시장보고서
상품코드
1868923

핵산 치료제 CDMO 시장 : 치료제 유형별, 서비스 유형별, 치료 용도별, 최종사용자별 - 세계 예측(2025-2032년)

Nucleic Acid Therapeutics CDMO Market by Therapeutics Type, Service Type, Therapeutic Applications, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 182 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

핵산 치료제 위탁개발 제조(CDMO) 시장은 2032년까지 CAGR 11.71%로 261억 4,000만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 107억 7,000만 달러
추정 연도 2025년 120억 달러
예측 연도 2032 261억 4,000만 달러
CAGR(%) 11.71%

가속화되는 과학적, 규제적 요구 속에서 복잡한 핵산 치료제 개발을 가능하게 하는 CDMO의 진화하는 전략적 역할을 구축합니다.

핵산치료제 위탁개발 및 제조(CDMO) 상황은 기술적 수렴이 빠르게 진행되어 개발 기업과 위탁 파트너 모두에게 전략적 중요성이 높아지는 단계에 접어들었습니다. 최근 치료 방식, 제조 플랫폼, 규제 요건의 발전으로 CDMO는 단순한 공급업체에서 프로그램의 타임라인과 임상적 타당성에 실질적인 영향을 미치는 전략적 협력업체로 격상되었습니다. 개발자들이 변형된 올리고뉴클레오티드, 바이러스 벡터, 지질 나노입자 제제 등 점점 더 복잡한 구조물을 추구함에 따라 전문적인 공정 지식, 엄격한 품질 관리, 적응형 제조 능력에 대한 수요가 증가하고 있습니다.

핵산치료제 분야의 연구개발, 제조방식, 규제당국의 기대, 파트너십 모델을 변화시키는 다면적인 파괴적 요인을 파악합니다.

핵산 치료제는 치료 패러다임을 재편하고 있으며, 이러한 변화에 따라 연구개발, 제조, 상업화 각 영역에서 연쇄적인 변화가 일어나고 있습니다. 기술 혁신은 분자 설계, 제조 및 테스트 방법의 패러다임 전환을 촉진하고 있으며, 모듈식 및 연속 제조 접근 방식은 많은 응용 분야에서 전통적인 배치 제조를 대체하고 있습니다. 한편, 디지털 공정 제어와 첨단 분석 기술은 품질 시스템과 공정 이해의 기반을 강화하고 있습니다. 이러한 변화로 인해 위탁개발생산기관(CDMO)에 요구되는 역량 범위가 확대되고 있으며, 전문 설비, 실시간 모니터링 기능, 다학제적 인력에 대한 투자가 요구되고 있습니다.

2025년 관세 조정이 핵산 치료제 공급망 전반의 공급처 선정, 공급업체 적격성 평가, 운영 리스크 관리에 미치는 영향 평가

2025년 미국이 시행한 관세 부과 및 조정은 핵산 치료제 생산의 공급 및 비용 계산식에 새로운 변수를 도입했습니다. 수입 원자재, 특수 시약, 특정 제조 장비에 영향을 미치는 관세 조치로 인해 제조업체와 스폰서 기업은 조달 전략을 재평가하고 대체 공급업체를 신속하게 인증해야 하는 상황에 직면하게 되었습니다. 그 결과, 조달팀은 공급업체의 탄력성과 지리적 다각화에 대한 모니터링을 강화하고, 제조 계획 담당자는 니어쇼어링, 온쇼어링, 오프쇼어링 파트너십 유지에 대한 트레이드오프를 평가하고 있습니다.

모달리티, 서비스 유형, 용도, 최종사용자 구분을 통해 전략적 시사점을 도출하고, 역량 투자 및 파트너십 구조를 타겟팅합니다.

여러 세분화 축을 따라 수요와 역량을 분석하면 세부적인 상황을 파악할 수 있습니다. 치료법 유형 측면에서 DNA 치료제와 RNA 치료제의 차이는 제조 워크플로우, 분석 시험 패러다임, 규제 접점에 중대한 영향을 미칩니다. RNA 방식은 전문적인 제제 기술과 콜드체인 대응이 필요한 반면, DNA 기반 접근법은 업스트림 및 다운스트림 공정의 정제에 있어 고유한 문제가 발생합니다. 서비스 형태 측면에서는 분석시험과 품질 관리, 제조-포장-유통, 공정개발-최적화의 상호 작용이 가치 창출의 위치를 정의합니다. 엔드투엔드 서비스를 통합하는 조직은 타임라인을 단축하고 핸드오버를 줄일 수 있지만, 고도의 기술적 작업과 방법론 개발에서 틈새 전문가들의 존재의 의미는 유지됩니다.

아메리카, EMEA, 아시아태평양의 지역 생태계, 규제 프레임워크, 역량 개발이 CDMO의 전략적 포지셔닝에 미치는 영향 해석

지역별 동향은 CDMO 산업 전반의 전략적 결정에 지속적으로 영향을 미치고 있으며, 각 지역마다 수요와 역량을 형성하는 뚜렷한 요인이 존재합니다. 미국 대륙에서는 탄탄한 생명공학 생태계, 벤처 캐피털 활동, 후기 임상 프로그램의 집중도가 확장 가능한 제조와 엄격한 규제 준수에 대한 수요를 주도하고 있습니다. 이러한 환경은 임상에서 상업화로의 전환 계획에서 스폰서와 제조 파트너 간의 긴밀한 협력을 촉진하고, GMP 시설, 규제 업무 전문성, 공급망 탄력성에 대한 투자를 필요로 합니다.

CDMO가 기술적 깊이, 통합 서비스, 고객 맞춤형 상업적 구조를 통해 차별화를 꾀할 수 있는 경쟁 및 파트너십 모델을 이해해야 합니다.

핵산 치료제 생태계에 서비스를 제공하는 기업 간의 경쟁은 점점 더 전문성, 통합된 서비스 제공, 입증된 규제 대응을 통한 임상 적용 위험 감소 능력으로 정의되고 있습니다. 주요 업체들은 더 빠른 프로세스 개발, 더 높은 제품 품질, 효율적인 스케일업 경로를 가능하게 하는 플랫폼 기술에 투자함으로써 차별화를 꾀하고 있습니다. 생산능력만으로는 더 이상 차별화 요소가 아니며, 강력한 품질 시스템과 고도의 분석 기술, 그리고 성공적인 기술이전 실적이 결합된 조직이 경쟁 우위를 누리고 있습니다.

핵산 치료제 개발의 신뢰도 강화를 위해 경영진이 해결해야 할 실천적 전략 과제 : 파트너십 강화, 공급망 탄력성 향상, 디지털 품질 관리, 인재 육성

업계 리더와 프로그램 스폰서는 핵산 치료제 개발의 진화하는 현실에 맞춰 업무, 파트너십 및 투자 계획을 조정하기 위해 일련의 실용적인 조치를 취해야 합니다. 첫째, 공정 이전을 가속화하고 다운스트림 공정의 예기치 못한 상황을 최소화하기 위해 스폰서와 제조업체 간의 초기 단계 협력을 공식화하는 공동 개발 프레임워크를 우선시해야 합니다. 공동 마일스톤과 의사결정 게이트를 설정하면 기대치가 명확해지고, 스케일업 시 리턴을 줄일 수 있습니다. 다음으로, 무역 정책의 변화와 단일 공급원에 대한 의존 위험을 관리하기 위해 중요 원자재 및 특수 시약의 공급망 가시화 및 이중 조달 전략에 투자해야 합니다. 대체 공급처가 필요한 경우, 공급업체 선정 과정을 조기에 시작하는 것이 타임라인을 단축하는 데 중요합니다.

실용적이고 정당한 연구 결과를 확보하기 위해 전문가 1차 인터뷰, 기술적 검증, 삼각 측량을 통한 2차 정보 소스를 결합한 혼합 연구 방법론을 설명합니다.

기본 조사 방법은 여러 증거 소스를 통합하여 확고한 실무적 지식을 확보합니다. 2차 조사에서는 과학 문헌, 규제 지침 문서, 업계 백서, 기술 표준을 체계적으로 검토하여 기술 및 규제 기반 상황을 확립했습니다. 1차 조사에서는 제조 책임자, 공정 과학자, 규제 전문가, 조달 책임자, 프로그램 관리자를 대상으로 구조화된 인터뷰를 실시하여 운영상의 과제, 공급업체 성과, 파트너십 역학에 대한 직접적인 견해를 수집했습니다. 이러한 정성적 지식은 최근 기술이전 사례 분석, 비교가능성 노력, 프로세스 스케일업 사례 등 기술적 검증 작업을 통해 보완되었습니다.

핵산 의약품의 신약 개발부터 공급까지 성공을 결정짓는 역량, 파트너십, 공급망 탄력성의 전략적 일관성 통합

핵산 의약품의 제조 환경은 과학적 혁신, 진화하는 규제 요건, 변화하는 운영 요구 사항으로 인해 유동적입니다. CDMO 파트너십의 전략적 성격을 인식하고 분석의 우수성, 적응형 제조, 강력한 공급망에 걸친 통합 역량에 투자하는 조직은 과학적 진보를 신뢰할 수 있는 임상 및 상업적 공급으로 전환하는 데 더 유리한 입장에 서게 될 것입니다. 관세로 인한 공급 조정, 지역별 생산능력 재편, 고급 분석 기술의 필요성과 같은 과도기적 과제는 운영상의 어려움을 가져다 주지만, 리스크가 적은 스케일업에 대한 명확하고 검증된 경로를 제공할 수 있는 사업자에게는 기회가 될 수 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 핵산 치료제 CDMO 시장 : 치료제 유형별

  • DNA 치료제
  • RNA 치료제

제9장 핵산 치료제 CDMO 시장 : 서비스 유형별

  • 분석 시험·품질 관리
  • 제조
  • 포장·유통
  • 프로세스 개발·최적화

제10장 핵산 치료제 CDMO 시장 : 치료 용도별

  • 유전성 질환
  • 감염증
  • 신경질환
  • 종양학
  • 희귀질환

제11장 핵산 치료제 CDMO 시장 : 최종사용자별

  • 학술·조사기관
  • 바이오테크놀러지 기업
  • 제약 기업

제12장 핵산 치료제 CDMO 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 핵산 치료제 CDMO 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 핵산 치료제 CDMO 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • AGC Biologics Inc.
    • Agilent Technologies, Inc.
    • Ajinomoto Bio-Pharma Services
    • Almac Group Ltd.
    • Biomay AG
    • BioSpring GmbH
    • Catalent, Inc.
    • Charles River Laboratories International, Inc.
    • CordenPharma International GmbH
    • Creative Biogene
    • Danaher Corporation
    • Eurofins Scientific SE
    • Evonik Industries AG
    • GenScript Biotech Corporation
    • Lonza Group Ltd.
    • Polypeptide Group AG
    • Recipharm AB
    • Rentschler Biopharma SE
    • Samsung Biologics
    • The Scripps Research Institute
    • Touchlight Group
    • Univercells Group
    • WuXi AppTec Co., Ltd.
KSM 25.12.01

The Nucleic Acid Therapeutics CDMO Market is projected to grow by USD 26.14 billion at a CAGR of 11.71% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 10.77 billion
Estimated Year [2025] USD 12.00 billion
Forecast Year [2032] USD 26.14 billion
CAGR (%) 11.71%

Framing the evolving strategic role of CDMOs in enabling complex nucleic acid therapeutic development amid accelerating scientific and regulatory demands

The nucleic acid therapeutics contract development and manufacturing landscape has entered a phase defined by rapid technological convergence and elevated strategic importance for both developers and contract partners. Recent advances in therapeutic modalities, manufacturing platforms, and regulatory expectations have elevated CDMOs from service vendors to strategic collaborators that materially influence program timelines and clinical viability. As developers pursue increasingly complex constructs, including modified oligonucleotides, viral vectors, and lipid nanoparticle formulations, demand for specialized process knowledge, stringent quality control, and adaptive manufacturing capacity has intensified.

Consequently, organizations that provide integrated capabilities spanning process development, analytical rigor, and scale-ready manufacturing are being evaluated not only on cost and capacity but also on agility, regulatory track record, and partnership models that de-risk development pathways. Stakeholders must therefore reassess their sourcing strategies, technology roadmaps, and compliance frameworks to reflect an environment where speed-to-clinic and supply continuity are as critical as technical excellence. Moving forward, the interplay between scientific innovation and pragmatic manufacturing constraints will determine which programs advance efficiently and which face protracted development timelines, making it imperative for executives to align commercial strategy with operational realities across the value chain.

Unpacking the multidimensional disruptive forces altering R&D, manufacturing modalities, regulatory expectations, and partnership models across nucleic acid therapeutics

Nucleic acid therapeutics are reshaping therapeutic paradigms, and with that transformation comes a cascade of shifts across R&D, manufacturing, and commercialization. Technological innovation is driving paradigm changes in how molecules are designed, produced, and tested; modular and continuous manufacturing approaches are replacing batch orthodoxy in many applications, while digital process controls and advanced analytics increasingly underpin quality systems and process understanding. These shifts have broadened the competency set required of contract development and manufacturing organizations, requiring investments in specialized equipment, real-time monitoring capabilities, and cross-disciplinary talent.

At the same time, regulatory expectations have matured, emphasizing lifecycle quality management, data integrity, and platform-based comparability. This maturation is influencing project planning and capitalization decisions and is prompting greater early-stage alignment between developers and manufacturers on quality by design principles. Moreover, commercial pressures are altering partnership structures: strategic alliances, risk-sharing arrangements, and capacity reservation models are becoming more common as sponsors seek to secure prioritized throughput and mitigate supply chain risk. Taken together, these transformative shifts mean that CDMOs must evolve beyond transactional relationships to become long-term strategic partners that co-design processes, anticipate regulatory challenges, and scale capabilities in lockstep with evolving modality requirements.

Assessing how tariff adjustments in 2025 have recalibrated sourcing, supplier qualification, and operational risk management across the nucleic acid therapeutics supply chain

The imposition and adjustment of tariffs by the United States in 2025 have introduced new variables into the supply and cost calculus for nucleic acid therapeutics manufacturing. Tariff measures that affect imported raw materials, specialized reagents, and certain manufacturing equipment have prompted manufacturers and sponsors to reassess sourcing strategies and to accelerate efforts to qualify alternative suppliers. As a result, procurement teams have increased scrutiny of supplier resilience and geographic diversification while manufacturing planners evaluate the trade-offs between nearshoring, onshoring, and maintaining offshore partnerships.

In practice, these tariff-driven dynamics have influenced capital allocation decisions and timetable assumptions. Sponsors that previously relied on a global sourcing model for key inputs have initiated dual-sourcing strategies and have elevated buffer management to preserve continuity for critical campaigns. Investments in supplier qualification and audits have increased, as firms seek to validate localized supply chains. Moreover, some organizations have advanced plans for regional capacity expansion to reduce exposure to cross-border cost volatility and mitigate potential lead-time disruptions. Regulatory dossiers and quality control frameworks have had to accommodate the introduction of new supplier-origin materials, requiring targeted comparability studies and additional documentation. While tariffs have not altered the scientific principles behind modality development, they have reshaped operational risk management and have heightened the strategic importance of supply chain transparency, supplier performance metrics, and contractual protections that address cross-border trade risk.

Deriving strategic implications from modality, service type, application, and end-user segmentation to target capability investments and partnership structures

A granular view of the landscape emerges when analyzing demand and capability along multiple segmentation axes. When viewed through the lens of therapeutic type, distinctions between DNA therapeutics and RNA therapeutics materially influence manufacturing workflows, analytical testing paradigms, and regulatory touchpoints; RNA modalities often demand specialized formulation expertise and cold-chain considerations, while DNA-based approaches entail distinct upstream and downstream purification challenges. From the perspective of service type, the interplay between analytical testing and quality control, manufacturing, packaging and distribution, and process development and optimization defines where value accrues; organizations that integrate end-to-end services can shorten timelines and reduce handoffs, while niche specialists retain relevance for highly technical tasks and method development.

Considering therapeutic application highlights divergent demand drivers: genetic disorders, infectious diseases, neurological disorders, oncology, and rare disorders each present unique payload requirements, dosing regimens, and clinical development risk profiles, which in turn shape manufacturing complexity and demand for tailored assays. Finally, end-user segmentation-academic and research institutes, biotechnology firms, and pharmaceutical companies-reveals differing expectations for flexibility, timelines, and regulatory support; academic partners often require adaptable, lower-volume services focused on method establishment, biotechnology firms prioritize speed and platform scalability for clinical progression, and pharmaceutical companies seek predictable quality systems and capacity for late-stage scale-up. Integrating these segmentation perspectives provides a multidimensional map to prioritize investments, align service offerings, and design partnership models that reflect client-specific needs and modality attributes.

Interpreting how regional ecosystems, regulatory frameworks, and capacity development across the Americas, EMEA, and Asia-Pacific shape CDMO strategic positioning

Regional dynamics continue to influence strategic decisions across the CDMO landscape, with distinct drivers shaping demand and capability in each geography. In the Americas, robust biotech ecosystems, venture capital activity, and a concentration of late-stage clinical programs drive demand for scalable manufacturing and stringent regulatory compliance. This environment fosters closer collaboration between sponsors and manufacturing partners on clinical-to-commercial transition planning and necessitates investments in GMP-capable facilities, regulatory affairs expertise, and supply chain resilience.

In Europe, the Middle East & Africa, evolving regulatory harmonization efforts, a strong translational research base, and growing local biomanufacturing initiatives create opportunities for regional partners to offer specialized capabilities and navigate complex cross-border regulatory landscapes. Sponsors operating in these jurisdictions often balance access to localized scientific talent with the need for interoperable quality systems and regulatory dossiers that align with multiple authorities. The Asia-Pacific region is characterized by rapid capacity expansion, a maturing supplier base for reagents and components, and significant investments by governments and private entities to build domestic manufacturing capabilities. This has encouraged the development of cost-effective manufacturing options as well as opportunities for technology transfer and joint ventures. Across all regions, supply chain transparency, compliance consistency, and the ability to execute complex analytics remain critical selection criteria for sponsors seeking to mitigate geopolitical and operational risks.

Understanding the competitive levers and partnership models that enable CDMOs to differentiate through technical depth, integrated services, and customer-aligned commercial structures

Competitive dynamics among companies serving the nucleic acid therapeutics ecosystem are increasingly defined by depth of modality expertise, integrated service offerings, and the ability to de-risk clinical translation through proven regulatory engagement. Leading providers distinguish themselves by investing in platform technologies that enable faster process development, higher product quality, and streamlined scale-up pathways. Capacity alone no longer differentiates; rather, organizations that combine robust quality systems with advanced analytics and a track record of successful transfers enjoy a competitive edge.

Partnership models are evolving: strategic alliances, co-development agreements, and capacity reservation arrangements are common among organizations seeking to secure long-term pipeline throughput. Investment in talent-particularly in process scientists, analytical chemists, and regulatory specialists-is a critical differentiator, as is the ability to demonstrate successful comparability and validation work across multiple modalities. Mergers and acquisitions continue to be a lever for accessing niche capabilities quickly, but the integration of disparate quality systems and cultures requires deliberate planning. Finally, forward-looking companies prioritize customer-centric commercial models that offer transparency around capacity, pricing mechanisms that reflect value and risk, and collaborative governance structures to resolve program-level challenges efficiently.

Actionable strategic imperatives for executive leaders to strengthen partnerships, supply resilience, digital quality, and talent for reliable nucleic acid therapeutic development

Industry leaders and program sponsors must adopt a set of pragmatic actions to align operations, partnerships, and investment plans with the evolving realities of nucleic acid therapeutic development. First, prioritize co-development frameworks that formalize early-stage collaboration between sponsors and manufacturers to accelerate process transfer and minimize downstream surprises. Establishing joint milestones and decision gates clarifies expectations and reduces rework during scale-up. Second, invest in supply chain visibility and dual-sourcing strategies for critical raw materials and specialized reagents to manage exposure to trade policy shifts and single-source dependencies. Engaging in supplier qualification early will shorten timelines when alternate sources are needed.

Third, accelerate adoption of digital quality management and process analytical technologies to enable real-time monitoring and to support regulatory dossiers that emphasize lifecycle control. These investments reduce batch failure risk and enhance comparability assessments across manufacturing sites. Fourth, align commercial agreements with operational realities by incorporating capacity reservation clauses, risk-sharing provisions, and transparent escalation mechanisms for schedule adjustments. Fifth, build internal capabilities through targeted hiring and training programs that focus on analytics, aseptic processing, and regulatory strategy, while also evaluating strategic acquisitions or partnerships to fill capability gaps rapidly. By implementing these measures, organizations can reduce program risk, preserve development momentum, and create clearer pathways from discovery to commercial supply.

Explaining the mixed-methods research design combining primary expert interviews, technical validation, and triangulated secondary sources to ensure actionable and defensible insights

The underlying research methodology synthesizes multiple evidence streams to ensure robust, actionable insights. Secondary research involved systematic review of scientific literature, regulatory guidance documents, industry white papers, and technical standards to establish baseline technical and regulatory contexts. Primary research consisted of structured interviews with manufacturing leaders, process scientists, regulatory experts, procurement leads, and program managers to capture first-hand perspectives on operational challenges, supplier performance, and partnership dynamics. These qualitative inputs were complemented by technical validation exercises, including case study analyses of recent technology transfers, comparability efforts, and process scale-up examples.

Data triangulation was applied to corroborate themes across sources, ensuring that observed patterns in capacity expansion, quality system investments, and supply chain strategies were not isolated anecdotes. The methodology also incorporated scenario analysis to evaluate the operational implications of shifts such as tariff changes, regional capacity additions, and modality-specific manufacturing complexities. Where appropriate, the research team validated assumptions through follow-up interviews and document reviews to minimize bias. Together, these methods yield a defensible synthesis that balances technical specificity with strategic relevance for decision-makers in development, manufacturing, and commercial organizations.

Synthesizing how strategic alignment of capabilities, partnerships, and supply chain resilience determines successful translation of nucleic acid therapeutics from discovery to supply

The landscape for nucleic acid therapeutics manufacturing is in flux, driven by scientific innovation, evolving regulatory expectations, and shifting operational imperatives. Organizations that recognize the strategic nature of CDMO partnerships and that invest in integrated capabilities-spanning analytical excellence, adaptive manufacturing, and resilient supply chains-will be better positioned to convert scientific advances into reliable clinical and commercial supply. Transitional pains such as tariff-driven supply adjustments, regional capacity realignment, and the need for advanced analytics present operational challenges, but they also create opportunities for providers that can offer clear, validated pathways to de-risked scale-up.

Ultimately, success will favor those who approach manufacturing as a strategic asset rather than a transactional function, establishing collaborative governance, transparent commercial terms, and continuous improvement processes that accelerate program timelines and reduce technical and regulatory risk. By aligning investment priorities with modality-specific demands and by cultivating flexible, high-integrity supply chains, sponsors and providers can create more predictable development trajectories and realize the full potential of nucleic acid therapeutics across diverse therapeutic areas.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising demand for scalable mRNA production platforms with optimized lipid nanoparticle formulation capabilities
  • 5.2. Integration of automated high-throughput screening in oligonucleotide manufacturing workflows to accelerate process development
  • 5.3. Adoption of continuous manufacturing for plasmid DNA to enhance yield consistency and reduce contamination risk
  • 5.4. Strategic partnerships between CDMOs and biotech firms for co-development of gene editing therapies using CRISPR-Cas systems
  • 5.5. Investment in modular single-use bioreactor systems tailored for viral vector production to support gene therapy pipelines

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Nucleic Acid Therapeutics CDMO Market, by Therapeutics Type

  • 8.1. DNA Therapeutics
  • 8.2. RNA Therapeutics

9. Nucleic Acid Therapeutics CDMO Market, by Service Type

  • 9.1. Analytical Testing & Quality Control
  • 9.2. Manufacturing
  • 9.3. Packaging & Distribution
  • 9.4. Process Development & Optimization

10. Nucleic Acid Therapeutics CDMO Market, by Therapeutic Applications

  • 10.1. Genetic Disorders
  • 10.2. Infectious Diseases
  • 10.3. Neurological Disorders
  • 10.4. Oncology
  • 10.5. Rare Disorders

11. Nucleic Acid Therapeutics CDMO Market, by End User

  • 11.1. Academic & Research Institutes
  • 11.2. Biotechnology Firms
  • 11.3. Pharmaceutical Companies

12. Nucleic Acid Therapeutics CDMO Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Nucleic Acid Therapeutics CDMO Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Nucleic Acid Therapeutics CDMO Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. AGC Biologics Inc.
    • 15.3.2. Agilent Technologies, Inc.
    • 15.3.3. Ajinomoto Bio-Pharma Services
    • 15.3.4. Almac Group Ltd.
    • 15.3.5. Biomay AG
    • 15.3.6. BioSpring GmbH
    • 15.3.7. Catalent, Inc.
    • 15.3.8. Charles River Laboratories International, Inc.
    • 15.3.9. CordenPharma International GmbH
    • 15.3.10. Creative Biogene
    • 15.3.11. Danaher Corporation
    • 15.3.12. Eurofins Scientific SE
    • 15.3.13. Evonik Industries AG
    • 15.3.14. GenScript Biotech Corporation
    • 15.3.15. Lonza Group Ltd.
    • 15.3.16. Polypeptide Group AG
    • 15.3.17. Recipharm AB
    • 15.3.18. Rentschler Biopharma SE
    • 15.3.19. Samsung Biologics
    • 15.3.20. The Scripps Research Institute
    • 15.3.21. Touchlight Group
    • 15.3.22. Univercells Group
    • 15.3.23. WuXi AppTec Co., Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제