentation logic, and ensure recommendations are operationally realistic.

Analytical methods included qualitative thematic synthesis to surface recurrent pain points and success factors, supply chain mapping to identify concentration risks, and scenario-based stress testing to evaluate the resilience of procurement strategies under tariff and regulatory variation. The methodology emphasizes transparency of data sources, triangulation of insights, and practical applicability for stakeholders engaged in construction-integrated storage projects.

Synthesis of strategic imperatives showing why integrating storage into construction practice requires technical rigor, procurement flexibility, and long-term operational focus

Battery storage is no longer a niche technology in construction; it is a strategic enabler of resilient, decarbonized, and grid-interactive buildings and infrastructure. Across system architectures, chemistry choices, and deployment modalities, successful projects combine early multidisciplinary planning with flexible procurement strategies and strong after-sales service arrangements. As regulatory and trade landscapes evolve, the most resilient organizations will be those that integrate supply chain visibility, contractual adaptability, and operational know-how into their core project delivery DNA.

Looking ahead, the firms that balance technical rigor with pragmatic contracting and supplier diversification will capture the greatest value. Investing in standardized, modular solutions and cultivating deep relationships with trusted integrators and controls providers will shorten delivery cycles and reduce operational uncertainty. Ultimately, embedding storage into construction practice requires a shift in mindset: energy assets must be treated as integral, long-lived components of the built environment, with lifecycle performance, safety, and adaptability prioritized from the earliest design conversations through to operations.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of building-integrated battery storage for on-site renewable power balancing
  • 5.2. Adoption of second-life electric vehicle batteries in modular construction energy systems
  • 5.3. Deployment of prefabricated smart microgrid storage units for rapid on-site installation
  • 5.4. Integration of AI-driven energy management software optimizing battery charging cycles on construction sites
  • 5.5. Advancements in thermal management technologies enhancing safety and performance of construction battery systems
  • 5.6. Regulatory developments and green building codes driving battery storage adoption in new construction projects
  • 5.7. Emergence of hydrogen-battery hybrid storage solutions for off-grid and remote construction site power
  • 5.8. Life cycle analysis and circular economy approaches shaping end-of-life strategies for construction batteries
  • 5.9. Real-time digital twin monitoring of construction battery storage performance and predictive maintenance alerts

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Battery Storage System in Construction Market, by System Type

  • 8.1. AC Coupled
  • 8.2. DC Coupled
  • 8.3. Hybrid

9. Battery Storage System in Construction Market, by Battery Chemistry

  • 9.1. Flow
    • 9.1.1. Vanadium Redox
    • 9.1.2. Zinc Bromine
  • 9.2. Lead Acid
  • 9.3. Lithium Ion
    • 9.3.1. LCO
    • 9.3.2. LFP
    • 9.3.3. NMC
  • 9.4. Sodium Sulfur

10. Battery Storage System in Construction Market, by Application

  • 10.1. Commercial
  • 10.2. Industrial
  • 10.3. Microgrid
  • 10.4. Residential
  • 10.5. Utility

11. Battery Storage System in Construction Market, by End User

  • 11.1. Developers
  • 11.2. General Contractors
  • 11.3. Owners
  • 11.4. Subcontractors

12. Battery Storage System in Construction Market, by Installation Type

  • 12.1. Mobile
  • 12.2. Modular
  • 12.3. New Construction
  • 12.4. Retrofit

13. Battery Storage System in Construction Market, by Capacity Range

  • 13.1. 10-100 kWh
  • 13.2. 100-1000 kWh
  • 13.3. <10 kWh
  • 13.4. >1000 kWh

14. Battery Storage System in Construction Market, by Grid Connection

  • 14.1. Grid Tied
  • 14.2. Hybrid
  • 14.3. Island
  • 14.4. Off Grid

15. Battery Storage System in Construction Market, by Region

  • 15.1. Americas
    • 15.1.1. North America
    • 15.1.2. Latin America
  • 15.2. Europe, Middle East & Africa
    • 15.2.1. Europe
    • 15.2.2. Middle East
    • 15.2.3. Africa
  • 15.3. Asia-Pacific

16. Battery Storage System in Construction Market, by Group

  • 16.1. ASEAN
  • 16.2. GCC
  • 16.3. European Union
  • 16.4. BRICS
  • 16.5. G7
  • 16.6. NATO

17. Battery Storage System in Construction Market, by Country

  • 17.1. United States
  • 17.2. Canada
  • 17.3. Mexico
  • 17.4. Brazil
  • 17.5. United Kingdom
  • 17.6. Germany
  • 17.7. France
  • 17.8. Russia
  • 17.9. Italy
  • 17.10. Spain
  • 17.11. China
  • 17.12. India
  • 17.13. Japan
  • 17.14. Australia
  • 17.15. South Korea

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Tesla, Inc.
    • 18.3.2. LG Energy Solution, Ltd.
    • 18.3.3. Panasonic Holdings Corporation
    • 18.3.4. BYD Company Limited
    • 18.3.5. Samsung SDI Co., Ltd.
    • 18.3.6. Fluence Energy, Inc.
    • 18.3.7. ABB Ltd
    • 18.3.8. Siemens Energy AG
    • 18.3.9. Schneider Electric SE
    • 18.3.10. Eaton Corporation plc
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제