시장보고서
상품코드
1868924

핵산 기반 의약품 시장 : 약물 유형별, 분자 유형별, 투여 경로별, 치료 분야별, 최종사용자별 - 세계 예측(2025-2032년)

Nucleic Acid-Based Drugs Market by Drug Type, Molecule Type, Route of Administration, Therapeutic Area, End-User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 198 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

핵산 기반 의약품 시장은 2032년까지 CAGR 13.73%로 934억 6,000만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 333억 7,000만 달러
추정 연도 2025년 377억 6,000만 달러
예측 연도 2032 934억 6,000만 달러
CAGR(%) 13.73%

과학적 혁신, 규제 성숙, 산업 규모 확대가 융합된 핵산 치료제에 대한 간결한 전략 지침

핵산 기반 치료제는 전달 시스템, 화학적 변형 및 규제 당국의 수용에 대한 획기적인 발전에 힘입어 틈새 연구 대상에서 현대 의약품 개발의 주류로 이동했습니다. 최근 몇 년간의 임상적 성공과 승인 경로를 통해 한때 회의적인 시각으로 바라보았던 치료법의 효과가 입증되면서 과학계는 mRNA, RNA 간섭, 안티센스 기술의 확장 가능한 접근법에 집중하고 있습니다. 이러한 발전은 개발자들이 표적 선택, 환자 계층화, 플랫폼 경제성을 다루는 방식을 재구성하고, 신약 개발에서 첫 임상시험까지의 주기를 더욱 빠르게 단축하고 있습니다.

기술 플랫폼화, 규제 명확화, 공급망 탄력성이 핵산 치료제 분야의 경쟁력과 프로그램 실현 가능성을 재정의하는 변화를 가져오고 있습니다.

핵산 치료제의 환경은 경쟁 우위와 프로그램의 실행 가능성을 재정의하는 혁신적인 변화를 경험했습니다. 특히 전달 벡터, 지질 나노입자 화학, 정밀한 화학적 변형 기술의 성숙으로 인해 기존에 치료하기 어려웠던 많은 표적들이 현실적인 치료 기회로 전환되었습니다. 동시에 플랫폼 사고가 핵심적인 역할을 담당하게 되었습니다. 각 조직은 재사용 가능한 개발 프레임워크를 구축하여 후속 후보물질의 개발 기간을 단축하고 기술적 리스크를 줄이고 있습니다. 이러한 플랫폼화는 투자 패턴을 변화시켰고, 자본은 단발성 치료 개념보다는 검증된 중개 경로를 가진 기업을 점점 더 선호하는 경향을 보이고 있습니다.

관세 동향이 핵산 치료제 공급망 지역화, 비용 재분배, 조달 및 제조의 전략적 전환을 어떻게 촉진하고 있는지 평가

무역 정책의 변화와 관세 인상 전망은 핵산 분야 개발 기업 및 공급업체의 경제성 및 사업 계획에 누적적인 영향을 미칠 수 있습니다. 수입관세 인상은 변형된 뉴클레오티드, 지질 성분, 크로마토그래피 수지, 특수 일회용 소모품 등 주요 원재료의 원가 기반에 영향을 미칩니다. 업스트림 공정의 원자재 비용이 상승하면 기업은 예산 재분배, 명확한 가치 제안이 있는 프로그램의 우선순위 결정, 수익률과 일정의 확실성을 유지하기 위한 공급망 현지화 가속화와 같은 압력에 직면하게 됩니다.

약물 양식, 분자 클래스, 투여 경로, 치료 영역, 최종사용자 행동을 전략적 R&D 및 상업화 선택에 연결시키는 심층 세분화 분석

세분화 분석은 양식, 분자 클래스, 투여 경로, 치료 영역, 최종사용자별로 서로 다른 역학을 밝혀내어 차별화된 전략을 요구합니다. 약물 유형에 따라 개발자는 안티센스 올리고뉴클레오티드, DNA/RNA 앱타머, mRNA 기반 치료제, 뉴클레오시드 아날로그, RNA 간섭 치료제 등 각각의 기술적 요구사항의 균형을 맞춰야 하며, RNA 간섭은 다시 마이크로 RNA, 짧은 헤어핀 RNA, 짧은 간섭 RNA로 세분화됩니다. 짧은 간섭 RNA로 세분화됩니다. 모듈식 화학 및 전달 접근법에 중점을 둔 플랫폼 투자는 이 스펙트럼의 여러 하위 유형에 대한 잠재력을 발휘할 수 있습니다. 분자 유형에 따른 의사결정 프레임워크는 저분자 화합물과 고분자 화합물에 따라 다르며, 제조의 복잡성, 분석 관리 전략, 보관 물류에 영향을 미칩니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 지역별 강점과 미묘한 규제 차이로 인해 혁신, 제조, 상용화가 가속화될 수 있는 곳

지역별 동향은 혁신, 생산, 상업화의 모멘텀이 집중되는 곳을 정의하고 있으며, 아메리카, 유럽, 중동 및 아프리카, 아시아태평양에서 지리적 지식에 기반한 전략이 요구되고 있습니다. 미국 대륙은 밀집된 바이오테크 클러스터, 자본 가용성, 규제 유연성이 결합되어 파트너십과 스핀아웃을 위한 견고한 초기 단계의 혁신과 높은 거래 활동을 촉진하고 있습니다. 임상시험 인프라와 환자 모집의 효율성이 빠른 개념증명 연구를 지원하고, 공급망 리스크와 관세 리스크를 관리하기 위해 국내 제조 투자가 점점 더 우선순위가 되고 있습니다.

개발 가속화, 확장성 실현, 상업적 가치 획득을 가능하게 하는 기업 유형 및 파트너십의 필수 요건

경쟁 상황은 수직통합형 개발 기업, 전문 플랫폼 제공 기업, 위탁개발제조기관(CDMO), 시약 및 장비 공급업체가 복잡하게 얽혀 밀집된 생태계를 형성하고 있습니다. 주요 개발사들은 플랫폼의 재현성, 검증된 임상 적용 실적, 후기 개발 리스크를 줄일 수 있는 전략적 제휴 확보 능력으로 차별화를 꾀하고 있습니다. 전달 시스템, 새로운 화학 기술, 첨단 분석 기술을 제공하는 전문 플랫폼 기업은 여러 치료 프로그램을 가능하게 하고 파트너의 기술적 불확실성을 줄이기 위해 특히 큰 영향력을 확보하고 있습니다.

기술적 진보를 비즈니스 회복력, 규제 대응력, 상업적 실행력으로 전환하기 위한 리더를 위한 고 영향력 제안

업계 리더는 과학적 기반과 업무적 회복력, 상업적 명확성을 일치시키는 타겟팅 전략을 채택해야 합니다. 첫째, 적응증과 양상을 넘나들며 재사용이 가능한 플랫폼 투자를 우선시해야 합니다. 이러한 플랫폼은 한계 개발 리스크를 줄이고 차세대 프로그램을 가속화할 수 있습니다. 둘째, 공급망 가시성을 구축하고 중요 자재 공급처를 다변화하는 동시에 관세 및 물류 리스크를 줄이기 위한 지역별 제조 파트너십을 모색해야 합니다. 셋째, 프로그램 설계 초기 단계에서 규제 및 품질 전문 지식을 통합하고, 비교 시험, 출하 전 시험, CMC(화학, 제조 및 품질 관리) 타임라인을 효율화해야 합니다.

전문가 인터뷰, 기술 문헌, 규제 검토, 시나리오 분석을 결합한 투명성 높은 다중 방법론적 조사 방법을 통해 주요 결과를 검증합니다.

본 요약의 기반이 되는 조사는 신뢰성과 관련성을 확보하기 위해 1차 조사와 2차 조사를 병행하는 다각적인 방법을 채택하였습니다. 1차 정보에는 개발자, 제조 전문가, 규제 당국 전문가를 대상으로 한 구조화된 인터뷰와 핵산 양식에 초점을 맞춘 최근 피어리뷰 문헌 및 임상시험 등록 데이터의 통합이 포함됩니다. 2차 정보로는 기술 검토, 특허 현황, 공공 규제 지침 문서, 품질, 안전성, 분석 요구사항에 대한 진화하는 기대치를 매핑하고 있습니다.

통합 플랫폼 역량, 규제 선견지명, 공급망 탄력성이 핵산 의약품의 장기적 성공을 결정한다는 점을 강조하는 요약

핵산 치료제는 기술 혁신, 규제 당국의 학습, 운영 우선순위의 변화를 특징으로 하는 현대 의학의 지속적이고 빠르게 진화하는 기둥입니다. 이 분야는 과학적 기회와 물류의 복잡성이 독특하게 결합되어 있으며, 성공 여부는 생물학적 혁신뿐만 아니라 제조 품질, 공급망 복원력, 규제 당국 및 지불자와의 전략적 협력에 달려 있습니다. 플랫폼 역량, 초기 규제 당국과의 협력, 지리적 상황을 고려한 공급 전략을 통합하는 이해관계자만이 과학적 가능성을 상업적, 임상적 영향력으로 전환할 수 있는 최적의 위치에 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 핵산 기반 의약품 시장 : 약물 유형별

  • 안티센스 올리고뉴클레오티드
  • DNA/RNA 압타머
  • mRNA 기반 치료제
  • 뉴클레오시드 아날로그
  • RNA 간섭(RNAi) 치료제
    • 마이크로 RNA(MiRNA)
    • 쇼트 헤어핀 RNA(ShRNA)
    • 쇼트 인터페링 RNA(SiRNA)

제9장 핵산 기반 의약품 시장 : 분자 유형별

  • 고분자
  • 저분자

제10장 핵산 기반 의약품 시장 : 투여 경로별

  • 흡입
  • 근육내 투여
  • 정맥내 투여
  • 경구
  • 피하 투여

제11장 핵산 기반 의약품 시장 : 치유 영역별

  • 심혈관질환
  • 감염증
    • 세균 감염증
    • 진균 감염증
    • 바이러스 감염증
  • 대사성 질환
  • 신경질환
  • 종양학
    • 혈액 악성 종양
    • 고형 종양
  • 희귀질환

제12장 핵산 기반 의약품 시장 : 최종사용자별

  • 학술·조사기관
  • CRO(수탁조사기관)
  • 병원·진료소
  • 제약·바이오테크놀러지 기업

제13장 핵산 기반 의약품 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 핵산 기반 의약품 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 핵산 기반 의약품 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Alnylam Pharmaceuticals, Inc.
    • Amgen Inc.
    • Arcturus Therapeutics Holdings Inc.
    • Arrowhead Pharmaceuticals, Inc.
    • AstraZeneca PLC
    • Beam Therapeutics Inc.
    • Biogen, Inc.
    • BioMarin Pharmaceutical Inc.
    • BioNTech SE
    • Bluebird Bio, Inc.
    • CRISPR Therapeutics AG
    • CureVac N.V.
    • Dynavax Technologies Corporation
    • Editas Medicine, Inc.
    • Eli Lilly and Company
    • Evotec SE
    • F. Hoffmann-La Roche Ltd.
    • Generation Bio Co.
    • Gilead Sciences, Inc.
    • GSK PLC
    • Intellia Therapeutics, Inc.
    • Ionis Pharmaceuticals, Inc.
    • Merck & Co., Inc.
    • Moderna, Inc.
    • Novartis AG
    • Novo Nordisk A/S
    • Orna Therapeutics, Inc.
    • Pfizer Inc.
    • ProQR Therapeutics N.V.
    • Sangamo Therapeutics, Inc.
    • Sanofi SA
    • Sarepta Therapeutics, Inc.
    • Silence Therapeutics PLC
    • Stoke Therapeutics, Inc.
    • Takeda Pharmaceutical Company Limited
    • Vertex Pharmaceuticals Incorporated
    • Voyager Therapeutics, Inc.
    • Wave Life Sciences Ltd.
KSM 25.12.01

The Nucleic Acid-Based Drugs Market is projected to grow by USD 93.46 billion at a CAGR of 13.73% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 33.37 billion
Estimated Year [2025] USD 37.76 billion
Forecast Year [2032] USD 93.46 billion
CAGR (%) 13.73%

A concise strategic orientation to nucleic acid therapeutics reflecting the convergence of scientific breakthroughs, regulatory maturation, and industrial scalability

Nucleic acid-based therapeutics have transitioned from niche research curiosities to a mainstream pillar of modern drug development, driven by breakthroughs in delivery systems, chemical modification, and regulatory acceptance. Recent clinical successes and authorization pathways have validated modalities that once faced skepticism, and the scientific community has coalesced around scalable approaches for mRNA, RNA interference, and antisense technologies. These advances have reshaped how developers approach target selection, patient stratification, and platform economics, enabling more agile cycles from discovery to first-in-human trials.

The industry now operates at the intersection of precision biology and industrial biotechnology. Improvements in synthesis, purification, and analytics have reduced historical barriers, while modular platform design has accelerated translational timelines. At the same time, regulatory authorities have matured their frameworks to address modality-specific safety and quality concerns, increasing predictability for developers. As a result, decision-makers must balance scientific opportunity with practical considerations such as manufacturing scalability, supply chain robustness, and global regulatory alignment.

This executive summary synthesizes core trends shaping the field and delivers insights that leaders can apply to R&D prioritization, partnership selection, and operational planning. The aim is to present a concise, evidence-based perspective that supports strategic choices across discovery, clinical development, and commercialization.

How technological platformization, regulatory clarity, and supply chain resilience are reshaping competitive dynamics across the nucleic acid therapeutics landscape

The landscape for nucleic acid therapies has undergone transformative shifts that redefine competitive advantage and program viability. Technological maturation-particularly in delivery vectors, lipid nanoparticle chemistries, and precise chemical modifications-has converted many previously intractable targets into realistic therapeutic opportunities. Concurrently, platform thinking has become central: organizations build reusable development frameworks that shorten timelines and reduce technical risk for subsequent candidates. This platformization has changed investment patterns, as capital increasingly favors entities with demonstrated translational pathways rather than one-off therapeutic concepts.

Regulatory evolution has been equally consequential. Agencies have issued clearer guidances on quality attributes, control strategies, and clinical endpoints specific to nucleic acid modalities. This greater clarity reduces regulatory uncertainty and supports parallel investments in manufacturing and analytic capabilities. At the same time, the ecosystem of contract development and manufacturing organizations has expanded and specialized, enabling smaller developers to access GMP production and advanced analytics without owning large capital footprints.

Geopolitical influences and supply chain considerations now play a larger role in project planning. Sourcing of raw materials, specialized reagents, and instrumentation is more strategic, and companies actively diversify suppliers and regionalize certain production steps to mitigate disruption risk. Together, these shifts emphasize adaptability, resilience, and the importance of integrating scientific, regulatory, and operational strategies early in program planning.

Assessing how tariff dynamics are driving supply chain regionalization, cost reallocation, and strategic shifts in sourcing and manufacturing for nucleic acid therapies

Trade policy changes and the prospect of elevated tariffs can have a cumulative impact on the economics and operational planning of developers and suppliers in the nucleic acid sector. Increased import duties affect the cost base for critical inputs such as modified nucleotides, lipid components, chromatography resins, and specialized single-use consumables. When upstream input costs rise, organizations face pressure to reallocate budgets, prioritize programs with clearer value propositions, or accelerate localization of supply chains to preserve margin and timeline certainty.

Beyond direct cost implications, tariffs can influence strategic behavior. Companies may respond by reconfiguring supply chains to reduce cross-border movements of high-value components, investing in domestic manufacturing capacity to avoid tariff exposure, or renegotiating supplier contracts to shift risk. These adjustments carry operational lead times and capital implications; decisions to insource or regionalize production require rigorous assessment of technical feasibility, regulatory implications, and long-term demand stability.

Tariff pressure also affects collaboration models and licensing negotiations. When manufacturing costs and timelines become less predictable, counterparties increasingly structure agreements with contingency clauses and staged milestones tied to supply stability. For organizations that depend on global networks for materials and services, proactive scenario planning is essential to maintain development momentum. Ultimately, the cumulative impact of tariffs is not solely economic; it reshapes strategic priorities, accelerates regional manufacturing initiatives, and heightens the value of supply chain visibility and contractual flexibility.

Deep segmentation insights connecting drug modality, molecule class, administration route, therapeutic focus, and end-user behaviors to strategic R&D and commercialization choices

Segmentation analysis reveals divergent dynamics across modalities, molecular classes, administration routes, therapeutic areas, and end users that require differentiated strategies. Based on drug type, developers must balance the unique technical demands of antisense oligonucleotides, DNA/RNA aptamers, mRNA-based therapeutics, nucleoside analogs, and RNA interference therapeutics, with RNA interference further subdivided into microRNA, short hairpin RNA, and short interfering RNA; platform investments that favor modular chemistry and delivery approaches can unlock multiple subtypes within this spectrum. Based on molecule type, decision frameworks differ for large molecules compared to small molecules, influencing manufacturing complexity, analytical control strategies, and storage logistics.

Route of administration is a critical determinant of formulation strategy and commercial positioning; inhalation, intramuscular, intravenous, oral, and subcutaneous routes each impose distinct delivery, stability, and patient adherence considerations that influence clinical design and manufacturing specifications. Therapeutic area segmentation highlights how scientific and commercial risk profiles vary: cardiovascular, infectious, metabolic, neurological, oncology, and rare diseases each present different biomarker needs, regulatory pathways, and patient populations, with infectious disease indication suites spanning bacterial, fungal, and viral infections and oncology distinguished by hematologic malignancies versus solid tumors. Based on end-user, utilization patterns and procurement models diverge between academic and research institutes, contract research organizations, hospitals and clinics, and pharmaceutical and biotechnology companies, shaping demand for specialized services, analytic packages, and partnership models.

Collectively, these segmentation lenses enable tailored go-to-market and R&D strategies. Portfolio prioritization should align modality strengths with unmet clinical needs and operational readiness, while manufacturing and quality investments must be matched to anticipated administration routes and end-user requirements to minimize translational friction.

How regional strengths and regulatory nuances across the Americas, Europe Middle East & Africa, and Asia-Pacific determine where innovation, manufacturing, and commercialization accelerate

Regional dynamics are defining where innovation, production, and commercialization momentum concentrate, requiring geographically informed strategies across the Americas, Europe Middle East & Africa, and Asia-Pacific. In the Americas, a combination of dense biotech clusters, capital availability, and regulatory agility drives robust early-stage innovation and high transaction activity for partnerships and spinouts. Clinical trial infrastructures and patient recruitment efficiencies support rapid proof-of-concept studies, while domestic manufacturing investments are increasingly prioritized to manage supply chain exposure and tariff risk.

Across Europe, the Middle East & Africa, regulatory harmonization efforts and specialized public-private initiatives support translational pipelines, yet developers must navigate heterogeneous national reimbursement frameworks and varied clinical trial ecosystems. European manufacturing capacity emphasizes quality and technical specialization, often in close collaboration with academic centers to translate platform science. In the Asia-Pacific region, rapid expansion of technical capabilities, competitive manufacturing costs, and growing clinical capacities create attractive conditions for scale-up and late-phase development. Regional regulatory agencies are progressively modernizing frameworks and expanding expedited pathways, and local demand for innovative therapies is rising alongside government investments in biotech infrastructure.

Successful players tailor engagement models by region, aligning partnerships, manufacturing footprints, and regulatory strategies with local strengths. Executing regional playbooks that account for clinical operations, supply chain logistics, and market access nuances will determine the speed and sustainability of commercial rollouts.

Strategic company archetypes and partnership imperatives that dictate which players will accelerate development, enable scalability, and capture commercial value

Competitive landscapes are shaped by a mix of vertically integrated developers, specialist platform providers, contract development and manufacturing organizations, and reagent and instrument suppliers that together form a dense ecosystem. Leading developers differentiate through platform repeatability, demonstrated clinical translation, and the ability to secure strategic partnerships that de-risk late-stage development. Specialist platform providers that offer delivery systems, novel chemistries, or advanced analytics gain outsized influence because they enable multiple therapeutic programs and reduce technical uncertainty for partners.

Contract development and manufacturing organizations remain pivotal, providing access to GMP production, scale-up expertise, and regulatory support-particularly for organizations that prefer asset-light models. Suppliers of critical raw materials and analytical instruments hold strategic importance; their quality, lead times, and geographic footprint directly influence program timelines. Additionally, service providers offering regulatory intelligence, clinical operations tailored to nucleic acid modalities, and market access consulting play an increasingly central role in shaping successful launch strategies.

For decision-makers evaluating partnerships or M&A, the most attractive targets combine strong technical differentiation, reproducible manufacturing processes, and embedded regulatory experience. Assessments should prioritize proven scalability, IP robustness, and the flexibility to support multiple modalities across therapeutic areas.

High-impact recommendations for leaders to convert technological advances into operational resilience, regulatory readiness, and commercial execution

Industry leaders should adopt targeted strategies that align scientific capability with operational resilience and commercial clarity. First, prioritize platform investments that enable reuse across indications and modalities; such platforms reduce marginal development risk and accelerate next-generation programs. Second, build supply chain visibility and diversify suppliers for critical inputs, while exploring regional manufacturing partnerships to mitigate tariff and logistic exposure. Third, integrate regulatory and quality expertise early in program design to streamline comparability, release testing, and CMC timelines.

In parallel, structure partnerships and commercial agreements to reflect supply and regulatory uncertainties, using milestone-based frameworks, shared-risk manufacturing arrangements, and flexible licensing terms. Invest in translational analytics and biomarker strategies to sharpen patient selection and strengthen value dossiers for payers. Operationally, expand capabilities in advanced analytics, process characterization, and digital quality systems to improve batch consistency and support regulatory confidence. Finally, cultivate a talent pipeline that blends molecular biology, process engineering, and regulatory science, ensuring that cross-functional teams can translate platform innovations into reliable clinical and commercial outputs.

Adopting these actions will help organizations convert scientific advances into durable, scalable programs while preserving optionality amid shifting policy and market conditions.

A transparent multi-method research methodology combining expert interviews, technical literature, regulatory reviews, and scenario analysis to validate key insights

The research underpinning this summary draws on a multi-method approach combining primary and secondary evidence to ensure robustness and relevance. Primary inputs included structured interviews with developers, manufacturing specialists, and regulatory experts, as well as synthesis of recent peer-reviewed literature and clinical trial registries focused on nucleic acid modalities. Secondary sources encompassed technological reviews, patent landscapes, and public regulatory guidance documents to map evolving expectations around quality, safety, and analytical requirements.

Analytic methods integrated thematic synthesis of expert interviews with comparative assessments of manufacturing pathways, supply chain configurations, and route-of-administration considerations. Scenario analysis was employed to evaluate the operational implications of trade policy shifts and supply disruptions, while cross-regional comparisons identified regulatory and infrastructure differentials that influence program timelines. Quality control procedures included source triangulation, expert validation of key inferences, and a transparency log documenting data provenance and methodological choices.

This mixed-methods approach balances depth and breadth, providing a defensible foundation for strategic recommendations and enabling targeted follow-up analyses tailored to specific programs or operational questions.

Concluding synthesis emphasizing that integrated platform capabilities, regulatory foresight, and supply chain resilience determine long-term success in nucleic acid therapeutics

Nucleic acid therapeutics represent a durable and rapidly evolving pillar of modern medicine, characterized by technological innovation, regulatory learning, and shifting operational priorities. The field presents a unique combination of scientific opportunity and logistical complexity: success depends not only on biological innovation but also on manufacturing quality, supply chain resilience, and strategic alignment with regulatory and payer pathways. Stakeholders that integrate platform capabilities, early regulatory engagement, and geographically aware supply strategies are best positioned to convert scientific promise into commercial and clinical impact.

Moving forward, organizations should treat platform development and operational readiness as co-equal strategic objectives. By doing so, they can retain the agility to pursue diverse indications while ensuring that late-stage requirements do not create bottlenecks. The ability to anticipate policy shifts, diversify supply channels, and craft flexible partnerships will determine which programs progress efficiently and which face avoidable delays. Ultimately, the most successful actors will be those that combine deep scientific expertise with disciplined execution across manufacturing, regulatory, and commercial domains.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Advancements in CRISPR-Cas gene editing delivery techniques for precise in vivo therapies
  • 5.2. Development of chemically modified antisense oligonucleotides with improved potency and stability
  • 5.3. Emergence of self-amplifying RNA platforms reducing dosage requirements in vaccine applications
  • 5.4. Integration of artificial intelligence in designing personalized nucleic acid drug sequences for targeted therapies
  • 5.5. Progress in non-viral nanoparticle carriers enabling systemic delivery of siRNA and mRNA therapeutics
  • 5.6. Regulatory frameworks evolving to address safety and efficacy of long-acting nucleic acid modalities
  • 5.7. Collaborations between biotech firms and large pharma accelerating clinical translation of nucleic acid drugs
  • 5.8. Expansion of exosome-based nucleic acid delivery systems for targeted intracellular transport and release
  • 5.9. Adoption of microfluidic manufacturing platforms for scalable production of RNA-based therapeutics
  • 5.10. Advances in allele-specific siRNA design enabling treatment of dominant genetic disorders with high precision

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Nucleic Acid-Based Drugs Market, by Drug Type

  • 8.1. Antisense Oligonucleotides
  • 8.2. DNA/RNA Aptamers
  • 8.3. mRNA-Based Therapeutics
  • 8.4. Nucleoside Analogs
  • 8.5. RNA Interference (RNAi) Therapeutics
    • 8.5.1. MicroRNA (MiRNA)
    • 8.5.2. Short Hairpin RNA (ShRNA)
    • 8.5.3. Short Interfering RNA (SiRNA)

9. Nucleic Acid-Based Drugs Market, by Molecule Type

  • 9.1. Large Molecule
  • 9.2. Small Molecule

10. Nucleic Acid-Based Drugs Market, by Route of Administration

  • 10.1. Inhalation
  • 10.2. Intramuscular
  • 10.3. Intravenous
  • 10.4. Oral
  • 10.5. Subcutaneous

11. Nucleic Acid-Based Drugs Market, by Therapeutic Area

  • 11.1. Cardiovascular Diseases
  • 11.2. Infectious Diseases
    • 11.2.1. Bacterial Infections
    • 11.2.2. Fungal Infections
    • 11.2.3. Viral Infections
  • 11.3. Metabolic Disorders
  • 11.4. Neurological Disorders
  • 11.5. Oncology
    • 11.5.1. Hematologic Malignancies
    • 11.5.2. Solid Tumors
  • 11.6. Rare Diseases

12. Nucleic Acid-Based Drugs Market, by End-User

  • 12.1. Academic & Research Institutes
  • 12.2. Contract Research Organizations
  • 12.3. Hospitals & Clinics
  • 12.4. Pharmaceutical & Biotechnology Companies

13. Nucleic Acid-Based Drugs Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Nucleic Acid-Based Drugs Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Nucleic Acid-Based Drugs Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Alnylam Pharmaceuticals, Inc.
    • 16.3.2. Amgen Inc.
    • 16.3.3. Arcturus Therapeutics Holdings Inc.
    • 16.3.4. Arrowhead Pharmaceuticals, Inc.
    • 16.3.5. AstraZeneca PLC
    • 16.3.6. Beam Therapeutics Inc.
    • 16.3.7. Biogen, Inc.
    • 16.3.8. BioMarin Pharmaceutical Inc.
    • 16.3.9. BioNTech SE
    • 16.3.10. Bluebird Bio, Inc.
    • 16.3.11. CRISPR Therapeutics AG
    • 16.3.12. CureVac N.V.
    • 16.3.13. Dynavax Technologies Corporation
    • 16.3.14. Editas Medicine, Inc.
    • 16.3.15. Eli Lilly and Company
    • 16.3.16. Evotec SE
    • 16.3.17. F. Hoffmann-La Roche Ltd.
    • 16.3.18. Generation Bio Co.
    • 16.3.19. Gilead Sciences, Inc.
    • 16.3.20. GSK PLC
    • 16.3.21. Intellia Therapeutics, Inc.
    • 16.3.22. Ionis Pharmaceuticals, Inc.
    • 16.3.23. Merck & Co., Inc.
    • 16.3.24. Moderna, Inc.
    • 16.3.25. Novartis AG
    • 16.3.26. Novo Nordisk A/S
    • 16.3.27. Orna Therapeutics, Inc.
    • 16.3.28. Pfizer Inc.
    • 16.3.29. ProQR Therapeutics N.V.
    • 16.3.30. Sangamo Therapeutics, Inc.
    • 16.3.31. Sanofi SA
    • 16.3.32. Sarepta Therapeutics, Inc.
    • 16.3.33. Silence Therapeutics PLC
    • 16.3.34. Stoke Therapeutics, Inc.
    • 16.3.35. Takeda Pharmaceutical Company Limited
    • 16.3.36. Vertex Pharmaceuticals Incorporated
    • 16.3.37. Voyager Therapeutics, Inc.
    • 16.3.38. Wave Life Sciences Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제