시장보고서
상품코드
1868384

가상 확장 LAN 시장 : 구성요소별, 도입 형태별, 용도별, 업계별, 조직 규모별 - 세계 예측(2025-2032년)

Virtual Extensible LAN Market by Component, Deployment Mode, Application, Industry Vertical, Organization Size - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 188 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

가상 확장 LAN 시장은 2032년까지 CAGR 14.27%로 59억 3,000만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 20억 4,000만 달러
추정 연도 2025년 23억 2,000만 달러
예측 연도 2032 59억 3,000만 달러
CAGR(%) 14.27%

가상 확장 LAN의 기초, 운영 촉진요인 및 현대 네트워크 패브릭을 형성하는 소프트웨어 및 하드웨어 오케스트레이션의 역학에 대한 명확하고 권위있는 소개 설명입니다.

가상 확장 LAN 기술은 확장 가능한 레이어 3 인프라에서 원활한 레이어 2 연결이 가능한 현대 분산형 네트워크의 기본 패브릭으로 부상하고 있습니다. 이 소개에서는 캡슐화 메커니즘, 제어 플레인 통합, 기존 VLAN의 제약을 뛰어넘는 운영상의 이점에 중점을 두고 이 아키텍처의 기본 특성을 개괄적으로 설명합니다. 실무자들은 논리적 토폴로지와 물리적 인프라를 분리하는 이러한 솔루션을 점점 더 많이 채택하고 있으며, 이를 통해 워크로드 이동성, 테넌트 세분화 간소화, 이기종 환경 전반에서 일관된 정책 적용을 실현하고 있습니다.

가상화, 클라우드 네이티브의 필요성, 프로그래머블 인프라가 기업 및 공급자 규모의 네트워크 패브릭 설계, 보안 태세, 운영을 어떻게 재구성하고 있는가?

광범위한 가상화, 클라우드 네이티브 워크로드, 대규모 환경에서의 일관된 보안의 필요성으로 인해 네트워크 환경은 급격한 변화를 겪고 있습니다. 첫째, 논리적 계층의 구축과 물리적 인프라의 분리는 아키텍처 이론에서 표준 운영 관행으로 전환하여 조직이 네트워크를 코드로 취급할 수 있도록 했습니다. 그 결과, 오케스트레이션 및 컨트롤러 플랫폼이 전송 및 정책 결정을 주도하는 반면, 하드웨어는 성능, 텔레메트리, 프로그래밍 가능한 인터페이스에 초점을 맞추고 있습니다. 이러한 변화는 서비스 제공 속도를 가속화하고, 분산된 사이트 전반에 걸쳐 민첩한 애플리케이션 배포를 가능하게 합니다.

최근 관세 변동이 조달, 공급업체 전략 및 배포 연속성 유지를 위한 소프트웨어 서비스에 대한 의존도 증가에 미치는 누적적 영향을 평가합니다.

최근 미국의 관세 정책은 세계 공급망에 미묘한 마찰을 가져와 네트워크 인프라 프로젝트의 조달 전략, 공급업체 선정, 총비용 검토에 영향을 미치고 있습니다. 이러한 변화로 인해 조달팀은 하드웨어 조달, 특히 운임 및 컴플라이언스 심사가 엄격한 라우터와 스위치의 조달 방식을 재검토해야 합니다. 이에 따라 많은 조직들이 현지 조달 전략의 재검토, 공급업체 구성의 다양화, 재고 버퍼 강화, 또는 유지보수 계약 연장 등 관세 관련 혼란의 영향을 줄이기 위한 조치를 취하고 있습니다.

구성요소, 도입 형태, 애플리케이션, 산업, 조직 규모의 차이가 조달 선택과 솔루션 설계에 미치는 영향을 파악할 수 있는 상세한 세분화 분석

엄격한 세분화 기법을 통해 구성요소, 도입 모델, 애플리케이션, 산업 분야, 조직 규모에 따라 다른 의사결정 요인을 파악할 수 있습니다. 이는 각각 기술 선택과 시장 진입 전략에 영향을 미칩니다. 구성요소를 고려할 때 라우터, 스위치 등 하드웨어 선택과 컨트롤러 및 오케스트레이션 소프트웨어에 대한 투자 사이의 균형이 필요합니다. 이는 매니지드 서비스, 전문 서비스, 그리고 강력한 지원 및 유지보수 체제로 뒷받침되어야 합니다. 이 균형은 조직이 성능, 관리성, 라이프사이클 비용의 우선순위를 어떻게 정하느냐에 따라 결정됩니다. 오케스트레이션 계층은 통합 제어 평면을 제공하고, 하드웨어의 이기종 혼합을 완화하는 역할을 합니다.

채택 촉진요인, 규제 영향, 그리고 아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 생태계 동향을 설명하는 비교 지역 분석

지역별 동향은 도입 패턴, 규제 제약, 공급업체 생태계에서 결정적인 역할을 하고 있으며, 아메리카, 유럽/중동 및 아프리카, 아시아태평양별로 뚜렷한 차이를 보이고 있습니다. 아메리카에서는 기업 및 서비스 제공업체들이 클라우드 네이티브 서비스 및 지연에 민감한 애플리케이션을 지원하기 위해 프로그래머블 패브릭과 고성능 하드웨어의 신속한 도입에 중점을 두고 있습니다. 이 지역의 생태계는 시스템 통합업체와 벤더 간의 강력한 파트너십을 중시하고 있으며, 분산된 사이트 전반의 도입을 가속화하기 위한 관리형 서비스 및 전문 서비스에 대한 수요가 꾸준히 증가하고 있습니다.

통합 소프트웨어, 고성능 하드웨어, 확장된 서비스 포트폴리오가 벤더의 차별화와 파트너십의 가치를 정의하는 경쟁 역학에 대한 설득력 있는 개요를 소개합니다.

주요 기업의 동향은 통합 소프트웨어 제공, 하드웨어 성능, 종합적인 서비스 포트폴리오를 통한 차별화가 경쟁 구도를 형성하고 있음을 반영하고 있습니다. 주요 인프라 벤더들은 중앙 집중식 정책 관리, 자동 프로비저닝, 고급 텔레메트리를 구현하는 컨트롤러 및 오케스트레이션 기능을 강조하고 있습니다. 하드웨어 제품군에서는 고처리량 스위칭 및 라우팅 기능을 지속적으로 강조하면서 멀티 벤더 환경과의 통합을 용이하게 하는 프로그래머블 인터페이스를 제공합니다.

네트워크 패브릭의 안전하고 상호 운용 가능한 서비스 중심 가상화를 가속화하고 측정 가능한 운영상의 이점을 실현하기 위한 기술 리더를 위한 실용적인 우선순위 권장 사항

업계 리더들은 운영 리스크를 최소화하면서 도입을 가속화하기 위해 현실적이고 우선순위를 정한 일련의 노력을 추진해야 합니다. 첫째, 온프레미스 환경과 클라우드 환경 모두에서 일관된 정책 적용과 자동화를 실현하는 컨트롤러 및 오케스트레이션 기능에 우선적으로 투자해야 합니다. 이를 통해 수동 설정 오류를 줄이고, 도입 시간을 단축하며, 애플리케이션의 진화에 따른 지속적인 정책 검증의 기반을 구축할 수 있습니다. 다음으로, 유연성을 극대화하고 벤더 종속을 피하기 위해 고성능 하드웨어 투자와 소프트웨어 중심 기능의 균형 잡힌 조합으로 조달 전략을 수립해야 합니다.

네트워크 패브릭 도입에 대한 검증 가능하고 운영 기반에 기반한 지식을 얻기 위해 전문가 인터뷰, 기술 결과물 분석, 상호 검증을 결합한 투명성 높은 조사 방식을 채택했습니다.

본 조사 방법은 정성적 전문가 인터뷰, 기술 동향 분석, 엄격한 문서 검토를 통해 균형 잡힌 검증 가능한 결과를 도출합니다. 주요 정보원으로는 기술 아키텍트, 네트워크 운영 책임자, 조달 전문가, 매니지드 서비스 프로바이더와의 대담을 통해 도입 경험, 운영상의 문제점, 벤더 선정 기준 등을 공유했습니다. 이러한 주요 대화는 기술 백서, 표준화 문서, 벤더 제품 사양서에 의해 보완되어 프로토콜 동작, 컨트롤러 기능, 오케스트레이션 인터페이스에 대한 주장을 삼각측량으로 검증했습니다.

결론적으로, 소프트웨어 정의 제어, 상호운용성, 운영화를 가상 확장 LAN 이니셔티브 성공의 지속가능한 기반으로서 강조하는 종합적인 관점을 제시합니다.

결론적으로, 가상 확장 LAN 접근 방식은 분산된 워크로드 요구, 보안 세분화, 운영 민첩성을 모두 충족시키려는 조직에게 성숙하고 실용적인 길을 제시합니다. 컨트롤러 및 오케스트레이션 플랫폼을 통한 제어 통합과 최신 프로그래머블 하드웨어의 조합은 적절한 거버넌스 하에서 실행될 때 일관된 정책, 향상된 텔레메트리, 운영 부담 감소를 실현할 수 있습니다. 중요한 점은 클라우드와 온프레미스 구축 옵션의 상호 작용은 관리성을 저하시키지 않으면서도 컴플라이언스 및 성능 제약에 적응할 수 있는 유연한 아키텍처의 필요성을 강조하고 있다는 점입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 가상 확장 LAN 시장 : 구성요소별

  • 하드웨어
    • 라우터
    • 스위치
  • 서비스
    • 매니지드 서비스
    • 전문 서비스
    • 서포트 및 보수
  • 소프트웨어
    • 컨트롤러
    • 오케스트레이션

제9장 가상 확장 LAN 시장 : 전개 방식별

  • 클라우드
    • 하이브리드 클라우드
    • 퍼블릭 클라우드
  • 온프레미스

제10장 가상 확장 LAN 시장 : 용도별

  • 데이터센터 네트워크
    • 하이브리드 클라우드
    • 프라이빗 클라우드
    • 퍼블릭 클라우드
  • 기업 캠퍼스
  • 서비스 프로바이더 네트워크
    • 통신 네트워크
    • 웹 서비스

제11장 가상 확장 LAN 시장 : 업계별

  • BFSI(은행·금융·보험)
    • 은행
    • 보험
    • 증권
  • 정부·방위
  • 헬스케어
    • 병원
    • 의료기기
    • 제약
  • IT·통신
  • 소매

제12장 가상 확장 LAN 시장 : 조직 규모별

  • 대기업
    • 세계 기업
    • 중견기업
  • 중소기업
    • 중규모 기업
    • 영세 기업
    • 소규모 기업

제13장 가상 확장 LAN 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 가상 확장 LAN 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 가상 확장 LAN 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Cisco Systems, Inc.
    • VMware, Inc.
    • Juniper Networks, Inc.
    • Arista Networks, Inc.
    • Broadcom Inc.
    • Hewlett Packard Enterprise Company
    • Dell Technologies Inc.
    • Huawei Technologies Co., Ltd.
    • Nokia Corporation
    • Extreme Networks, Inc.
KSM

The Virtual Extensible LAN Market is projected to grow by USD 5.93 billion at a CAGR of 14.27% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 2.04 billion
Estimated Year [2025] USD 2.32 billion
Forecast Year [2032] USD 5.93 billion
CAGR (%) 14.27%

A clear and authoritative introduction to virtual extensible LAN fundamentals, operational drivers, and the software-hardware orchestration dynamics shaping modern network fabrics

Virtual extensible LAN technologies have emerged as a foundational fabric for modern distributed networks, enabling seamless Layer 2 connectivity over scalable Layer 3 infrastructures. This introduction outlines the fundamental attributes of the architecture, emphasizing encapsulation mechanisms, control-plane integration, and the operational benefits that extend beyond legacy VLAN constraints. Practitioners are increasingly adopting these solutions to decouple logical topology from physical infrastructure, which in turn supports workload mobility, simplified tenant segmentation, and consistent policy enforcement across heterogeneous environments.

As enterprises modernize, the role of controller and orchestration software has become central to operationalizing virtual extensibility. Controllers translate high-level network intents into forwarding behaviors while orchestration platforms align network state with compute and storage automation. Consequently, hardware elements such as routers and switches must interoperate with software components to sustain visibility, telemetry, and fault isolation across multi-domain deployments. When combined with managed and professional services, organizations can accelerate deployment, reduce configuration drift, and ensure ongoing support and maintenance.

This introduction also underscores the interplay between deployment choices and application demands. Cloud and on-premises models, together with hybrid cloud variants, shape design trade-offs in performance, latency, and compliance. Ultimately, this section sets the stage for a deeper analysis of the transformational forces, regulatory environment, segmentation patterns, regional dynamics, and recommended actions that leaders should consider when evaluating virtual extensible LAN initiatives.

How virtualization, cloud-native imperatives, and programmable infrastructures are reshaping network fabric design, security posture, and operations at enterprise and provider scales

The networking landscape is undergoing transformative shifts driven by pervasive virtualization, cloud-native workloads, and the imperative for consistent security at scale. First, the decoupling of logical layer constructs from physical underlays has moved from architectural theory to standard operational practice, enabling organizations to treat the network as code. As a result, orchestration and controller platforms now dictate forwarding and policy decisions, while hardware focuses on performance, telemetry, and programmable interfaces. This shift is accelerating service velocity and enabling agile application deployments across distributed sites.

Second, the convergence of network functions and cloud paradigms is prompting tighter integration between software and hardware components. Routers and switches increasingly present programmable telemetry and API-driven management, supporting orchestration workflows that span public cloud, private cloud, and hybrid cloud models. In parallel, managed services and professional services are evolving from advisory roles to become extension points for continuous operations, ensuring that organizations can maintain reliability and compliance even as topology changes rapidly.

Third, security and segmentation requirements are reshaping provisioning and policy enforcement. Microsegmentation, tenant isolation, and distributed firewalling now operate in concert with virtual extensible LAN constructs, demanding fine-grained control from controllers and orchestration layers. Finally, operational economics are influencing adoption patterns: organizations are prioritizing solutions that reduce complexity, provide deterministic performance, and support gradual migration strategies. Together, these trends indicate a landscape where agility, programmability, and security are the primary currencies of network modernization.

Assessing the accumulated effects of recent tariff shifts on procurement, supplier strategies, and the increasing reliance on software and services to maintain deployment continuity

Recent tariff policies in the United States have introduced nuanced friction into global supply chains, influencing procurement strategies, vendor selection, and total cost considerations for network infrastructure projects. These changes have prompted procurement teams to reassess hardware sourcing, particularly for routers and switches that carry higher freight and compliance scrutiny. In response, many organizations are re-evaluating localization strategies, opting for diversified supplier mixes, increased stock buffering, or extended maintenance arrangements to mitigate the impact of tariff-related disruptions.

Concurrently, service delivery models are adapting as organizations place greater emphasis on managed services and professional services to navigate procurement complexity and compliance requirements. Service providers and integrators are positioned to absorb some of the logistical challenges through consolidated buying, extended warranties, and support-and-maintenance constructs that span geographic regions. For organizations prioritizing rapid deployment, controller and orchestration software offers a pathway to abstract certain hardware constraints, enabling more flexible operational choices irrespective of specific chassis origin.

Furthermore, changes in tariff regimes have encouraged cloud-first deployment strategies in some cases, as enterprises seek to minimize cross-border hardware shipments and emphasize software-led value. This pivot increases reliance on hybrid cloud and public cloud offerings where underlying infrastructure procurement is handled by cloud operators. Ultimately, tariff dynamics are reinforcing the need for resilient supply strategies, closer vendor collaboration, and a greater role for software and services in preserving project timelines and ensuring continuity of network modernization efforts.

In-depth segmentation insights revealing how component, deployment, application, industry, and organizational distinctions drive procurement choices and solution design

A rigorous segmentation approach reveals distinct decision drivers across components, deployment models, applications, industry verticals, and organization sizes, each influencing technology choices and go-to-market strategies. When considering components, hardware choices such as routers and switches must be balanced against investments in controller and orchestration software and supported by managed services, professional services, and robust support and maintenance arrangements. This balance determines how organizations prioritize performance, manageability, and lifecycle costs, with orchestration layers providing a unifying control plane that can mitigate hardware heterogeneity.

Deployment mode choices between cloud and on-premises environments, including hybrid cloud and public cloud variants, shape considerations for latency, compliance, and operational control. Applications vary from data center networks that span hybrid cloud, private cloud, and public cloud topologies to enterprise campus environments and service provider networks that include telecom networks and web services. Each application imposes unique requirements on traffic engineering, fault isolation, and policy enforcement, which in turn influences controller and orchestration feature sets.

Industry verticals such as banking, insurance, securities, government and defense, hospitals, medical devices, pharma, IT and telecom, and retail bring domain-specific compliance, resilience, and performance needs that affect solution selection and deployment timelines. Organization size differentiates the scale and governance models: global and midmarket enterprises have distinct procurement cycles and integration complexity compared with medium, micro, and small enterprises. Recognizing these segmentation nuances enables vendors and integrators to tailor offerings, prioritize feature roadmaps, and craft service packages that align with buyer economics and operational maturity.

Comparative regional analysis explaining adoption drivers, regulatory influences, and ecosystem dynamics across the Americas, Europe Middle East & Africa, and Asia-Pacific

Regional dynamics play a defining role in adoption patterns, regulatory constraints, and supplier ecosystems, with notable variations across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, enterprises and service providers emphasize rapid adoption of programmable fabrics and high-performance hardware to support cloud-native services and latency-sensitive applications. The regional ecosystem favors strong partnerships between system integrators and vendors, and there is robust demand for managed and professional services to accelerate deployments across distributed sites.

Across Europe, Middle East & Africa, regulatory considerations and sovereignty concerns influence deployment choices, prompting organizations to carefully evaluate where workloads and control planes reside. This trend heightens interest in private cloud and on-premises architectures for certain regulated applications, while hybrid cloud models remain attractive for workloads that require elasticity. Vendors operating in this region often emphasize compliance, security certifications, and localized support capabilities to meet public sector and enterprise requirements.

In the Asia-Pacific region, rapid digital transformation initiatives, large-scale service provider investments, and diverse maturity levels drive heterogeneous adoption. Some markets prioritize cloud-native services and public cloud integration, whereas others focus on modernizing legacy campus and data center topologies with resilient hardware and centralized orchestration. Across all regions, supply chain considerations and local service ecosystems influence procurement timelines, making regional strategies and partner selection vital to successful rollouts.

A compelling overview of competitive dynamics showing how integrated software, high-performance hardware, and expanded service portfolios define vendor differentiation and partnership value

Key company dynamics reflect a competitive landscape where differentiation arises from integrated software offerings, hardware performance, and comprehensive service portfolios. Leading infrastructure vendors highlight controller and orchestration capabilities to provide centralized policy management, automated provisioning, and advanced telemetry. Their hardware product lines continue to emphasize high-throughput switching and routing capabilities, while exposing programmable interfaces that facilitate integration with multi-vendor ecosystems.

Service providers and system integrators are expanding managed services and professional services to support customers' lifecycle needs, from initial design through ongoing support and maintenance. These organizations often serve as a bridge between complex procurement realities and technical deployment requirements, offering bundled solutions that combine hardware, software, and lifecycle services to reduce buyer friction. In addition, smaller specialist vendors and software-native entrants are advancing niche capabilities focused on automation, security integration, and orchestration enhancements that appeal to targeted enterprise and service provider use cases.

Strategic partnerships and alliances continue to shape go-to-market motion, with companies collaborating on reference architectures, joint support models, and interoperability testing. This cooperative dynamic enables customers to adopt mixed-vendor approaches with greater confidence and helps vendors deliver validated solutions that address vertical-specific compliance and performance needs. Ultimately, competitive advantage stems from the ability to offer holistic solutions that balance innovation with predictable operational outcomes.

Actionable prioritized recommendations for technology leaders to accelerate secure, interoperable, and service-driven virtualization of network fabrics with measurable operational gains

Industry leaders should pursue a set of pragmatic, prioritized actions to accelerate adoption while minimizing operational risk. First, prioritize investments in controller and orchestration capabilities that provide consistent policy enforcement and automation across both on-premises and cloud environments. Doing so will reduce manual configuration errors, improve time to deploy, and create a foundation for continuous policy validation as applications evolve. Second, develop procurement strategies that balance high-performance hardware investments with software-led functionality to maximize flexibility and avoid vendor lock-in.

Third, strengthen partnerships with managed service providers and system integrators to offload aspects of lifecycle management, especially in regions where supply chain or localization concerns add complexity. These relationships can expedite deployments and deliver predictable support and maintenance outcomes. Fourth, embed security and segmentation controls directly into design blueprints; integrate microsegmentation principles and distributed firewalling at the orchestration layer to ensure tenancy isolation and simplify compliance reporting.

Fifth, adopt phased migration approaches that start with pilot deployments in less-critical application domains or single-site implementations, then scale with validated operational playbooks. Finally, invest in skills transfer and documentation to build institutional knowledge, ensuring that automation scripts, telemetry dashboards, and incident response procedures are codified for resilience and continuous improvement. Collectively, these steps enable faster, safer, and more repeatable modernization efforts.

Transparent research methodology combining expert interviews, technical artifact analysis, and cross-validation to produce verifiable and operationally grounded insights on network fabric deployments

The research methodology blends qualitative expert interviews, technology landscape analysis, and rigorous documentation review to produce balanced, verifiable insights. Primary inputs included discussions with technical architects, network operations leaders, procurement specialists, and managed service providers who shared implementation experiences, operational challenges, and vendor selection criteria. These primary conversations were complemented by technical white papers, standards documentation, and vendor product specifications to triangulate claims about protocol behavior, controller capabilities, and orchestration interfaces.

Secondary analysis incorporated publicly available technical materials, deployment case studies, and peer-reviewed literature where applicable to validate design patterns and operational best practices. The methodology emphasized cross-validation between practitioner testimony and technical artifacts to reduce bias and enhance reproducibility. In addition, comparative feature matrices and interoperability testing reports were reviewed to understand integration constraints and performance trade-offs among hardware and software combinations.

Throughout the research process, attention was paid to regional regulatory considerations, supply chain dynamics, and service provider strategies to ensure that findings reflect operational realities across diverse environments. Where ambiguities persisted, the research team sought clarification from multiple independent sources to increase confidence in conclusions. This approach ensures that recommendations and insights are grounded in practical experience and documented technical evidence.

Conclusive synthesis emphasizing software-defined control, interoperability, and operationalization as the durable foundations for successful virtual extensible LAN initiatives

In conclusion, virtual extensible LAN approaches represent a mature and practical pathway for organizations seeking to reconcile the demands of distributed workloads, security segmentation, and operational agility. The consolidation of control through controller and orchestration platforms, coupled with modern, programmable hardware, enables consistent policy, improved telemetry, and a reduced operational burden when executed with appropriate governance. Importantly, the interplay between cloud and on-premises deployment choices underscores the need for flexible architectures that can adapt to compliance and performance constraints without sacrificing manageability.

Effective adoption depends on recognizing segmentation nuances across components, deployment modes, applications, industry verticals, and organization sizes, and then aligning procurement and operational models accordingly. Regional dynamics and tariff-related procurement shifts further emphasize the value of resilient supply strategies and strong partnerships with service providers and integrators. Finally, leaders who invest in automation, documented playbooks, and skills transfer will realize the most sustainable benefits, enabling repeated, low-friction rollouts as business needs evolve.

Taken together, these conclusions point to a pragmatic path forward: prioritize software-defined control, design for interoperability, and institutionalize operational practices that transform virtual extensible LAN capabilities from project-level experiments into enduring infrastructure assets.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Automation of VxLAN provisioning using intent-based networking controllers to streamline deployment
  • 5.2. Integration of VxLAN overlays with Kubernetes for scalable and secure containerized application transport
  • 5.3. Implementation of hardware offload for VxLAN encapsulation to enhance throughput in hyperscale data centers
  • 5.4. Adoption of VxLAN segment routing to reduce operational complexity and improve cross-domain connectivity
  • 5.5. Leveraging VxLAN overlays for end-to-end 5G network slicing in multi-vendor service provider environments
  • 5.6. Deployment of micro-segmentation with VxLAN to enforce east-west traffic security in hybrid cloud infrastructures

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Virtual Extensible LAN Market, by Component

  • 8.1. Hardware
    • 8.1.1. Routers
    • 8.1.2. Switches
  • 8.2. Services
    • 8.2.1. Managed Services
    • 8.2.2. Professional Services
    • 8.2.3. Support & Maintenance
  • 8.3. Software
    • 8.3.1. Controller
    • 8.3.2. Orchestration

9. Virtual Extensible LAN Market, by Deployment Mode

  • 9.1. Cloud
    • 9.1.1. Hybrid Cloud
    • 9.1.2. Public Cloud
  • 9.2. On-Premises

10. Virtual Extensible LAN Market, by Application

  • 10.1. Data Center Networks
    • 10.1.1. Hybrid Cloud
    • 10.1.2. Private Cloud
    • 10.1.3. Public Cloud
  • 10.2. Enterprise Campus
  • 10.3. Service Provider Networks
    • 10.3.1. Telecom Networks
    • 10.3.2. Web Services

11. Virtual Extensible LAN Market, by Industry Vertical

  • 11.1. BFSI
    • 11.1.1. Banking
    • 11.1.2. Insurance
    • 11.1.3. Securities
  • 11.2. Government & Defense
  • 11.3. Healthcare
    • 11.3.1. Hospitals
    • 11.3.2. Medical Devices
    • 11.3.3. Pharma
  • 11.4. IT & Telecom
  • 11.5. Retail

12. Virtual Extensible LAN Market, by Organization Size

  • 12.1. Large Enterprises
    • 12.1.1. Global Enterprises
    • 12.1.2. Midmarket Enterprises
  • 12.2. SMEs
    • 12.2.1. Medium Enterprises
    • 12.2.2. Micro Enterprises
    • 12.2.3. Small Enterprises

13. Virtual Extensible LAN Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Virtual Extensible LAN Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Virtual Extensible LAN Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Cisco Systems, Inc.
    • 16.3.2. VMware, Inc.
    • 16.3.3. Juniper Networks, Inc.
    • 16.3.4. Arista Networks, Inc.
    • 16.3.5. Broadcom Inc.
    • 16.3.6. Hewlett Packard Enterprise Company
    • 16.3.7. Dell Technologies Inc.
    • 16.3.8. Huawei Technologies Co., Ltd.
    • 16.3.9. Nokia Corporation
    • 16.3.10. Extreme Networks, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제