시장보고서
상품코드
1868352

친환경 흑연 시장 : 흑연 유형별, 순도 등급별, 형태별, 용도별, 최종사용자 산업별 - 세계 예측(2025-2032년)

Green Graphite Market by Graphite Type, Purity Grade, Form, Application, End User Industry - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 188 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

친환경 흑연 시장은 2032년까지 연평균 복합 성장률(CAGR) 11.75%로 79억 7,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 32억 7,000만 달러
추정 연도 : 2025년 36억 6,000만 달러
예측 연도 : 2032년 79억 7,000만 달러
CAGR(%) 11.75%

친환경 흑연에 대한 간략한 개요: 탈탄소화 요구, 기술 발전, 공급망 탄력성이 재료 선택을 재정의합니다.

본 주요 요약에서는 탈탄소화, 전기화, 첨단 제조의 교차로에 위치한 중요한 산업 재료로서 녹색 흑연을 소개합니다. 본 논문에서는 흑연을 단순한 상품이 아닌 환경적 발자국, 순도 특성, 형상 요인이 차세대 응용 분야에서의 적합성을 점점 더 결정짓는 엔지니어링 원료로 재정의합니다. 이해관계자들이 지속가능성 기준에 따라 공급망을 재평가하는 가운데, 흑연의 역할은 야금 및 내화용도에서 에너지 저장, 열 관리, 고성능 전자제품의 핵심 소재로 확대되고 있습니다.

배터리 전기화, 순환형 원료, 공정 전기화, 규제 압력에 의해 형성되는 녹색흑연 수요의 변혁적 변화에 대응

기술적, 규제적, 상업적 요인이 수렴하는 가운데, 녹색 흑연 정세는 변혁적 전환기를 맞이하고 있습니다. 전동화 모빌리티와 고정식 에너지 저장의 급속한 보급으로 흑연에 대한 기술적 요구사항이 강화되어 입자 형태, 전기화학적 순도, 안정적인 공급에 대한 요구가 높아지고 있습니다. 동시에 합성 및 정제 기술의 발전으로 천연 원료와 합성 원료의 성능 차이가 줄어들어 제조업체는 전도도, 표면적, 불순물 프로파일을 설계할 수 있는 재료를 개발할 수 있게 되었습니다.

2025년 미국이 발표한 관세 조치가 업스트림 공급, 비용 동향, 전략적 조달 접근 방식에 미치는 누적 영향 평가

2025년에 발표된 미국의 관세 조치는 전체 녹색 흑연 공급망에 전략적 복잡성을 더할 것입니다. 관세 개입은 공급업체 선정, 조달 리드타임, 비용 최적화 전략에 영향을 미치며, 구매자와 가공업체가 조달 지역과 헤지 방법을 재평가하도록 유도하고 있습니다. 국경 간 원자재 흐름에 의존하는 제조업체의 경우, 관세는 특정 가공 단계의 현지화, 대체 원자재 인증 가속화 또는 계약 재구성을 통한 단기적인 가격 영향 흡수와 같은 현실적인 인센티브를 창출합니다.

흑연의 유형, 순도 등급, 재료 형태, 다양한 용도, 최종 사용자 산업의 행동 방식에 걸쳐 미묘한 세분화 정보를 공개합니다.

부문 수준의 통찰력은 흑연 생태계 전반의 상업적, 기술적 결정에 영향을 미치는 차별화된 역학을 밝혀냅니다. 흑연의 유형에 따라 시장은 천연 흑연과 합성 흑연으로 나뉘고, 천연 흑연은 다시 비정질 흑연, 플레이크 흑연, 덩어리 흑연으로 세분화되며, 합성 흑연은 전기 아크법 합성과 열분해 합성으로 구분됩니다. 각 제조 공정은 입자 형태, 불순물 프로파일, 공정 확장성에서 서로 다른 트레이드오프를 가져옵니다. 이러한 차이는 특히 전극 품질, 코팅 밀착성, 열전도율이 중요한 상황에서 공급업체 선정의 판단 기준이 됩니다.

지역별 관점: 미주, 유럽, 중동/아프리카, 아시아태평양이 공급망, 수요 거점, 정책 대응을 어떻게 형성하고 있는지 살펴봅니다.

지역별 인사이트는 그린 그라파이트 도입을 형성하는 다양한 전략적 대응과 공급망 구조를 보여줍니다. 미국 대륙에서는 무역 불확실성에 대한 노출을 줄이고 배터리 공급망에 대한 적격성을 가속화하기 위해 근해 가공과 수직적 통합에 중점을 둔 투자 패턴을 볼 수 있습니다. 이 지역 수요는 특히 자동차 전기화 일정과 산업 전기화 프로젝트에 민감하며, 이해관계자들에게 투명한 배출량 관리와 예측 가능한 물류 솔루션을 제공하는 공급업체 관계를 우선시할 것을 촉구하고 있습니다.

흑연 가치사슬 전반에 걸쳐 혁신을 촉진하고, 생산량을 확대하며, 지속가능성을 통합하는 주요 기업 프로파일과 전략적 접근 방식을 밝힙니다.

흑연 분야의 주요 기업들은 기술적 차별화와 공급 안정성을 확보하기 위해 각기 다른 전략을 실행하고 있습니다. 기존 원료의 부가가치 향상을 위해 고도의 정제 및 코팅 기술에 투자하는 기업이 있는 반면, 입자 형태의 일관성과 불순물 변동성을 줄이기 위해 합성 생산 능력 확대를 추구하는 기업도 있습니다. 전략적 M&A와 합작투자가 일반적이며, 이를 통해 독자적인 가공 노하우, 광물권 확보, 다운스트림 공정의 인증 파이프라인에 대한 접근이 가능합니다.

업계 리더이 공급 탄력성 강화, 지속 가능한 조달 우선순위 설정, 흑연 응용 분야에서의 혁신 가속화를 실현하기 위한 실천적 제안

업계 리더은 단기적인 비즈니스 연속성과 장기적인 전략적 포지셔닝을 동시에 달성할 수 있는 실질적인 대응책을 우선순위에 두어야 합니다. 첫째, 공급업체 다양화 및 선정 프로세스를 강화하여 무역 개입 및 물류 혼란에 대한 노출 위험을 줄입니다. 여러 산지 조달을 우선시하고, 역동적인 선정 루트를 유지함으로써, 조달 부서는 기술 성능의 저하 없이 대응을 전환할 수 있습니다. 둘째, 저탄소 가공기술과 추적시스템에 대한 투자를 가속화하고 고객의 기대와 규제 동향에 맞추어 지속가능성을 경쟁우위로 전환합니다.

1차 조사와 2차 조사, 검증 프로토콜, 샘플 구성, 분석 프레임워크를 설명하는 강력한 조사 기법

이 조사 방식은 업계 관계자를 대상으로 한 1차 조사와 엄격한 2차 검증을 결합하여 견고성과 관련성을 보장합니다. 1차 조사 방법에는 조달 책임자, 제조업체 및 OEM의 기술 책임자, 가공 및 채굴 조직의 경영진을 대상으로 한 구조화된 인터뷰를 통해 인증 장벽, 사양 동향, 상업적 행동에 대한 실질적인 지식을 수집하는 것이 포함됩니다. 이러한 정성적 데이터는 성능에 미치는 영향과 새로운 가공 기술을 검증하기 위해 독립적인 기술 전문가와의 협의를 통해 보완됩니다.

흑연 생태계 전반의 이해관계자들을 위한 전략적 시사점을 통합한 간결한 결론. 우선순위 행동과 회복탄력성 테마 강조

결론적으로, 녹색 흑연은 주로 상품화된 투입 재료에서 환경 성능, 공급 신뢰성 및 설계 특성이 상업적 성과를 결정하는 사양 중심의 재료 클래스로 전환하고 있습니다. 가치사슬 전반의 이해관계자들은 일관성 있는 고품질 원료를 확보하는 동시에 라이프사이클 배출량 감소와 추적 가능성에 대한 요구가 높아지는 이중적 과제에 직면해 있습니다. 기술 차별화와 강력한 조달 전략, 지속가능성 인증을 통합하는 기업은 진화하는 구매자의 요구와 규제적 기대에 부응하는 데 더 유리한 입장에 서게 될 것입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 친환경 흑연 시장 : 흑연 유형별

  • 천연 흑연
    • 아몰퍼스 흑연
    • 플레이크 흑연
    • 덩어리 흑연
  • 합성 흑연
    • 전기 아크 합성
    • 열 합성

제9장 친환경 흑연 시장 : 순도 등급별

  • 고순도
  • 표준 순도
  • 초고순도

제10장 친환경 흑연 시장 : 형태별

  • 과립
  • 펠릿
  • 분말

제11장 친환경 흑연 시장 : 용도별

  • 배터리
    • 납축전지
    • 리튬 이온 배터리
    • 니켈 수소 배터리
  • 브레이크 라이닝
  • 주조
  • 윤활유
  • 내화물
    • Furnace Refractories
    • Steel Ladle Refractories

제12장 친환경 흑연 시장 : 최종사용자 산업별

  • 자동차
  • 화학
  • 일렉트로닉스
  • 에너지 저장
  • 철강

제13장 친환경 흑연 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 친환경 흑연 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 친환경 흑연 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • BTR New Energy Material Co., Ltd.
    • SGL Carbon SE
    • Tokai Carbon Co., Ltd.
    • Imerys Graphite & Carbon
    • SHOWA DENKO CARBON, Inc.
    • GrafTech International Ltd.
    • Syrah Resources Limited
    • Northern Graphite Corporation
    • Mason Graphite Inc.
    • NextSource Materials Inc.
LSH 25.12.16

The Green Graphite Market is projected to grow by USD 7.97 billion at a CAGR of 11.75% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 3.27 billion
Estimated Year [2025] USD 3.66 billion
Forecast Year [2032] USD 7.97 billion
CAGR (%) 11.75%

A concise orientation to green graphite: how decarbonization imperatives, technological advances, and supply chain resilience are redefining material choices

This executive summary introduces green graphite as a critical industrial material at the intersection of decarbonization, electrification, and advanced manufacturing. The narrative reframes graphite not merely as a commodity but as an engineered feedstock whose environmental footprint, purity attributes, and form factors increasingly determine suitability across next-generation applications. As stakeholders re-evaluate supply chains under sustainability criteria, graphite's role has broadened from metallurgical and refractory uses to being central in energy storage, thermal management, and high-performance electronics.

The opening analysis clarifies the drivers influencing strategic choices across value chains, notably policy incentives for low-carbon inputs, technological advances in synthetic production and purification, and buyer preferences for traceability. This introduction sets the stage for deeper sections by outlining the interplay between resource type, processing pathways, and end-use performance expectations. It also highlights how regulatory shifts and corporate sustainability commitments are reshaping procurement frameworks and supplier-engagement models, prompting firms to reconsider sourcing, qualification timelines, and capital allocation for feedstock integration.

Navigating transformative shifts in green graphite demand shaped by battery electrification, circular feedstocks, process electrification, and regulatory pressures

The landscape for green graphite is experiencing transformative shifts driven by converging technological, regulatory, and commercial forces. Rapid adoption of electrified mobility and stationary energy storage has increased the technical demands placed on graphite, elevating requirements for particle morphology, electrochemical purity, and consistent supply. Concurrently, advances in synthesis and purification techniques are narrowing performance gaps between natural and synthetic sources, enabling manufacturers to engineer materials with tailored conductivity, surface area, and impurity profiles.

Policy and procurement rules are also exerting greater influence. Carbon disclosure and sustainable sourcing standards are incentivizing investments in low-emissions processing and circular feedstock strategies. This has accelerated interest in secondary sources and recycling pathways that can supply high-quality graphite while mitigating upstream environmental impacts. As a result, supply chain configurations are diversifying: some firms are vertically integrating purification and coating operations to secure specifications, while others form long-term partnerships with specialized processors to de-risk qualification timelines. Looking ahead, technology maturation in artificial graphite production, coupled with process electrification and renewable power integration, will continue to reshape competitive dynamics and capital allocation within the industry.

Assessing the cumulative impact of United States tariff measures announced for 2025 on upstream supply, cost trajectories, and strategic procurement approaches

United States tariff measures announced for 2025 introduce an additional layer of strategic complexity across the green graphite supply chain. Tariff interventions influence supplier selection, procurement lead times, and cost optimization strategies, prompting buyers and processors to re-evaluate sourcing geographies and hedging approaches. For manufacturers dependent on cross-border raw material flows, tariffs create practical incentives to localize certain processing stages, accelerate qualification of alternative feedstocks, or absorb short-term pricing impacts through contract restructures.

The cumulative impact manifests through several interlinked mechanisms. First, procurement teams adjust sourcing portfolios to prioritize suppliers with diversified logistics and lower tariff exposure. Second, capital planning shifts to favor domestic or nearshore investments in purification and coating capabilities to maintain specification continuity. Third, downstream OEMs and battery producers re-assess inventory and qualification buffers to ensure production stability amid potential customs delays. In parallel, strategic collaborations between miners, processors, and end users gain prominence as firms seek to stabilize throughput while preserving product performance. Ultimately, tariff measures amplify the importance of supply chain transparency and scenario planning: organizations that invest in granular supplier risk assessment and flexible qualification processes will better manage operational continuity and maintain responsiveness to evolving trade policies.

Uncovering nuanced segmentation intelligence across graphite types, purity grades, material forms, diverse applications, and end-user industry behaviors

Segment-level insights reveal differentiated dynamics that influence commercial and technical decisions across the graphite ecosystem. Based on graphite type, the market is studied across Natural Graphite and Synthetic Graphite, with natural graphite further examined through amorphous graphite, flake graphite, and lump graphite, and synthetic graphite subdivided into electric arc synthetic and thermal synthetic; each pathway yields distinct tradeoffs in particle morphology, impurity profiles, and process scalability. Those distinctions inform supplier selection, especially where electrode quality, coating adhesion, or thermal conductivity are critical.

Purity grade segmentation-high purity, standard purity, and ultra high purity-clarifies where incremental processing investment yields disproportionate performance benefits. High and ultra high purity materials command premium technical roles in battery anodes and high-frequency electronics, whereas standard purity grades retain relevance for refractory, brake lining, and general lubrication applications. Form segmentation highlights functional considerations across foam, granules, pellets, and powder formats, with foam and structured forms being prioritized in thermal management and lightweight composite contexts, while powders and granules remain central to electrode fabrication and refractory mixes.

Application segmentation underscores nuanced qualification pathways: batteries, brake linings, foundry, lubricants, and refractories each require tailored material specifications. Within batteries, lead acid, lithium-ion, and nickel metal hydride chemistries impose different morphological and impurity tolerances, affecting upstream processing priorities. Refractories differentiate between furnace refractories and steel ladle refractories, where thermal shock resistance and penetration behavior guide grade selection. Finally, end user industry segmentation across automotive, chemical, electronics, energy storage, and steel reveals divergent procurement cycles and innovation adoption rates. Automotive and energy storage sectors increasingly demand traceability and lifecycle emissions transparency, while chemical and steel applications continue to prioritize robustness and cost efficiency. Cross-segment transitions show a steady reallocation of technical resources toward meeting the highest-value, specification-intensive applications.

Regional vantage points revealing how the Americas, Europe Middle East and Africa, and Asia-Pacific are shaping supply chains, demand centers, and policy responses

Regional insights illuminate the varied strategic responses and supply chain architectures shaping green graphite adoption. In the Americas, investment patterns emphasize nearshore processing and vertical integration to reduce exposure to trade uncertainty and accelerate qualification for battery supply chains. Demand in this region is particularly sensitive to automotive electrification timelines and industrial electrification projects, prompting stakeholders to prioritize supplier relationships that offer transparent emissions accounting and predictable logistics solutions.

In Europe, Middle East & Africa, regulatory drivers and corporate sustainability commitments are central. Policymakers and corporates in this region increasingly insist on low-carbon inputs and circularity, encouraging investments in recycling infrastructure and advanced purification facilities. Strategic alliances between mining jurisdictions, processors, and end users are forming to meet stringent environmental and social governance requirements. In the Asia-Pacific region, scale and proximity to battery manufacturers remain dominant forces. Production capacity for both natural and synthetic graphite is concentrated here, and the region continues to lead in downstream cell manufacturing and anode preparation. However, supply diversification strategies are prompting some buyers to seek alternative sources and invest in local downstream processing across other regions to mitigate concentration risks. These geographic variations combine to create a multi-polar supply landscape in which regional policy, industrial structure, and logistics efficiency determine competitive positioning and investment choices.

Illuminating profiles and strategic approaches of leading firms driving innovation, expanding output, and embedding sustainability across graphite value chains

Leading companies in the graphite space are executing distinct strategies to capture technical differentiation and supply security. Some firms are investing in advanced purification and coating technologies to increase the value capture of existing feedstocks, while others pursue capacity expansion in synthetic production to guarantee consistent particle morphology and reduced impurity variance. Strategic M&A and joint ventures are common, enabling access to proprietary processing know-how, secured mineral rights, and downstream qualification pipelines.

Across the competitive set, a subset of players emphasize sustainability credentials-reducing process emissions, sourcing renewable energy for smelting and purification, and implementing traceability systems-to meet buyer demands and preempt regulatory scrutiny. At the same time, specialized processors are carving out niches by offering tailored material grades for high-performance battery anodes and electronics, often supported by collaborative R&D agreements with OEMs and battery manufacturers. The landscape therefore reflects a dual track: large, integrated producers scaling capabilities to serve broad demand, and focused technology providers delivering specification-driven products with faster innovation cycles. This combination shapes buyer options and elevates the importance of supplier evaluation beyond price to include reliability, technological capability, and environmental performance.

Actionable recommendations for industry leaders to strengthen supply resilience, prioritize sustainable sourcing, and accelerate innovation in graphite uses

Industry leaders should prioritize a set of actionable responses that balance near-term operational resilience with long-term strategic positioning. First, strengthen supplier diversification and qualification processes to reduce exposure to trade interventions and logistical disruptions. Prioritizing multi-origin sourcing and maintaining dynamic qualification lanes will allow procurement teams to pivot without compromising technical performance. Second, accelerate investments in lower-carbon processing and traceability systems to align with customer expectations and regulatory trajectories, thereby converting sustainability into a competitive advantage.

Third, pursue targeted vertical integration where value capture and specification control are mission-critical; investing selectively in purification, coating, or anode assembly can shorten qualification times and secure supply for high-value applications. Fourth, increase collaboration with downstream OEMs and battery producers to co-develop grades that reduce overall system cost while meeting lifecycle and performance targets. Finally, embed scenario planning into capital and procurement decisions to stress-test resilience against tariff shifts, energy price volatility, and technology substitution. Taken together, these actions help organizations navigate evolving constraints while positioning them to capitalize on emerging demand from electrification and advanced industrial applications.

Robust research methodology explaining primary and secondary intelligence gathering, validation protocols, sample composition, and analytical frameworks

The research approach combines primary engagement with industry participants and rigorous secondary validation to ensure robustness and relevance. Primary methods include structured interviews with procurement executives, technical leads at manufacturers and OEMs, and senior executives within processing and mining organizations to capture practical insights into qualification barriers, specification trends, and commercial behaviors. These qualitative inputs are complemented by consultation with independent technical experts to validate performance implications and emerging processing technologies.

Secondary intelligence draws on a wide array of public disclosures, patent filings, regulatory updates, and technical literature to map technology adoption, policy drivers, and evolving standards. Findings from both streams are integrated through a methodological framework that emphasizes triangulation, cross-checking supplier claims against observed production characteristics and third-party data. Quality controls include consistency checks across interview responses, validation of technical claims through subject matter experts, and transparent documentation of assumptions and evidence sources. This layered approach yields defensible insights that are actionable for practitioners engaged in procurement, product development, and strategic planning.

Concise conclusion synthesizing strategic implications for stakeholders across the graphite ecosystem, highlighting priority actions and resilience themes

In conclusion, green graphite is transitioning from a largely commoditized input toward a specification-driven material class where environmental performance, supply reliability, and engineered properties determine commercial outcomes. Stakeholders across the value chain face a dual imperative: secure consistent, high-quality feedstocks while responding to intensifying demands for lower lifecycle emissions and traceability. Firms that integrate technical differentiation with resilient sourcing strategies and sustainability credentials will be better positioned to meet evolving buyer requirements and regulatory expectations.

The strategic implications are clear: invest in capability where specification control matters, diversify sourcing to manage trade and logistics risks, and collaborate across the value chain to accelerate qualification and reduce time to market. Resilience will depend on a pragmatic blend of local capacity, strategic partnerships, and transparent environmental stewardship. Organizations that operationalize these themes will not only mitigate near-term disruptions but also capture long-term competitive advantage as material selection becomes a decisive factor in electrified and high-performance applications.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Advanced eco-friendly graphitization techniques for battery anodes using biomass precursors
  • 5.2. Strategic partnerships between EV manufacturers and sustainable graphite suppliers to secure low-carbon supply chains
  • 5.3. Impact of government incentives and carbon regulations on expansion of green graphite mining projects
  • 5.4. Innovations in recycling end-of-life lithium-ion batteries for closed-loop graphite recovery
  • 5.5. Emergence of novel solvent-free graphitic material processing to reduce industrial carbon footprint

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Green Graphite Market, by Graphite Type

  • 8.1. Natural Graphite
    • 8.1.1. Amorphous Graphite
    • 8.1.2. Flake Graphite
    • 8.1.3. Lump Graphite
  • 8.2. Synthetic Graphite
    • 8.2.1. Electric Arc Synthetic
    • 8.2.2. Thermal Synthetic

9. Green Graphite Market, by Purity Grade

  • 9.1. High Purity
  • 9.2. Standard Purity
  • 9.3. Ultra High Purity

10. Green Graphite Market, by Form

  • 10.1. Foam
  • 10.2. Granules
  • 10.3. Pellets
  • 10.4. Powder

11. Green Graphite Market, by Application

  • 11.1. Batteries
    • 11.1.1. Lead Acid Batteries
    • 11.1.2. Lithium Ion Batteries
    • 11.1.3. Nickel Metal Hydride
  • 11.2. Brake Linings
  • 11.3. Foundry
  • 11.4. Lubricants
  • 11.5. Refractories
    • 11.5.1. Furnace Refractories
    • 11.5.2. Steel Ladle Refractories

12. Green Graphite Market, by End User Industry

  • 12.1. Automotive
  • 12.2. Chemical
  • 12.3. Electronics
  • 12.4. Energy Storage
  • 12.5. Steel

13. Green Graphite Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Green Graphite Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Green Graphite Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. BTR New Energy Material Co., Ltd.
    • 16.3.2. SGL Carbon SE
    • 16.3.3. Tokai Carbon Co., Ltd.
    • 16.3.4. Imerys Graphite & Carbon
    • 16.3.5. SHOWA DENKO CARBON, Inc.
    • 16.3.6. GrafTech International Ltd.
    • 16.3.7. Syrah Resources Limited
    • 16.3.8. Northern Graphite Corporation
    • 16.3.9. Mason Graphite Inc.
    • 16.3.10. NextSource Materials Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제