시장보고서
상품코드
1868899

바이오 부타디엔 시장 : 용도별, 원료별, 최종 용도별, 기술별, 순도 등급별 - 세계 예측(2025-2032년)

Bio-Butadiene Market by Application, Source, End Use, Technology, Purity Grade - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 192 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

바이오 부타디엔 시장은 2032년까지 CAGR 6.87%로 1억 2,891만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 7,576만 달러
추정 연도 2025년 8,103만 달러
예측 연도 2032 1억 2,891만 달러
CAGR(%) 6.87%

원료 혁신,촉매 기술 발전,최종 용도 수요로 전략적 우선순위 재구성,진화하는 바이오 부타디엔 정세에 대한 권위 있는 견해

바이오 부타디엔은 지속가능한 원료, 혁신적인 촉매 기술, 그리고 변화하는 무역 정책이 결합하여 공급망과 가치 제안을 재정의하는 중요한 전환점을 맞이하고 있습니다. 바이오 기반 부타디엔은 주로 바이오부탄올, 바이오에탄올 등의 경로로 생산되며, 기존 석유화학제품이 주류를 이루던 제품의 탈탄소를 실현하는 현실적인 대안인 동시에 원유 가격 변동에 대한 내성을 제공합니다. 이 글은 기술 성숙도, 원료의 가용성, 정책 동향이 단기적인 전략적 의사결정을 형성하는 주요 요소로 작용하는 빠르게 진화하는 생태계에서 독자들이 어떤 위치에 있는지를 알려주는 서론입니다.

촉매 경로의 발전, 원료 다양화 전략, 구매자의 지속가능성 요구가 결합하여 바이오 부타디엔의 상용화 준비 가속화 상황

바이오 부타디엔 분야는 기술의 성숙, 정책의 재조정, 구매자의 기대치 변화로 인해 변혁적 전환기를 맞이하고 있습니다. 촉매 탈수 기술 및 촉매 분해 기술은 실험실 규모의 실증 단계에서 실증 시험 및 상업적 파일럿 단계로 발전하여 수율과 선택성을 향상시키는 동시에 에너지 강도를 낮추고 있습니다. 이러한 개선은 생산자들이 바이오에탄올 및 바이오부탄올 원료를 기존 석유화학 인프라에 통합할 수 있는 길을 열어주며, 자본 지출 장벽을 낮추고 바이오 기반 부타디엔의 시장 출시 시간을 단축할 수 있게 합니다.

2025년 미국 관세 조정이 조달 전략 및 상업적 계약 설계에 미치는 즉각적이고 지속적인 공급망에 미치는 영향

2025년에 시행된 미국의 관세 변경은 세계 바이오 부타디엔 무역의 역학, 공급업체 계산, 다운스트림 조달 전략에 중대한 영향을 미쳤습니다. 관세 조정은 수입 중간체 및 원료의 비용 격차를 변화시켰고, 이는 가치사슬 전체에 파급효과를 가져와 지역적 공급 옵션에 대한 관심을 높였습니다. 그 결과, 조달 부문은 관세로 인한 비용 변동에 대한 노출을 줄이기 위해 공급업체 포트폴리오, 물류 체인, 재고 정책을 재검토했습니다.

용도, 원료 공급원, 최종 용도, 기술, 순도 등급을 아우르는 다차원적 세분화 프레임워크가 타겟팅된 생산 및 상업 전략에 기여하는 방법

세분화는 기술 및 정책적 변화를 실행 가능한 제품 및 상업 전략으로 전환할 수 있는 실용적인 관점을 제공합니다. 용도를 고려할 때, 업계는 수지와 합성 고무로 나뉩니다. 수지 분야에서 아크릴로니트릴-부타디엔-스티렌(ABS)과 스티렌-아크릴로니트릴(SAN)은 서로 다른 성능 및 사양 요구 사항을 가지고 있어 원료 및 공정 선택에 영향을 미칩니다. 한편, 부타디엔 고무, 니트릴 부타디엔 고무, 스티렌 부타디엔 고무와 같은 합성 고무 하위 부문은 각각 다른 순도 프로필과 일관성을 요구하고 생산 경로를 결정합니다. 원료에 대한 검토는 전략을 더욱 정교하게 만듭니다. 바이오부탄올과 바이오에탄올은 전환 효율, 원료 공급망, 수명주기 배출 프로파일이 다르며, 이는 공정 선택과 구매자의 수용성에 영향을 미칩니다.

원료의 가용성, 규제 혜택, 산업 생태계가 바이오 부타디엔의 조달 및 생산능력 결정에 미치는 영향을 지역별로 상세히 분석합니다.

바이오 부타디엔 전환에 있어 지역적 역학은 결정적인 요소이며, 원료의 가용성, 규제 프레임워크, 산업 생태계는 지역마다 크게 다릅니다. 미국 대륙에는 이미 확립된 석유화학 허브와 바이오부탄올과 바이오에탄올의 원료를 공급할 수 있는 성장 중인 바이오 정제 능력이 공존하고 있습니다. 북미의 정책적 인센티브와 주요 자동차 및 소비재 제조업체와의 근접성은 바이오 부타디엔 생산의 국내 통합에 있어 북미 지역을 매력적으로 만들고 있습니다. 공급망 탄력성에 대한 고려와 2025년 관세 정세는 반구 전체에서 니어쇼어링에 대한 관심을 더욱 가속화시키고 있습니다.

바이오 부타디엔 분야 경쟁우위 형성 : 기술특화에서 수직계열화, 공동융자까지 다양한 기업 전략

바이오 부타디엔 분야의 기업 전략은 기술 중심의 전문화에서 원료 조달부터 폴리머 제조까지 통합 가치사슬 구축에 이르기까지 다양한 접근방식을 보여주고 있습니다. 일부 기업들은 기술적 차별화와 라이선싱 기회를 확보하기 위해 독자적인 촉매 솔루션과 파일럿 규모의 실증을 우선시하고 있습니다. 반면, 수직적 통합에 집중하는 기업도 존재합니다. 바이오부탄올과 바이오에탄올의 원료 공급 계약을 다운스트림의 전환 및 중합 능력과 연계하여 가치사슬의 더 많은 부분을 장악하고 원료의 지속적인 공급을 보장하고 있습니다. 협업은 반복되는 주제입니다. 성공적인 상업화를 위해서는 화학 제조업체, 기술 라이센서, 물류 제공업체, 전략적 오프테이커 간의 파트너십이 필요한 경우가 많습니다.

바이오 부타디엔 전환에서 우위를 확보하기 위한 기술 검증, 유연한 조달, 고객 공동개발을 통합한 실천적 행동 계획

업계 리더들은 기술 선택, 공급망 탄력성, 고객 참여의 균형을 맞추는 실용적인 접근 방식을 채택하여 전환기의 역학을 경쟁 우위로 전환해야 합니다. 첫째, 안정적인 수율과 허용 가능한 운전 비용을 보여주는 촉매 기술에 대해 파일럿에서 상업화까지의 경로를 우선적으로 추진합니다. 바이오부탄올과 바이오에탄올 두 가지 원료를 동시에 시험하여 기술 리스크를 줄이고 미래의 선택권을 극대화합니다. 다음으로, 생산량이 보장된 품질 사양과 결합된 유연한 계약을 통해 원료 조달 파트너십을 확보하여 ABS 수지 및 SAN 수지부터 부타디엔 유래 고무에 이르기까지 다양한 용도의 순도 및 성능 요구 사항을 충족할 수 있도록 해야 합니다.

기술 검증, 정책 분석, 공급망 삼각측량을 결합한 엄격한 조사를 통해 실행 가능한 전략적 인사이트를 창출합니다.

이 조사의 통합은 기술 동향, 정책 동향, 상업 전략에 대한 정성적 분석과 1차 조사와 2차 조사의 체계적 검토를 결합하고 있습니다. 조사 방법은 삼각측량을 우선시하고, 기술 실증, 규제 발표, 기업 공시, 업계 관계자와의 대화를 통해 얻은 지식을 상호 검증함으로써 편견을 줄이고 새로운 트렌드를 포착했습니다. 촉매 분해 및 촉매 탈수에 대한 기술적 평가는 파일럿 연구 및 공개된 프로젝트 진행 보고서에서 보고된 운영 성과 지표에 대해 평가되었으며, 확장성 및 통합 가능성에 중점을 두었습니다.

바이오 부타디엔의 상업적 도입을 가능하게 하는 실용적인 수단(기술 검증, 유연한 조달, 지역적 배치 등)을 식별하는 전략적 통합

바이오 부타디엔은 개념적 지속가능성 논의에서 기술 발전, 원료 선택, 정책적 프레임워크에 의해 형성되는 구체적인 상업적 전략으로 전환되고 있습니다. 촉매 공정의 개선, 자동차, 건설 및 소비재 부문의 저탄소 원료 수요 증가, 무역 정책의 변화로 인해 생산자와 구매자 모두에게 압력과 기회가 생겨나고 있습니다. 주요 과제로는 유연한 원료 조달 체계 확보, 확장 가능한 촉매 공정 검증, 수지 및 합성 고무 용도의 차별화된 니즈에 맞는 제품 사양 조정 등이 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 바이오 부타디엔 시장 : 용도별

  • 수지
    • 아크릴로니트릴 부타디엔 스티렌
    • 스티렌·아크릴로니트릴
  • 합성 고무
    • 부타디엔 고무
    • 니트릴 부타디엔 고무
    • 스티렌·부타디엔 고무

제9장 바이오 부타디엔 시장 : 소스별

  • 바이오부탄올
  • 바이오에탄올

제10장 바이오 부타디엔 시장 : 최종 용도별

  • 자동차
  • 건설
  • 소비재

제11장 바이오 부타디엔 시장 : 기술별

  • 촉매 분해
  • 촉매 탈수

제12장 바이오 부타디엔 시장 : 순도 등급별

  • 화학 등급
  • 폴리머 등급
  • 초고순도

제13장 바이오 부타디엔 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 바이오 부타디엔 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 바이오 부타디엔 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Braskem S.A.
    • Genomatica, Inc.
    • Butamax Advanced Biofuels LLC
    • Versalis S.p.A.
    • Global Bioenergies S.A.
    • Gevo, Inc.
    • Anellotech, Inc.
    • LyondellBasell Industries N.V.
    • BASF SE
    • Amyris, Inc.
KSM 25.12.01

The Bio-Butadiene Market is projected to grow by USD 128.91 million at a CAGR of 6.87% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 75.76 million
Estimated Year [2025] USD 81.03 million
Forecast Year [2032] USD 128.91 million
CAGR (%) 6.87%

An authoritative orientation to the evolving bio-butadiene landscape where feedstock innovation, catalytic advances, and end-use demands reshape strategic priorities

The bio-butadiene landscape is at a pivotal moment as sustainable feedstocks, novel catalytic technologies, and shifting trade policies converge to redefine supply chains and value propositions. Bio-based butadiene, derived primarily from routes such as biobutanol and bioethanol, presents viable pathways to decarbonize traditionally petrochemical-dominated products while offering resilience against crude oil price volatility. This introduction situates the reader within a rapidly evolving ecosystem where technological maturity, feedstock availability, and policy signals are the primary levers shaping near-term strategic decisions.

Stakeholders from polymer producers to tiered suppliers and end-use manufacturers are reassessing procurement strategies in light of evolving feedstock mixes and production configurations. Advances in catalytic cracking and catalytic dehydration have narrowed the performance gaps between bio-derived and fossil-derived streams, enabling broader adoption across applications such as resins and synthetic rubber. Meanwhile, demand-side pressures from automotive, construction, and consumer goods sectors are raising thresholds for sustainability credentials and supply transparency, prompting a clearer linkage between feedstock sourcing choices and downstream product positioning.

Moving forward, stakeholders must balance commercial feasibility with regulatory expectations and sustainability targets. Early movers that align technology selection, feedstock partnerships, and end-use engagement will be positioned to capture premium opportunities and mitigate transition risks. This introduction frames the executive summary by outlining the essential dynamics that define strategy formation in the bio-butadiene space and by setting expectations for how the subsequent analysis addresses technological, trade, and market segmentation implications.

How advances in catalytic pathways, feedstock diversification strategies, and buyer sustainability demands are collectively accelerating commercial readiness in bio-butadiene

The bio-butadiene sector is experiencing transformative shifts driven by technological maturation, policy realignments, and changing buyer expectations. Catalytic dehydration and catalytic cracking technologies have progressed from lab-scale proofs to demonstration and commercial pilots, improving yields and selectivity while lowering energy intensity. These improvements are unlocking pathways for producers to integrate bioethanol and biobutanol feedstocks into existing petrochemical infrastructures, thereby reducing capital expenditure barriers and shortening time-to-market for bio-based butadiene.

Regulatory and corporate sustainability commitments are exerting a compounding effect. Procurement teams in automotive, construction, and consumer goods sectors increasingly prioritize low-carbon inputs, and this demand is catalyzing long-term offtake discussions that support capital commitments for bio-butadiene capacity. Concurrently, public policy instruments-ranging from low-carbon fuel standards to green procurement criteria-are nudging investments toward bio-based intermediates, creating a feedback loop where demand certainty accelerates technology deployment and vice versa.

On the supply side, feedstock diversification is becoming a strategic imperative. Producers are evaluating biobutanol and bioethanol sourcing strategies that balance cost, lifecycle emissions, and feedstock availability. Partnerships across the value chain, including co-investment models with feedstock suppliers and offtakers, are emerging as effective mechanisms to de-risk project development. Collectively, these shifts signal a transition from experimentation to scale-readiness, requiring companies to reassess their operational footprints, R&D priorities, and commercial engagement models to secure advantage in a market that prizes both sustainability credentials and reliable supply.

Immediate and sustained supply chain implications of the 2025 United States tariff adjustments that reshaped sourcing strategies and commercial contract design

The United States tariff changes enacted in 2025 introduced material implications for global bio-butadiene trade dynamics, supplier calculus, and downstream sourcing strategies. Tariff adjustments altered cost differentials for imported intermediates and feedstocks, which has had a ripple effect across value chains and encouraged greater attention to regional supply options. As a result, procurement teams have revisited supplier portfolios, logistics chains, and inventory policies to mitigate exposure to tariff-driven cost variability.

Importantly, the tariffs intensified interest in domesticizing segments of the value chain. Companies weighing new project investments have increasingly factored in the strategic benefits of onshore production, not only to circumvent tariff impacts but also to shorten lead times and enhance traceability. This shift has given rise to renewed discussions about retrofitting existing petrochemical assets to accept bio-based feedstocks, leveraging established downstream infrastructure while limiting incremental capital outlay.

Additionally, the tariffs accelerated contractual innovation. Long-term purchase agreements, indexed pricing mechanisms, and shared-risk contracts between feedstock suppliers and processors have become more prevalent as stakeholders seek to stabilize input costs. In parallel, some buyers have explored hedging approaches and alternative sourcing from tariff-favored jurisdictions. Collectively, the 2025 tariff landscape has reinforced the strategic value of supply-chain agility, contractual sophistication, and near-term capital allocation that favors flexible, feedstock-agnostic production configurations.

How a multidimensional segmentation framework across application, source, end-use, technology, and purity grade informs targeted production and commercial strategies

Segmentation provides a practical lens for translating technological and policy changes into actionable product and commercial strategies. When considering applications, the industry bifurcates into resins and synthetic rubber; within resins, acrylonitrile butadiene styrene and styrene acrylonitrile present differing performance and specification requirements that influence feedstock and process choices, while synthetic rubber subsegments such as butadiene rubber, nitrile butadiene rubber, and styrene butadiene rubber each demand distinct purity profiles and consistency that inform production pathways. Source considerations further refine strategy: biobutanol and bioethanol exhibit different conversion efficiencies, feedstock supply chains, and lifecycle emissions profiles, which affect process selection and buyer acceptance.

End-use segmentation introduces varied commercial levers. Automotive manufacturers prioritize fuel economy, durability, and increasingly, embodied carbon metrics, prompting closer collaboration with polymer suppliers. Construction applications emphasize long-term performance and regulatory compliance, favoring supply stability and material certifications, whereas consumer goods brands are most sensitive to product safety, recyclability, and sustainability narratives. Technology segmentation underscores the tradeoffs between catalytic cracking and catalytic dehydration; catalytic cracking can integrate into broader refinery and petrochemical platforms, while catalytic dehydration offers targeted conversion efficiency for specific bioalcohol feedstocks. Purity grade segmentation-chemical grade, polymer grade, and ultra high purity-further dictates downstream processing requirements, certification pathways, and value capture opportunities.

Taken together, these segmentation axes create a matrix of commercial choices. Firms that align technology selection with end-use specifications and source strategies can optimize capital deployment and reduce integration risk. Moreover, tailored product portfolios that address the differentiated needs across grades and applications enable producers to command quality premiums and secure long-term offtake agreements with buyers seeking either cost competitiveness or sustainability differentiation.

A geographically nuanced analysis of how feedstock availability, regulatory incentives, and industrial ecosystems are shaping bio-butadiene sourcing and capacity decisions

Regional dynamics are a defining element of the bio-butadiene transition, as feedstock availability, regulatory frameworks, and industrial ecosystems vary markedly across geographies. In the Americas, established petrochemical hubs coexist with growing bio-refining capacities that can supply biobutanol and bioethanol feedstocks; North American policy incentives and proximity to major automotive and consumer-goods manufacturers make the region attractive for onshore integration of bio-butadiene production. Supply-chain resilience considerations and the 2025 tariff landscape have further accelerated interest in nearshoring across the hemisphere.

The Europe, Middle East & Africa region presents a heterogeneous picture where advanced regulatory regimes and strong sustainability commitments in parts of Europe encourage ambitious adoption of low-carbon intermediates, while other subregions prioritize feedstock security and industrial development. Policy instruments such as green procurement and circularity mandates are shaping demand-side preferences, and established chemical clusters in Europe facilitate collaborative innovation between technology providers and polymer manufacturers. In contrast, emerging markets within the region could offer competitive feedstock supply but may require targeted investment in logistics and quality assurance to integrate seamlessly into global value chains.

Asia-Pacific remains critical due to its large downstream manufacturing base, particularly in automotive and consumer goods. The region combines significant demand pull with diverse feedstock availability and an accelerating pace of technological adoption. Strategic partnerships between local producers and global technology suppliers are common, enabling the scaling of catalytic dehydration and catalytic cracking solutions. Across all regions, cross-border trade policies, transportation networks, and carbon-regulatory frameworks will continue to influence where capacity is sited and how supply agreements are structured, underscoring the need for geographically nuanced commercial strategies.

How diverse corporate strategies-from technology specialization to vertical integration and collaborative financing-are shaping competitive advantage in bio-butadiene

Company strategies within the bio-butadiene sector demonstrate a range of approaches from technology-led specialization to integrated feedstock-to-polymer value chains. Some players prioritize proprietary catalytic solutions and pilot-scale validation to secure technological differentiation and licensing opportunities. Others focus on vertical integration, aligning feedstock supply contracts for biobutanol or bioethanol with downstream conversion and polymerization capabilities to capture more of the value chain and ensure feedstock continuity. Collaboration is a recurring theme: successful commercialization often involves partnerships between chemical producers, technology licensors, logistics providers, and strategic offtakers.

Commercially focused firms are investing in flexible process designs capable of handling multiple feedstocks, which enhances resilience against feedstock price swings and supply disruptions. Meanwhile, companies that emphasize high-purity product streams target applications where polymer-grade and ultra high purity inputs command quality-based premiums. Across the competitive landscape, risk management practices-such as staged capital deployment, milestone-based financing, and offtake-backed project structures-have emerged as effective mechanisms to align incentives between investors and industrial partners.

Mergers, joint ventures, and collaborative R&D consortia are expected to continue as market participants seek scale and technical validation. For incumbent petrochemical companies, retrofitting existing assets and leveraging established logistics and customer relationships are pragmatic routes to entry. New entrants, including specialty chemical firms and technology startups, tend to compete on agility and innovation, aiming to secure niche positions before broad standardization occurs. Ultimately, companies that combine technical competence with pragmatic commercial agreements and strong customer engagement will be best placed to navigate the complex transition to bio-based butadiene supply chains.

A practical action plan for leaders to integrate technology validation, flexible sourcing, and customer co-development to secure advantage in bio-butadiene transitions

Industry leaders should adopt a pragmatic approach that balances technology selection, supply-chain resilience, and customer engagement to convert transitional dynamics into competitive advantage. First, prioritize pilot-to-commercial pathways for catalytic technologies that demonstrate consistent yields and acceptable operating costs; parallel testing with both biobutanol and bioethanol feedstocks will reduce technology risk and maximize future optionality. Second, secure feedstock partnerships through flexible contracts that combine volume guarantees with quality specifications, enabling producers to meet the diverse purity and performance needs of applications ranging from ABS and SAN resins to butadiene-derived rubbers.

Third, re-evaluate procurement and contractual structures in light of tariff-induced trade shifts by incorporating indexed pricing, shared-risk provisions, and contingency clauses that mitigate sudden policy changes. Fourth, engage end-use customers early to co-develop product specifications and sustainability claims, which accelerates acceptance and supports premium positioning for higher-purity grades. Fifth, pursue modular and retrofit-capable plant designs that reduce upfront capital exposure and allow for staged scaling aligned with confirmed offtake. By doing so, companies can move quickly while maintaining financial discipline.

Finally, invest in transparency and lifecycle analysis capabilities to substantiate sustainability claims and to support regulatory compliance. This includes establishing robust traceability systems, third-party verification where appropriate, and clear communication strategies that translate technical benefits into pragmatic commercial value for buyers. Executing on these recommendations will enhance resilience and create pathways to capture the value associated with the shift toward bio-based intermediates.

A rigorous, triangulated research approach combining technology validation, policy analysis, and supply-chain triangulation to generate actionable strategic intelligence

This research synthesis combines qualitative analysis of technology trajectories, policy developments, and commercial strategies with a structured review of primary and secondary industry sources. The methodology prioritized triangulation: insights from technology demonstrations, regulatory announcements, corporate disclosures, and conversations with industry participants were cross-validated to reduce bias and capture emergent trends. Technical assessments of catalytic cracking and catalytic dehydration were evaluated against operational performance indicators reported in pilot studies and publicly disclosed project updates, with attention to scalability and integration potential.

Supply-chain and trade-impact analysis incorporated recent tariff policy changes and their observed market responses, including shifts in procurement behavior and contract structures. Segmentation analysis drew on documented application requirements for resins and synthetic rubber, as well as purity specifications prevalent in polymer and specialty chemical manufacturing. Regional insights were developed by mapping industrial capabilities, policy environments, and downstream demand profiles across the Americas, Europe, Middle East & Africa, and Asia-Pacific, with a focus on how these variables interact to influence siting and investment decisions.

Throughout, the approach emphasized actionable intelligence: recommendations are grounded in operational realities and the likely paths for technology adoption. Limitations were acknowledged where public data remain nascent-particularly around long-term feedstock availability and the commercial performance of emerging catalytic systems-and areas requiring further primary investigation were identified to guide follow-up research or bespoke engagements.

A strategic synthesis that identifies the practical levers-technology validation, flexible sourcing, and regional deployment-that enable commercial adoption of bio-butadiene

Bio-butadiene is transitioning from conceptual sustainability narratives to tangible commercial strategies shaped by technological progress, feedstock options, and policy frameworks. The confluence of improved catalytic processes, rising demand for low-carbon inputs across automotive, construction, and consumer-goods sectors, and trade policy shifts has created both pressure and opportunity for producers and buyers. Key imperatives include securing flexible feedstock arrangements, validating scalable catalytic pathways, and aligning product specifications with the differentiated needs of resins and synthetic rubber applications.

Regional considerations are central: proximity to feedstock, regulatory incentives, and the presence of downstream manufacturing clusters will influence where capacity is developed and how supply agreements are negotiated. Firms that adopt modular deployment strategies, pursue collaborative financing, and engage end-users early in specification development are better positioned to manage transition risks and capture new value pools. Ultimately, the pathway to broader adoption hinges on demonstrable performance parity with fossil-derived inputs, robust transparency around lifecycle impacts, and commercial structures that align incentives across the value chain.

The conclusion synthesizes these insights into a clear strategic takeaway: the bio-butadiene opportunity is actionable today for organizations that combine technological rigor with pragmatic commercial agreements and regional sensitivity. Those who integrate these elements into their investment and sourcing decisions will not only mitigate transitional risk but also create differentiation in an increasingly sustainability-driven procurement landscape.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Advancements in enzymatic fermentation processes for high-yield bio-butadiene production
  • 5.2. Scaling up cell-based bio-butadiene synthesis with continuous bioreactor optimization strategies
  • 5.3. Integration of lignocellulosic biomass valorization pathways in bio-butadiene manufacturing
  • 5.4. Emerging catalytic dehydration technologies for turning bio-derived butanediol into butadiene
  • 5.5. Life cycle assessment of bio-butadiene supply chains to inform sustainable investment decisions
  • 5.6. Strategic partnerships between biochemical startups and petrochemical incumbents to commercialize bio-butadiene

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Bio-Butadiene Market, by Application

  • 8.1. Resins
    • 8.1.1. Acrylonitrile Butadiene Styrene
    • 8.1.2. Styrene Acrylonitrile
  • 8.2. Synthetic Rubber
    • 8.2.1. Butadiene Rubber
    • 8.2.2. Nitrile Butadiene Rubber
    • 8.2.3. Styrene Butadiene Rubber

9. Bio-Butadiene Market, by Source

  • 9.1. Biobutanol
  • 9.2. Bioethanol

10. Bio-Butadiene Market, by End Use

  • 10.1. Automotive
  • 10.2. Construction
  • 10.3. Consumer Goods

11. Bio-Butadiene Market, by Technology

  • 11.1. Catalytic Cracking
  • 11.2. Catalytic Dehydration

12. Bio-Butadiene Market, by Purity Grade

  • 12.1. Chemical Grade
  • 12.2. Polymer Grade
  • 12.3. Ultra High Purity

13. Bio-Butadiene Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Bio-Butadiene Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Bio-Butadiene Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Braskem S.A.
    • 16.3.2. Genomatica, Inc.
    • 16.3.3. Butamax Advanced Biofuels LLC
    • 16.3.4. Versalis S.p.A.
    • 16.3.5. Global Bioenergies S.A.
    • 16.3.6. Gevo, Inc.
    • 16.3.7. Anellotech, Inc.
    • 16.3.8. LyondellBasell Industries N.V.
    • 16.3.9. BASF SE
    • 16.3.10. Amyris, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제