시장보고서
상품코드
1868281

금속 시장 : 금속 유형별, 용도별, 최종 이용 산업별, 형태별, 제조 공정별 - 세계 예측(2025-2032년)

Metal Market by Metal Type, Application, End Use Industry, Form, Production Process - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 188 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

금속 시장은 2032년까지 연평균 복합 성장률(CAGR) 5.58%로 1,212억 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 784억 6,000만 달러
추정 연도 : 2025년 828억 1,000만 달러
예측 연도 : 2032년 1,212억 달러
CAGR(%) 5.58%

기술 혁신, 탈탄소화의 필요성, 구조적 공급망 변화가 어떻게 세계 금속 생태계를 재구성하고 있는지를 개괄하는 권위 있는 서론.

본 Executive Summary는 탈탄소화, 디지털화, 무역 역학의 변화라는 수렴하는 힘 속에서 금속 정세의 상황을 파악하는 것으로 시작합니다. 이러한 요소들이 결합되어 생산자, 가공업체, 최종 사용자가 가치를 창출하고 획득하는 방식을 재조정하고 있습니다. 최근 몇 년 동안 에너지 전환 정책과 기업의 배출량 목표가 생산 우선순위와 자본 배분을 변화시킴과 동시에 재료 과학과 공정 자동화의 발전으로 효율성과 제품 차별화의 수준이 높아졌습니다. 그 결과, 이 분야는 점진적인 최적화와 전략적이고 증거에 기반한 대응을 필요로 하는 명확한 전환점이 동시에 발생하고 있습니다.

생산, 재료 과학, 순환 시스템, 디지털 운영의 변혁적 변화에 대한 전망적 검토가 금속 밸류체인을 재구성하고 있습니다.

금속 부문은 기술 및 구조적 변화의 물결에 직면하고 있으며, 그 복합적인 영향은 업계의 운영 논리를 재정의하고 있습니다. 공정의 전기화와 화석연료 열처리 공정에서 저탄소 대체기술로의 점진적인 전환은 에너지 투입량과 자본 계획을 변화시키고 있습니다. 한편, 적층 가공 기술과 디지털 공정 제어는 새로운 형상 설계, 경량화 및 재고 모델을 가능하게 하고, 이는 합금 설계 및 열처리 공정에 영향을 미치고 있습니다. 이러한 기술 발전은 야금학적 전문성과 디지털 제품 개발 능력을 결합한 신규 시장 진출기업들에게 프리미엄화 가능성과 기회를 창출하고 있습니다.

미국의 관세 조치가 금속 관련 산업 전반의 무역 흐름, 조달 전략, 경쟁 행태에 미치는 누적 영향에 대한 날카로운 분석

2025년 미국이 시행한 관세 조치는 전체 금속 가치사슬의 무역 흐름, 공급업체 선정, 가격 형성의 역학에 구조적인 영향을 미쳤습니다. 가장 직접적인 영향은 조달 결정의 우선순위를 재조정하는 것이었습니다. 수입관세 인상에 영향을 받은 바이어들은 저관세 지역에서의 대체 공급업체 발굴에 박차를 가하고, 지역화된 공급계약을 모색하고, 가능한 한 국내 제철소와의 협력을 강화했습니다. 이러한 전환은 기존 수출업체들에게는 단기적인 혼란을 초래하는 한편, 근해 공급업체와 유연한 생산 능력을 갖춘 통합 생산자에게는 기회를 창출했습니다.

금속의 유형, 용도, 최종 사용 산업, 형태, 생산 공정이 제품 전략 및 상업화를 이끄는 방법에 대한 자세한 세분화 정보

세분화에 기반한 통찰력은 가치를 창출할 수 있는 영역과 전략적 개입이 시너지를 낼 수 있는 영역을 명확히 합니다. 금속의 유형에 따라 철강과 비철금속의 두 가지 경로로 나뉩니다. 철강 분야는 탄소강과 주철을 핵심 상품 스트림으로 하고, 스테인리스 스틸을 포함합니다. 스테인리스 스틸 내부에서는 내식성, 성형성, 가공성에 차이가 있는 오스테나이트계, 듀플렉스계, 페라이트계, 마르텐사이트계 등급이 구분됩니다. 비철금속에는 알루미늄, 구리, 니켈, 티타늄이 포함되며, 각각 고유한 합금화 과제와 최종 용도의 성능 특성이 있습니다. 알루미늄의 경우, 1차 원료와 2차 원료공급원 구분은 비용 구조와 지속가능성 포지셔닝에 매우 중요하며, 폐쇄 루프 재활용과 저탄소화가 전략적 우선순위가 되는 상황에서 2차 알루미늄은 점점 더 중요해지는 추세입니다.

금속산업 선도기업을 위한 지역별 분석 : 미주, 유럽, 중동/아프리카, 아시아태평양 수요 요인, 정책 동향, 경쟁적 포지셔닝을 살펴봅니다.

지역적 추세는 금속 가치사슬 전반 수요 패턴, 규제 압력, 경쟁적 포지셔닝에 강력한 영향을 미칩니다. 미국 대륙에서는 에너지 안보와 산업 경쟁력에 대한 정책적 강조가 국내 가공 및 재활용 능력에 대한 투자를 가속화하고 있습니다. 한편, 니어쇼어링 트렌드와 강력한 공급 전략은 조달 기반 재구축을 촉진하고 있습니다. 북미 OEM 업체들은 저배출 원료와 검증된 공급망 투명성에 대한 수요를 주도하고 있으며, 라틴아메리카의 자원 수출국들은 원료 공급에 있어 중요한 역할을 계속하고 있습니다. 수출 경쟁력은 인프라 및 물류 투자에 의해 결정됩니다.

금속 부문의 리더십을 형성하는 수직적 통합, 혁신 파이프라인, 전략적 파트너십, 비즈니스 연속성에 대한 기업 차원의 통찰력을 제공합니다.

금속 부문의 기업 수준 동향은 규모의 우위, 기술적 차별화, 그리고 업스트림 및 다운스트림 활동 전반에 걸친 통합의 중요성 증가로 특징지어집니다. 주요 기업들은 고수익 제품군을 보호하기 위해 독자적인 합금 개발 및 공정 특허에 투자하는 한편, 자원 리스크를 헤지하고 고객의 지속가능성 요구 사항을 충족시키기 위해 재활용 및 2차 생산 능력 구축에 주력하고 있습니다. 전략적 제휴와 합작투자는 특수 기술에 대한 접근과 새로운 저탄소 생산 기술에 대한 자본 부담을 분담하는 데 있어 여전히 선호되는 수단입니다.

탈탄소화, 순환형 공급망, 디지털 전환, 애자일 조달 프레임워크를 통한 경쟁력 강화를 위한 경영진을 위한 실천적 전략 제안

경영진은 단기적 회복탄력성과 장기적 경쟁력의 균형을 맞추는 전략적 이니셔티브 포트폴리오를 추진해야 합니다. 첫째, 무역 조치 및 원자재 가격 변동에 대한 노출을 줄이기 위해 공급처 다변화와 계약 유연성을 우선시합니다. 여기에는 인근 지역 및 지역 내 공급 옵션 개발, 주요 제품 라인에 대한 전략적 재고 버퍼 구축 등이 포함됩니다. 다음으로, 2차 생산 및 재활용 능력에 대한 투자를 가속화하여 탄소 강도를 낮추고, 원자재 가격 변동으로 인해 손실된 수익률을 확보할 수 있습니다. 이러한 투자는 재활용 원료가 사양 및 성능 요구 사항을 충족하도록 보장하기 위해 제품 팀과 협력하여 진행되어야 합니다.

본 보고서의 기초가 되는 조사 방법론 로드맵은 데이터 수집, 삼각측량, 전문가 검증, 시나리오 테스트를 설명하여 확실한 재현성 있는 결과를 확보하기 위해 작성되었습니다.

본 보고서를 뒷받침하는 조사는 대상별 1차 정보 수집과 체계적인 2차 분석, 엄격한 검증을 통해 실증적이고 실무적으로 유용한 결론을 도출합니다. 1차 조사에서는 가치사슬 전반의 고위 경영진과의 구조화된 인터뷰, 가공 및 재활용 시설 현장 시찰, 합금 성능 주장을 검증하기 위한 야금학자 및 재료 과학자와의 기술 협의를 실시했습니다. 2차 조사에서는 규제 당국에 제출한 서류, 업계 단체 간행물, 공개 생산 및 무역 데이터 세트를 통합하여 다각적인 증거 기반을 구축했습니다.

금속 가치사슬 전반에 걸친 투자, 역량 구축, 규제 대응, 혁신 경로에 대한 시사점을 통합한 간결한 전략적 결론

결론적으로, 금속 부문은 기술 진화, 정책 전환, 고객 기대치의 변화, 경쟁 우위의 재정의가 진행되고 있는 전환점에 서 있습니다. 저탄소 생산 경로에 대한 적극적인 투자, 다양하고 투명한 공급망 확보, 제품 혁신과 용도별 수요를 일치시키는 기업은 프리미엄 기회를 포착하고 규제 리스크와 상업적 리스크를 관리할 수 있는 우위를 점할 수 있습니다. 마찬가지로 중요한 것은 디지털 역량과 재활용 인프라를 전략적으로 통합하여 자산 효율성을 높이고 원자재 의존도를 낮추는 것입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 금속 시장 : 금속 유형별

  • 철강
    • 탄소강
    • 주철
    • 스테인리스 스틸
      • Austenitic
      • Duplex
      • Ferritic
      • Martensitic
  • 비철금속
    • 알루미늄
      • 1차 알루미늄
      • 2차 알루미늄
    • 구리
    • 니켈
    • 티타늄

제9장 금속 시장 : 용도별

  • 항공우주
  • 자동차
    • 보디 패널
    • 엔진 부품
    • 구조 부품
  • 건설
    • 건축용 파사드
    • 지붕재 및 외장재
    • 구조용
  • 전기 및 전자기기
  • 산업기계
  • 포장

제10장 금속 시장 : 최종 이용 산업별

  • 소비재
  • 에너지
    • 석유 및 가스
    • 발전
  • 산업용
  • 인프라
  • 운송

제11장 금속 시장 : 형태별

  • 바 및 로드
  • 판 및 시트
  • 분말
  • 튜브 및 파이프
  • 와이어

제12장 금속 시장 : 제조 공정별

  • 1차 생산
  • 2차 생산
    • 주조
    • 압출
    • 압연

제13장 금속 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 금속 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 금속 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • China Baowu Steel Group Corporation Limited
    • ArcelorMittal S.A.
    • HBIS Group Co., Ltd.
    • Nippon Steel Corporation
    • POSCO Holdings, Inc.
    • Jiangsu Shagang Group Co., Ltd.
    • Ansteel Group Corporation Limited
    • JFE Holdings, Inc.
    • JSW Steel Limited
    • Nucor Corporation
LSH 25.12.16

The Metal Market is projected to grow by USD 121.20 billion at a CAGR of 5.58% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 78.46 billion
Estimated Year [2025] USD 82.81 billion
Forecast Year [2032] USD 121.20 billion
CAGR (%) 5.58%

An authoritative introduction outlining how technological innovation, decarbonization imperatives, and structural supply chain shifts are reshaping the global metals ecosystem

This executive summary opens by situating the metals landscape within the converging forces of decarbonization, digitalization, and shifting trade dynamics, which together are recalibrating how producers, converters, and end users create and capture value. Over the last several years, energy transition policies and corporate emissions targets have altered production priorities and capital allocation, while advancements in materials science and process automation have raised the bar for efficiency and product differentiation. Consequently, the sector is experiencing both incremental optimization and discrete inflection points that demand a strategic, evidence-based response.

Against this backdrop, supply chain resilience has moved to the forefront of executive agendas. Companies are balancing cost pressures with the need for secure access to feedstocks, an environment that favors those who can integrate supply, processing, and recycling into coherent commercial models. At the same time, customer expectations are evolving: OEMs and specification engineers increasingly require validated sustainability credentials and higher-performance alloys, prompting suppliers to accelerate R&D and to deepen collaboration across the value chain. This introduction frames the report's aim to translate complex, cross-cutting trends into actionable insights for decision-makers focused on operational continuity, product competitiveness, and long-term value creation.

A forward-looking review of transformative shifts in production, materials science, circular systems, and digital operations reshaping metals value chains

The metals sector is undergoing transformative shifts that are both technological and structural in nature, and their combined effect is redefining the industry's operating logic. Electrification of processes and the progressive substitution of fossil-fuel thermal routes with low-carbon alternatives are changing energy inputs and capital planning. Meanwhile, additive manufacturing and digital process controls are enabling new geometries, weight reductions, and inventory models, which in turn influence alloy design and heat-treatment pathways. These technological advances create opportunities for premiumization as well as for new entrants who pair metallurgical expertise with digital product development capabilities.

Concurrently, circularity is moving from aspirational rhetoric to operational programs; more companies are investing in secondary production capabilities and closed-loop recycling to reduce exposure to raw-material volatility and regulatory risk. Trade and procurement strategies are also shifting as firms re-evaluate geographic concentration, invest in regionalized supply options, and form strategic partnerships to secure critical feedstocks. As a result, competitive advantage is increasingly determined by the ability to orchestrate cross-functional capabilities-R&D, procurement, operations, and sustainability-so that new production models can be implemented at scale while preserving margins and meeting regulatory expectations.

An incisive analysis of the cumulative effects of United States tariff actions on trade flows, sourcing strategies, and competitive behavior across metals-related industries

Tariff actions enacted by the United States in 2025 introduced structural implications for trade flows, supplier selection, and pricing dynamics across the metals value chain. The most immediate effect was a re-prioritization of sourcing decisions: buyers exposed to increased import duties accelerated qualification of alternative suppliers in lower-duty jurisdictions, sought regionalized supply contracts, and intensified engagement with domestic mills where feasible. This pivot created short-term disruption for traditional exporters while creating opportunities for nearshore suppliers and integrated producers with flexible capacity.

Over time, the tariff environment influenced investment timing and capital allocation. Companies facing higher landed costs for certain imported inputs reassessed the economics of downstream fabrication in the jurisdiction affected by the tariffs and, in some cases, shifted higher value-added operations closer to end customers. In parallel, the combination of trade measures and global freight volatility encouraged stronger contractual protections, greater use of long-term purchase agreements, and enhanced focus on supply chain transparency and compliance. Policymakers and industry participants also adapted; regulatory engagement increased as firms sought clarifying guidance, dispute-resolution avenues, and mechanisms to mitigate unintended impacts on downstream competitiveness. Collectively, these adjustments underscore the necessity for flexible sourcing strategies that anticipate policy shifts while preserving product continuity and customer relationships.

Detailed segmentation intelligence on how metal types, applications, end-use industries, forms, and production processes guide product strategy and commercialization

Segmentation-driven intelligence provides clarity on where value is created and where strategic interventions can deliver disproportionate returns. By metal type, the landscape is bifurcated into ferrous and non-ferrous pathways. The ferrous sector encompasses carbon steel and cast iron as core commodity streams alongside stainless steel, whose internal differentiation spans austenitic, duplex, ferritic, and martensitic grades with distinct corrosion resistance, formability, and fabrication implications. Non-ferrous metals include aluminum, copper, nickel, and titanium, each presenting unique alloying challenges and end-use performance attributes. Within aluminum, the split between primary and secondary material sources is critical to cost structure and sustainability positioning, with secondary aluminum increasingly favored where closed-loop recycling and lower embodied carbon are strategic priorities.

Application-level segmentation further refines commercial focus, as aerospace, automotive, construction, electrical and electronics, industrial machinery, and packaging each demand specialized metallurgical properties and supply chain arrangements. The automotive sector's needs are differentiated across body panels, engine components, and structural components, which in turn drive distinct alloy development and processing requirements. Construction demand is similarly tiered between architectural facades, roofing and cladding, and structural elements, each imposing different tolerances, finishing specifications, and life-cycle considerations. End-use industry segmentation identifies consumer goods, energy, industrial, infrastructure, and transportation as principal users, with the energy vertical itself split between oil and gas and power generation applications that require tailored corrosion resistance and thermal stability.

Form factors and production routes complete the segmentation picture. Product forms such as bar and rod, plate and sheet, powder, tube and pipe, and wire align to different fabrication techniques and cost models, while production processes distinguish primary production from secondary production. The latter encompasses casting, extrusion, and rolling pathways that enable recycling, specialty shape formation, and efficiency gains. Together, this layered segmentation framework enables companies to align R&D priorities, capital investments, and commercialization strategies to the precise combinations of metal type, application, end-use industry, form, and production process that promise the greatest strategic leverage.

A regional prism for metals leaders that examines demand drivers, policy dynamics, and competitive positioning across the Americas, Europe, Middle East & Africa, and Asia-Pacific

Regional dynamics exert a powerful influence on demand patterns, regulatory pressures, and competitive positioning across the metals value chain. In the Americas, policy emphasis on energy security and industrial competitiveness is accelerating investment in domestic processing and recycling capacity, while nearshoring trends and resilient supply strategies are reshaping procurement footprints. North American OEMs are driving demand for low-emissions inputs and verified supply chain transparency, and Latin American resource exporters continue to play a pivotal role in feedstock availability, with infrastructure and logistics investments determining export competitiveness.

In Europe, Middle East & Africa, the intersection of stringent decarbonization targets, circular-economy frameworks, and regional trade agreements is prompting rapid adoption of secondary production and alloy-specific certification programs. Regulatory regimes in Europe increasingly favor low-carbon intensity products, prompting producers to retool processes and to form consortiums that validate life-cycle claims. The Middle East remains a strategic source of primary raw materials and competitively priced energy, feeding into both regional and export-oriented value chains, while Africa's emerging mining and processing projects are attracting capital that could shift long-term supply balances.

Asia-Pacific remains the dominant fabricator and consumer hub, driven by integrated downstream ecosystems, scale manufacturing, and rapid electrification in key end markets such as transportation and energy. China, Southeast Asia, Japan, South Korea, and Australia each play distinct roles-ranging from primary production to high-value alloy innovation-and regional policy choices on tariffs, export controls, and environmental standards continue to influence cross-border flows and investment decisions. Across all regions, the interplay between policy, infrastructure, and technology adoption defines the pathways by which producers can capture higher-margin, sustainability-focused opportunities while managing operational and regulatory risk.

Company-level insights on vertical integration, innovation pipelines, strategic partnerships, and operational resilience shaping leadership in the metals sector

Company-level dynamics in the metals sector are characterized by scale advantages, technical differentiation, and a growing premium on integration across upstream and downstream activities. Leading firms are investing in proprietary alloys and process patents to protect high-margin product lines while also building capabilities in recycling and secondary production to hedge resource exposure and to meet customer sustainability requirements. Strategic partnerships and joint ventures remain a preferred route to access specialty capabilities and to share the capital burden of new low-carbon production technologies.

Operational resilience is a differentiator. Firms that have invested in flexible production assets, digital process control, and predictive maintenance are better positioned to maintain supply continuity and to optimize asset utilization under fluctuating demand. At the same time, R&D pipelines focused on alloy optimization for lighter weight, higher strength, and improved corrosion resistance are enabling suppliers to move up the value chain into systems and assemblies. Commercially, close alignment with OEMs through co-development programs and long-term supply agreements is increasingly important for securing high-value contracts and for establishing product specifications that create entry barriers for lower-cost competitors.

Finally, corporate sustainability strategies are influencing investor and buyer behavior. Companies that transparently report decarbonization progress and that can demonstrate low-embodied-carbon products are finding preferential access to capital and customer contracts. Consequently, leadership today depends as much on technological and operational excellence as on the ability to translate sustainability commitments into measurable, verified outcomes that resonate with buyers and regulators alike.

Actionable strategic recommendations for executives to strengthen competitiveness through decarbonization, circular supply chains, digital transformation, and agile sourcing frameworks

Executives should pursue a portfolio of strategic initiatives that balance near-term resilience with long-term competitiveness. First, prioritize supply diversification and contractual flexibility to reduce exposure to trade actions and feedstock volatility; this includes developing nearshore and regional supply options and establishing strategic inventory buffers aligned to critical product lines. Second, accelerate investments in secondary production and recycling capabilities to lower carbon intensity and to capture margins previously lost to raw material price swings. These investments should be coordinated with product teams to ensure recycled inputs meet specification and performance requirements.

Third, embed digital tools across process control, quality assurance, and customer engagement functions to unlock productivity gains and to shorten product development cycles. Fourth, align R&D and commercial teams to pursue alloy and process innovations that address specific application pain points-such as lighter-weight structural components for transportation or corrosion-resistant grades for energy applications-so that product differentiation creates defensible pricing power. Fifth, develop a pragmatic decarbonization roadmap that blends energy-efficiency projects with strategic electrification and low-carbon energy procurement, while using robust measurement frameworks to validate progress. Finally, strengthen regulatory and stakeholder engagement to anticipate policy shifts, secure favorable procurement outcomes, and participate in standards development, thereby turning compliance obligations into competitive advantages.

A transparent research methodology roadmap explaining data collection, triangulation, expert validation, and scenario testing used to ensure robust and reproducible insights

The research underpinning this report combines targeted primary inputs with methodical secondary analysis and rigorous validation to produce defensible, operationally relevant conclusions. Primary research consisted of structured interviews with senior executives across the value chain, site-level visits to processing and recycling facilities, and technical consultations with metallurgists and materials scientists to verify alloy performance claims. Secondary research integrated regulatory filings, industry association publications, and public production and trade datasets to construct a multi-dimensional evidence base.

Findings were triangulated through cross-validation techniques that reconciled supplier disclosures, downstream demand signals, and independent production statistics. Scenario testing was applied to stress key assumptions under alternative policy, energy price, and technology adoption pathways, enabling assessment of resilience under plausible futures. Quality controls included peer review by independent industry experts and internal audits of source attribution to ensure transparency and reproducibility. The research methodology therefore provides a structured, traceable framework that supports strategic decision-making and that can be adapted to bespoke client inquiries or follow-up deep dives into specific metals, applications, or regional questions.

A concise strategic conclusion synthesizing implications for investment, capability building, regulatory engagement, and innovation pathways across the metals value chain

In conclusion, the metals sector is at an inflection point where technological evolution, policy shifts, and changing customer expectations are converging to redefine competitive advantage. Companies that proactively invest in lower-carbon production pathways, that secure diversified and transparent supply networks, and that align product innovation with application-specific demands will be better placed to capture premium opportunities and to manage regulatory and commercial risks. Equally important is the strategic integration of digital capabilities and recycling infrastructure to increase asset efficiency and to reduce feedstock dependency.

Leaders should treat the current environment as an opportunity to accelerate capability building rather than as a transitory disruption. By focusing on the intersections of sustainability, product differentiation, and supply chain resilience, executives can create durable advantages that outlast short-term policy cycles. The path forward requires coherent cross-functional planning, disciplined capital allocation, and proactive engagement with customers, suppliers, and regulators to translate intent into measurable performance improvements across the metals value chain.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising demand for high-strength low-alloy steels in automotive lightweighting applications
  • 5.2. Increasing adoption of recycled aluminum in consumer electronics to reduce carbon footprint
  • 5.3. Growth of specialty metal alloys for renewable energy infrastructure components manufacturing
  • 5.4. Impact of electric vehicle battery development on nickel and cobalt supply chain dynamics
  • 5.5. Implementation of advanced metal 3D printing techniques for aerospace component production
  • 5.6. Stricter environmental regulations driving investment in emission reduction technologies in steel plants
  • 5.7. Shift toward flat-rolled stainless steel with corrosion-resistant coatings in construction projects

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Metal Market, by Metal Type

  • 8.1. Ferrous
    • 8.1.1. Carbon Steel
    • 8.1.2. Cast Iron
    • 8.1.3. Stainless Steel
      • 8.1.3.1. Austenitic
      • 8.1.3.2. Duplex
      • 8.1.3.3. Ferritic
      • 8.1.3.4. Martensitic
  • 8.2. Non Ferrous
    • 8.2.1. Aluminum
      • 8.2.1.1. Primary Aluminum
      • 8.2.1.2. Secondary Aluminum
    • 8.2.2. Copper
    • 8.2.3. Nickel
    • 8.2.4. Titanium

9. Metal Market, by Application

  • 9.1. Aerospace
  • 9.2. Automotive
    • 9.2.1. Body Panels
    • 9.2.2. Engine Components
    • 9.2.3. Structural Components
  • 9.3. Construction
    • 9.3.1. Architectural Facades
    • 9.3.2. Roofing And Cladding
    • 9.3.3. Structural
  • 9.4. Electrical And Electronics
  • 9.5. Industrial Machinery
  • 9.6. Packaging

10. Metal Market, by End Use Industry

  • 10.1. Consumer Goods
  • 10.2. Energy
    • 10.2.1. Oil And Gas
    • 10.2.2. Power Generation
  • 10.3. Industrial
  • 10.4. Infrastructure
  • 10.5. Transportation

11. Metal Market, by Form

  • 11.1. Bar And Rod
  • 11.2. Plate And Sheet
  • 11.3. Powder
  • 11.4. Tube And Pipe
  • 11.5. Wire

12. Metal Market, by Production Process

  • 12.1. Primary Production
  • 12.2. Secondary Production
    • 12.2.1. Casting
    • 12.2.2. Extrusion
    • 12.2.3. Rolling

13. Metal Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Metal Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Metal Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. China Baowu Steel Group Corporation Limited
    • 16.3.2. ArcelorMittal S.A.
    • 16.3.3. HBIS Group Co., Ltd.
    • 16.3.4. Nippon Steel Corporation
    • 16.3.5. POSCO Holdings, Inc.
    • 16.3.6. Jiangsu Shagang Group Co., Ltd.
    • 16.3.7. Ansteel Group Corporation Limited
    • 16.3.8. JFE Holdings, Inc.
    • 16.3.9. JSW Steel Limited
    • 16.3.10. Nucor Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제