시장보고서
상품코드
1868956

페인팅 로봇 시장 : 최종사용자 산업별, 로봇 유형별, 코팅 유형별, 기술별, 축수별, 자동화 레벨별, 적재량별 - 세계 예측(2025-2032년)

Painting Robot Market by End User Industry, Robot Type, Coating Type, Technology, Axis Count, Automation Level, Payload Capacity - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 197 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

페인팅 로봇 시장은 2032년까지 CAGR 11.75%로 123억 9,000만 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024년 50억 9,000만 달러
추정연도 2025년 56억 8,000만 달러
예측연도 2032년 123억 9,000만 달러
CAGR(%) 11.75%

자동 도장 플랫폼이 정밀한 도포, 향상된 안전성, 유연한 생산성의 이점을 통해 산업 마감을 어떻게 변화시키고 있는지 알아보세요.

도장 로봇은 다양한 제조 환경에서 더 높은 처리량, 반복 가능한 품질, 작업자의 안전성을 향상시켜 산업용 마감 작업에서 점점 더 중심적인 역할을 하고 있습니다. 이러한 자동 시스템은 기계적 관절 운동, 정밀한 모션 제어, 첨단 도포 기술을 결합하여 일관된 필름 두께, 에지 커버리지, 복잡한 형태의 처리가 요구되는 응용 분야에서 수동 스프레이를 대체하거나 보완합니다.

로봇 공학, 도장 화학, 디지털 제어 기술의 발전이 융합되어 산업 도장 분야의 조달 기준과 운영 모델을 재정의

도장 자동화 환경은 여러 기술적, 운영적 요인이 융합되면서 빠르게 변화하고 있습니다. 로봇 아키텍처는 기존 관절형 암에서 다양화되어 좁은 셀 공간을 위한 고속 델타 플랫폼과 컴팩트한 스칼라 유닛이 채택되는 한편, 6축 시스템은 뛰어난 이동성으로 복잡한 형태에 대응할 수 있는 6축 시스템도 계속 등장하고 있습니다. 이러한 하드웨어의 변화에 맞추어 소프트웨어도 진화하고 있습니다. 비전 가이드 페인팅, 시뮬레이션 기반 채널 최적화, 디지털 트윈 기능을 통해 물리적 도입 전 신속한 프로그래밍과 가상 검증이 가능합니다.

최근 미국의 관세 조치로 인해 도장 자동화 생태계 전반공급망 전략, 조달 동향 및 컴플라이언스 관행이 어떻게 재구성되었는지 평가

최근 미국이 시행한 관세 조치는 도장 로봇에 사용되는 자동화 부품, 도장 재료, 서브 어셈블리의 세계 공급망 전체에 연쇄적인 영향을 미쳤습니다. 특정 수입 부품에 대한 관세 인상으로 인해 제조업체들은 조달 전략을 재평가하고 공급업체 다변화 및 지역화 노력을 가속화하고 있습니다. 이에 따라 일부 통합업체와 OEM은 관세 리스크와 리드타임 변동을 줄이기 위해 지역적으로 가까운 지역으로 핵심 부품 생산을 이전하거나 여러 Tier 1 공급업체를 인증하는 데 투자하고 있습니다.

상세한 세분화 분석을 통해 산업별 이용 사례, 로봇 아키텍처, 코팅 화학, 자동화 기능이 상호 작용하여 솔루션 선택 및 도입 채널을 결정하는 메커니즘을 파악할 수 있습니다.

세분화 분석은 산업 부문, 로봇 아키텍처, 코팅 화학, 도입 모델에서 기술 역량과 구매 요구사항이 어떻게 교차하는지를 보여줍니다. 최종사용자 산업별로는 자동차, 건설, 전자기기, 일반 산업을 구분하여 기대치가 달라집니다. 자동차 마감 용도에서는 엄격한 외관 공차가 요구되는 고정밀 차체, 엔진 부품, 인테리어 코팅이 요구되는 반면, 건설 관련 작업에서는 내구성과 내후성이 지배적인 건축용 패널 및 구조 부품의 보호에 초점을 맞추었습니다. 전자기기 응용 분야에서는 초미세 기판 코팅 및 반도체 패키징 솔루션이 우선시되며, 미세 증착 정밀도와 엄격한 입자 관리가 요구됩니다. 반면, 가구 및 기계와 같은 일반 산업 분야에서는 마감의 미적 감각과 보호 성능의 균형이 중요시됩니다.

북미, 유럽, 중동 및 아프리카, 아시아태평양 산업 우선순위와 공급망 구조가 도장 자동화 수요 프로파일 및 도입 전략에 미치는 영향

지역별 동향은 도장 자동화 수요 패턴과 공급 측면의 구조 모두에 영향을 미칩니다. 아메리카 지역에서는 자동차 조립의 현대화, 복잡한 제조의 니어쇼어링 증가, 주요 제조 회랑에 집중된 기존 공장의 리노베이션 기회로 인해 산업 응용 분야가 주도하고 있습니다. 이 지역에서의 투자 결정은 환경 규제 준수, 국내 공급업체 네트워크, 지역적으로 분산된 운영을 지원할 수 있는 서비스 능력을 중시하는 경향이 있습니다.

도장 자동화 경쟁 구도가 소프트웨어 기반 서비스 및 협력적 공급업체 파트너십을 제공하는 통합 시스템 프로바이더로 전환되고 있는 이유

도장 자동화 공급업체 간의 경쟁은 하드웨어 중심의 제공 형태에서 통합 서비스 중심의 솔루션으로 진화하고 있습니다. 주요 기업은 로봇 암, 페인트 공급 시스템, 비전 감지 패키징, 고급 소프트웨어를 결합하여 고객의 통합 리스크를 줄이고 있습니다. 이 번들링 접근 방식은 원격 진단, 예지보전 구독, 사업자 교육 프로그램 등 확장된 서비스 포트폴리오로 보완됩니다.

도장 자동화에서 조달 모듈화 및 디지털화를 통한 탄력성 강화와 가치 창출 가속화를 위한 제조업체를 위한 실용적인 단계

업계 리더는 경쟁 우위를 확보하기 위해 공급업체 다각화, 모듈형 디자인 사고, 디지털화의 실용적인 조합을 추구해야 합니다. 먼저, 관세로 인한 혼란과 긴 리드타임에 대한 노출을 줄이기 위해 중요 서브시스템의 조달 전략을 재검증하고, 동시에 기술 및 품질 사양을 충족할 수 있는 대체 공급업체를 인증해야 합니다. 모듈형 엔드 이펙터와 퀵 체인지 인터페이스에 대한 투자는 전환 시간을 단축하고 변화하는 제품 구성에 대한 자본 투자를 보호합니다.

업계 지식과 운영 관행을 검증하기 위해 1차 현장 조사, 공급업체 분석, 표준 검토, 시나리오 테스트를 결합한 종합적인 혼합 방법을 통해 조사를 실시했습니다.

본 조사에서는 도장 자동화에 대한 전체적인 그림을 파악하기 위해 정성적, 정량적 방법을 조합하여 실시했습니다. 1차 데이터 수집에는 자동차, 건설, 전자, 일반 산업 부문의 최종사용자에 대한 심층 인터뷰, 대표적인 생산 시설 현장 방문, 통합업체, 페인트 배합업체, 부품 공급업체와의 구조화된 토론이 포함됩니다. 이러한 노력을 통해 운영상의 문제점, 사양 우선순위, 현실적인 도입 일정에 대한 인사이트를 얻을 수 있었습니다.

도장 자동화가 지속가능한 제조 우위를 어떻게 촉진할 수 있는지 명확히 하고, 기술, 운영 및 공급업체 전략에 대한 시사점을 통합

종합적으로 볼 때, 하드웨어 혁신, 도장 화학의 진화, 디지털 제어가 조화를 이루며, 보다 광범위한 제조 산업에서 자동 도장이 실현 가능한 개선책이 될 수 있는 성숙한 기술 영역이 형성되고 있습니다. 무역 조치와 부품 조달의 복잡성으로 인한 단기적인 역풍은 전략적 조정을 촉구하는 한편, 공급업체 다변화, 지역별 조립, 모듈형 시스템 설계와 같은 탄력성 구축 방안에 박차를 가하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 페인팅 로봇 시장 : 최종사용자 산업별

  • 자동차
    • 차체
    • 엔진 부품
    • 내장
  • 건설
    • 건축용 패널
    • 구조 부품
  • 전자기기
    • 인쇄회로기판 코팅
    • 반도체 패키징
  • 일반 산업
    • 가구
    • 기계

제9장 페인팅 로봇 시장 : 로봇 유형별

  • 관절식
  • 직교형
  • 델타형
  • 스카라

제10장 페인팅 로봇 시장 : 코팅 유형별

  • 액체
    • 용제계
    • 수성
  • 분체
    • 에폭시
    • 폴리에스테르

제11장 페인팅 로봇 시장 : 기술별

  • 기존형
  • 정전식

제12장 페인팅 로봇 시장 : 축수별

  • 4축
  • 6축

제13장 페인팅 로봇 시장 : 자동화 레벨별

  • 완전 자동
  • 반자동

제14장 페인팅 로봇 시장 : 적재량별

  • 0-10kg
  • 10-20kg
  • 20kg 초과

제15장 페인팅 로봇 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동, 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제16장 페인팅 로봇 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제17장 페인팅 로봇 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제18장 경쟁 구도

  • 시장 점유율 분석, 2024년
  • FPNV 포지셔닝 매트릭스, 2024년
  • 경쟁 분석
    • ABB Ltd
    • FANUC Corporation
    • KUKA Aktiengesellschaft
    • Yaskawa Electric Corporation
    • Durr Aktiengesellschaft
    • Mitsubishi Electric Corporation
    • Kawasaki Heavy Industries, Ltd.
    • Seiko Epson Corporation
    • Comau S.p.A
    • Staubli International AG
KSA

The Painting Robot Market is projected to grow by USD 12.39 billion at a CAGR of 11.75% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 5.09 billion
Estimated Year [2025] USD 5.68 billion
Forecast Year [2032] USD 12.39 billion
CAGR (%) 11.75%

Understanding how automated coating platforms are reshaping industrial finishing with precision deposition, safety improvements, and flexible production advantages

Painting robots are increasingly central to industrial finishing operations, delivering higher throughput, repeatable quality, and improved operator safety across a wide range of manufacturing contexts. These automated systems combine mechanical articulation, precision motion control, and advanced deposition technologies to replace or augment manual spraying in applications that demand consistent film thickness, edge coverage, and complex geometry handling.

Adoption drivers include the need to reduce hazardous solvent exposure, tighten process control for cosmetic and protective coatings, and achieve faster cycle times while maintaining regulatory compliance for emissions and worker safety. Advances in sensor integration, real-time monitoring, and adaptive control have expanded the practical envelope for robotic coating, making previously manual-intensive tasks economically viable to automate.

In parallel, buyers are demanding flexible platforms that can switch between coating chemistries and part families with minimal downtime. This has elevated the importance of modular end-effectors, quick-change tooling, and software-defined recipes. As manufacturers contend with rising environmental standards and more complex component architectures, painting robots are positioned as an essential lever for preserving finish quality while improving overall production resilience.

How converging advances in robotics, coating chemistry, and digital controls are redefining procurement criteria and operational models in industrial finishing

The landscape for painting automation is shifting rapidly as multiple technological and operational forces converge. Robotics architectures are diversifying beyond traditional articulated arms to include higher-speed delta platforms and compact SCARA units for tight cell footprints, while six-axis systems continue to address complex geometries with superior articulation. These hardware shifts are matched by software evolution: vision-guided painting, simulation-driven path optimization, and digital twin capabilities enable rapid programming and virtual validation before physical deployment.

Coating technology itself is undergoing a transition with greater emphasis on low-VOC waterborne chemistries and high-efficiency electrostatic deposition methods that reduce overspray and material waste. Powder coating formulations are also gaining traction for industrial components where durability and environmental compliance are paramount. The result is a more integrated ecosystem in which robot motion, end-of-arm tooling, and coating delivery systems are designed together to maximize transfer efficiency and finish consistency.

Operational models are transforming as well, with manufacturers requesting turnkey cells, retrofit kits to upgrade legacy lines, and outcome-based service agreements that align supplier incentives with uptime and quality metrics. Meanwhile, the integration of sensors and predictive maintenance algorithms is extending asset life and enabling condition-based servicing. These cumulative shifts are not incremental; they are redefining procurement criteria and the skill sets required to manage advanced finishing operations.

Assessing how recent United States tariff measures have reshaped supply chain strategies, procurement dynamics, and compliance practices across the painting automation ecosystem

Recent tariff measures implemented by the United States have had a cascading effect across global supply chains for automation components, coating materials, and subassemblies used in painting robots. Increased duties on certain imported components have prompted manufacturers to re-evaluate sourcing strategies, accelerating supplier diversification and regionalization efforts. In response, some integrators and OEMs have shifted production of critical parts to closer geographies or invested in qualifying multiple tier-one suppliers to mitigate customs exposure and lead-time volatility.

The cost and lead-time implications have encouraged greater adoption of local inventory buffers and dual-sourcing agreements for high-risk components. This trend has in turn increased the emphasis on supplier relationship management and the need for transparent logistics tracking. For buyers, the tariffs have changed the calculus for in-house versus outsourced assembly, driving interest in co-manufacturing arrangements that preserve technology know-how while reducing exposure to international duty fluctuations.

On the regulatory and compliance front, there is heightened scrutiny of origin documentation and the classification of robotic subsystems, which obliges companies to invest in customs expertise and trade-compliance workflows. While tariffs have increased near-term procurement complexity, they have also catalyzed regional supplier development and investment in domestic tooling capacity, which may yield longer-term resilience for production ecosystems dependent on advanced finishing automation.

Detailed segmentation analysis revealing how industry use-cases, robot architectures, coating chemistries, and automation features jointly determine solution selection and deployment pathways

Segmentation analysis illuminates where technical capabilities and buyer requirements intersect across industries, robot architectures, coating chemistries, and deployment models. By end-user industry, distinctions between Automotive, Construction, Electronics, and General Industry create different expectations: automotive finish applications demand high-precision car body, engine component, and interior coatings with tight cosmetic tolerances, whereas construction-related work focuses on architectural panels and structural component protection where durability and weather resistance dominate. Electronics applications prioritize ultraclean PCB board coatings and semiconductor packaging solutions that require micro-deposition accuracy and strict particulate control, while general industry segments such as furniture and machinery balance finish aesthetics with protective performance.

Robot type defines cell design and throughput capacity. Articulated arms provide the dexterity needed for complex contours, Cartesian systems excel in linear gantry-style applications, delta robots deliver high-speed coverage for small parts, and SCARA units offer compact, repeatable performance for simpler geometries. Coating type further structures solution design choices: liquid systems separate into solvent-based and water-based families, each with distinct handling, ventilation, and curing needs, while powder systems are split into epoxy and polyester chemistries that influence curing cycles and surface preparation protocols. Technology selection between conventional spray and electrostatic deposition impacts material transfer efficiency and overspray management, and axis count - whether four-axis or six-axis - determines reach and orientation flexibility for complex parts.

Automation level and payload capacity complete the segmentation picture by matching system sophistication to production realities. Fully automated lines demand integrated conveyors, automated masking and masking removal, and robust material handling for higher payloads, whereas semi-automated arrangements offer lower capital intensity and faster changeover for mixed-model production. Payload categories from sub-10 kilogram manipulators up to systems rated above 20 kilograms guide end-effector design and structural sizing. Together, these segmentation dimensions shape specification documents, acceptance criteria, and lifecycle service plans for painting automation deployments.

How regional industrial priorities and supply chain structures in the Americas, Europe Middle East & Africa, and Asia-Pacific shape demand profiles and deployment strategies for painting automation

Regional dynamics influence both demand patterns and the supply-side structure for painting automation. In the Americas, industrial applications are driven by automotive assembly modernization, increasing nearshoring of complex manufacturing, and retrofit opportunities in legacy plants concentrated in tier-one manufacturing corridors. Investment decisions in this region often emphasize compliance with environmental regulations, domestic supplier networks, and service capability to support geographically dispersed operations.

Europe, Middle East & Africa shows differentiated impulses: Western Europe emphasizes energy efficiency, emissions reduction, and adoption of waterborne and powder coatings to meet stringent environmental standards, while parts of the Middle East and Africa pursue infrastructure-driven growth and industrialization that create demand for robust, high-throughput systems adapted to local supply conditions. Across the region, integrators are increasingly offering modular, low-footprint cells to accommodate variable factory layouts and to ease the path to automation for smaller manufacturers.

Asia-Pacific continues to present a diverse mix of high-volume electronics and automotive manufacturing hubs alongside rapidly growing industrial segments in machining and furniture production. The region's ecosystem benefits from dense supplier networks, mature contract manufacturing, and localized component production, which together support faster deployment cycles. However, differences in regulatory approaches and workforce skill levels mean that solution providers must tailor training, service agreements, and documentation to regional expectations and operational realities.

Why the competitive landscape in automated finishing is shifting toward integrated system providers offering software-enabled services and collaborative supplier partnerships

Competitive dynamics among suppliers of painting automation are evolving from hardware-centric offerings toward integrated, service-led solutions. Leading firms are combining robotic arms, coating delivery systems, vision and sensing packages, and advanced software to reduce integration risk for customers. This bundling approach is complemented by extended service portfolios that include remote diagnostics, predictive maintenance subscriptions, and operator training programs designed to accelerate time-to-value.

Partnerships between coating formulators and integrators are becoming more common as companies aim to optimize total system performance rather than individual components. Such collaborations enable co-development of application-specific recipes and end-of-arm tooling that improve transfer efficiency and reduce rework. In parallel, smaller specialist vendors continue to differentiate through niche expertise in areas like electrostatic applicators, powder recoating systems, or micro-deposition heads for electronics.

Investment priorities among suppliers reflect a focus on software-defined features: offline programming suites, digital twin modeling, and cloud-enabled analytics that provide comparative performance benchmarking across plants. Providers that offer flexible financing and outcome-oriented service models are gaining traction with buyers who prefer operating expense structures over large capital outlays. Overall, the competitive landscape rewards firms that can demonstrate integrated performance, strong after-sales support, and a clear pathway for technology upgrades.

Actionable steps for manufacturers to increase resilience and accelerate value capture from painting automation through sourcing, modularity, and digitalization

Industry leaders should pursue a pragmatic combination of supplier diversification, modular design thinking, and digital enablement to secure competitive advantage. Start by revalidating sourcing strategies for critical subsystems to reduce exposure to tariff-driven disruptions and long lead times, and simultaneously qualify alternate suppliers that can meet technical and quality specifications. Investing in modular end-effectors and quick-change interfaces will shorten changeover times and protect capital investments against evolving product mixes.

Prioritize pilot deployments that pair simulation-based programming with on-site operator training to minimize commissioning timelines and ensure reproducible quality. Implement sensor-rich process monitoring and predictive maintenance to move from calendar-based servicing to condition-based interventions, thereby improving uptime and lowering lifecycle costs. Encourage cross-functional collaboration between process engineers, production planners, and procurement teams so that automation projects align with broader manufacturing objectives such as sustainability, throughput, and flexibility.

Finally, adopt commercial models that balance capital and service considerations: offer options for phased investments, subscription services for analytics, and outcome-driven contracts for high-value lines. Emphasize partnerships with coating developers to co-optimize chemistry and application hardware, and build internal capabilities for digital twins and virtual commissioning to shorten deployment cycles and reduce implementation risk.

Comprehensive mixed-methods research combining primary fieldwork, supplier analysis, standards review, and scenario testing to validate industry insights and operational practices

The research approach combined qualitative and quantitative techniques to ensure a holistic view of the painting automation landscape. Primary data collection included in-depth interviews with end users across automotive, construction, electronics, and general industry verticals, guided site visits to representative production facilities, and structured discussions with integrators, coating formulators, and component suppliers. These engagements provided insights into operational pain points, specification priorities, and realistic deployment timelines.

Secondary research drew on technical standards, regulatory guidance, patent filings, and product literature to map the evolution of key technologies such as electrostatic deposition, waterborne formulations, and multi-axis motion control. Supplier product data, case study documentation, and white papers were systematically cross-referenced to validate capability claims and identify performance benchmarks. Scenario analysis and sensitivity testing were used to explore supply chain disruptions and tariff impacts, while triangulation across sources reduced bias and improved confidence in the directional conclusions.

Throughout the study, emphasis was placed on traceability of assumptions, transparency of methodological choices, and the use of anonymized primary evidence to substantiate claims about operational practices and technology adoption trends.

Synthesis of implications across technology, operations, and supplier strategy that clarifies how painting automation will drive durable manufacturing advantages

The cumulative picture is one of a maturing technology area where hardware innovation, coating chemistry evolution, and digital controls are aligning to make automated painting a viable improvement for a broader set of manufacturers. Short-term headwinds from trade policy and component sourcing complexity are prompting strategic adjustments, but they are also accelerating resilience-building measures such as supplier diversification, regional assembly, and modular system design.

Operationally, the emphasis will continue to be on reducing variability, improving transfer efficiency, and minimizing environmental footprints while preserving finish integrity across increasingly complex parts. For suppliers, success will favor those who can provide tightly integrated solutions that marry mechanical performance, coating expertise, and software-enabled lifecycle services. For manufacturers, the opportunity lies in treating painting automation as a systems problem that requires coordinated investment across process control, workforce capability, and supplier management.

In sum, painting robots are moving from niche, high-volume applications into broader industrial adoption as enabling technologies and commercial models evolve to reduce integration risk and accelerate measurable operational benefits.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Adoption of artificial intelligence algorithms to optimize robotic painting accuracy and reduce material wastage
  • 5.2. Integration of collaborative robots in small batch painting lines to enhance flexibility and worker safety
  • 5.3. Implementation of IoT enabled monitoring systems for real-time quality control and predictive maintenance in paint shops
  • 5.4. Rising demand for eco-friendly waterborne coatings driving the development of specialized robotic dispensing systems
  • 5.5. Deployment of vision guided robots to achieve 3D surface mapping and adaptive paint thickness control in automotive assembly
  • 5.6. Development of lightweight modular painting robots for use in complex geometries and hard to reach industrial applications
  • 5.7. Expansion of remote operation platforms allowing centralized management and diagnostics of multiple painting robots over networks
  • 5.8. Adoption of multi axis robotic arms capable of simultaneous painting and inspection to reduce cycle times and labor costs

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Painting Robot Market, by End User Industry

  • 8.1. Automotive
    • 8.1.1. Car Body
    • 8.1.2. Engine Components
    • 8.1.3. Interiors
  • 8.2. Construction
    • 8.2.1. Architectural Panels
    • 8.2.2. Structural Components
  • 8.3. Electronics
    • 8.3.1. Pcb Board Coating
    • 8.3.2. Semiconductor Packaging
  • 8.4. General Industry
    • 8.4.1. Furniture
    • 8.4.2. Machinery

9. Painting Robot Market, by Robot Type

  • 9.1. Articulated
  • 9.2. Cartesian
  • 9.3. Delta
  • 9.4. Scara

10. Painting Robot Market, by Coating Type

  • 10.1. Liquid
    • 10.1.1. Solvent Based
    • 10.1.2. Water Based
  • 10.2. Powder
    • 10.2.1. Epoxy
    • 10.2.2. Polyester

11. Painting Robot Market, by Technology

  • 11.1. Conventional
  • 11.2. Electrostatic

12. Painting Robot Market, by Axis Count

  • 12.1. Four Axis
  • 12.2. Six Axis

13. Painting Robot Market, by Automation Level

  • 13.1. Fully Automated
  • 13.2. Semi Automated

14. Painting Robot Market, by Payload Capacity

  • 14.1. 0-10 Kg
  • 14.2. 10-20 Kg
  • 14.3. Above 20 Kg

15. Painting Robot Market, by Region

  • 15.1. Americas
    • 15.1.1. North America
    • 15.1.2. Latin America
  • 15.2. Europe, Middle East & Africa
    • 15.2.1. Europe
    • 15.2.2. Middle East
    • 15.2.3. Africa
  • 15.3. Asia-Pacific

16. Painting Robot Market, by Group

  • 16.1. ASEAN
  • 16.2. GCC
  • 16.3. European Union
  • 16.4. BRICS
  • 16.5. G7
  • 16.6. NATO

17. Painting Robot Market, by Country

  • 17.1. United States
  • 17.2. Canada
  • 17.3. Mexico
  • 17.4. Brazil
  • 17.5. United Kingdom
  • 17.6. Germany
  • 17.7. France
  • 17.8. Russia
  • 17.9. Italy
  • 17.10. Spain
  • 17.11. China
  • 17.12. India
  • 17.13. Japan
  • 17.14. Australia
  • 17.15. South Korea

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. ABB Ltd
    • 18.3.2. FANUC Corporation
    • 18.3.3. KUKA Aktiengesellschaft
    • 18.3.4. Yaskawa Electric Corporation
    • 18.3.5. Durr Aktiengesellschaft
    • 18.3.6. Mitsubishi Electric Corporation
    • 18.3.7. Kawasaki Heavy Industries, Ltd.
    • 18.3.8. Seiko Epson Corporation
    • 18.3.9. Comau S.p.A
    • 18.3.10. Staubli International AG
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제