시장보고서
상품코드
1870225

건설용 재생 재료 시장 : 재료 유형별, 용도별, 최종 용도별, 유통 경로별, 기술별 - 세계 예측(2025-2032년)

Construction Renewable Materials Market by Material Type, Application, End Use, Distribution Channel, Technology - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 198 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

건설용 재생 재료 시장은 2032년까지 CAGR 12.21%로 8억 2,011만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 3억 2,608만 달러
추정 연도 2025년 3억 6,525만 달러
예측 연도 2032 8억 2,011만 달러
CAGR(%) 12.21%

환경 규제, 법규, 공급망에 대한 압박이 가중되는 가운데, 건설자재 조달에서 재생 가능 자재로의 지속가능한 전환이 어떻게 형성되고 있는가?

건설 산업은 전환점에 서 있으며, 환경 대책의 필요성, 비용 압박, 재료 과학의 혁신이 교차하여 프로젝트 사양 수립, 자금 조달 및 실행 방법을 재정의하고 있습니다. 공공 및 민간 부문을 막론하고 이해관계자들은 내포탄소 저감, 순환성, 복원력을 점점 더 중요시하고 있으며, 기존의 재료 선택에 대한 재검토를 촉구하고 있습니다. 동시에, 지정학적 변동과 원자재 가격 변동으로 인한 공급망 취약성은 개발업체, 계약업체, 자재 제조업체들이 성능과 공급의 연속성을 동시에 충족시킬 수 있는 재생 가능한 대체재를 찾도록 유도하고 있습니다.

정책 업데이트, 제조 기술의 발전, 자본 배분의 변화가 결합되어 재생 가능 건축자재의 대규모 도입을 촉진하고 있습니다.

재생 건축자재 환경은 수요 동향, 제품 개발 우선순위, 자본의 흐름을 재구성하는 변혁적 변화에 의해 재편되고 있습니다. 첫째, 지자체, 주 및 국가 차원의 규제 변화로 인해 설계 프로세스 초기에 대체 재료를 고려하도록 유도하고, 내장된 탄소량과 순환성에 대한 새로운 기준치가 만들어지고 있습니다. 조달 의무화, 녹색건축 인증과 같은 정책적 수단은 건축 기준의 업데이트와 연동되어 지속가능한 자재를 설계 후 추가 요소가 아닌 업스트림 공정의 설계 고려사항으로 변모시키고 있습니다.

2025년 무역 조치가 재생 가능 재료 공급업체 전반에 걸쳐 공급망 압력을 증폭시키고, 전략적 현지 조달 및 대체를 가속화하는 방법을 평가합니다.

2025년 미국이 도입한 관세 및 무역 조치로 인해 재생 건축자재를 지원하는 공급망에 새로운 복잡성이 추가되었습니다. 관세 조정은 비용과 타이밍의 충격으로 작용하여 수입 바이오 기반 부품, 특수 재활용 원료, 특정 조립식 조립품에 차별적인 영향을 미치고 있습니다. 이에 따라, 제조업체와 사양 개발자들은 조달 전략을 재검토하고, 수입 관세 및 운송 변동 위험에 대한 노출을 줄이기 위해 현지화 노력을 가속화하고 있습니다. 이러한 움직임으로 일부 국제 공급업체들은 시장 접근성을 유지하기 위해 국내 생산기지 설립 및 전략적 제휴를 추진하고 있으며, 국내 생산업체들은 수요 전환에 대응하기 위한 사업 확장의 기회를 얻고 있습니다.

재료 등급, 응용 분야, 최종 용도 부문, 유통 경로, 기술 촉진요인이 채택 결과를 결정하는 메커니즘을 밝히는 부문 주도 과제

제품 성능과 상용화 경로를 이해하려면 재료 등급, 용도, 최종 사용 분야, 유통 방식, 기술 촉진요인을 채택의 상호 의존적인 요소로 취급하는 세분화를 염두에 둔 분석이 필요합니다. 재료의 방향은 대나무, 바이오플라스틱, 재생 목재, 재활용 강재에 이르기까지 다양하며, 각기 다른 가공 요건, 인증 경로, 수명주기 특성을 가지고 있습니다. 용도 분야는 바닥재, 단열재, 인테리어 마감재, 지붕재, 구조부재를 포함하며, 바닥재는 대나무 바닥재, 코르크 바닥재, 재생 목재 바닥재로 세분화됩니다. 단열재는 셀룰로오스, 코르크, 천연 양모로, 지붕재는 대나무 지붕 시스템, 그린 루프 시스템, 태양광 통합형 지붕재로 각각 세분화됩니다. 이러한 재료와 용도의 차이는 사양 수립 절차, 테스트 요건 및 보증 프레임워크에 실질적인 영향을 미칩니다.

지역별 정책 프레임워크, 생산능력, 구매자의 선호도 차이가 세계 건설시장에서 어떻게 다른 도입 경로를 형성하고 있는가?

지역별 동향은 재생 건축자재 공급망 선택, 규제 리스크, 상업적 기회에 큰 영향을 미치고 있으며, 아메리카, 유럽, 중동 및 아프리카, 아시아태평양별로 각기 다른 패턴이 두드러집니다. 미국 대륙에서는 지방정부의 지속가능성 의무, 주정부 차원의 친환경 조달 정책, 민간 부문의 적극적인 기후변화 대응이 결합되어 재생 목재 프로그램 및 재활용 철강 공급망 혁신을 촉진하고 바이오 기반 단열재 및 바닥재 시범 프로젝트를 지원하고 있습니다. 국경 간 무역 관계와 국내 생산능력은 대체 재료의 보급 속도에 영향을 미치고 있으며, 이해관계자들은 수입 변동 위험을 헤지하기 위해 탄력적인 조달과 현지 가공 파트너십을 우선시하고 있습니다.

제품 혁신, 수직적 통합, 검증에 기반한 차별화가 장기적인 프로젝트 파이프라인을 확보할 공급업체를 결정하는 경쟁적 경쟁 생태계

재생 건축자재의 경쟁은 전문 제조업체, 시스템 통합업체, 시험 및 인증기관, 유통 플랫폼이 복합적으로 작용하여 형성되고 있습니다. 주요 소재 혁신 기업들은 기관 투자자들의 엄격한 요구 사항을 충족시키기 위해 검증된 성능과 조달 출처 및 수명주기 영향에 대한 명확한 투명성 확보에 초점을 맞추고 있습니다. 공급업체 환경 전반에서 관찰되는 전략적 움직임에는 품질 및 납기 관리를 위한 조립식 제조 및 조립에 대한 수직적 통합, 안정적인 원자재 확보를 위한 재활용 업체 및 원자재 조달 업체와의 제휴, 그리고 기존에는 광범위하게 활용되지 못했던 내화, 내습, 내하중 성능의 격차를 해소하기 위한 연구개발에 대한 투자 등이 있습니다. 투자가 포함됩니다.

기업 리더가 공급 탄력성을 보장하고, 제품 성능을 검증하며, 모든 프로젝트 유형에서 주류화를 가속화하기 위한 실질적인 전략적 우선순위를 제시합니다.

재생 건축자재로의 전환을 활용하고자 하는 업계 리더들은 조달, 제품 개발, 상업적 실행을 연계하는 실질적이고 영향력 있는 일련의 행동을 우선시해야 합니다. 기업은 관세와 운송의 혼란에 대한 노출을 줄이기 위해 공급망 추적성 강화와 원자재 조달 경로 다변화에 투자하는 한편, 현지 생산과 전략적 제휴를 통해 리드타임을 단축하고 지역 수요에 대한 대응력을 높여야 합니다. 제품팀은 건축 기준 적합성, 내화 및 내습성, 구조적 성능에 대한 검증 프로그램을 가속화하여 설계자와 보험회사가 보다 폭넓은 도입을 확신할 수 있도록 해야 합니다.

이해관계자 인터뷰, 표준 분석, 시나리오 매핑을 통합한 투명하고 다각적인 조사 방법을 통해 재생 가능 재료의 지속가능한 도입 경로를 식별합니다.

본 Executive Summary를 뒷받침하는 조사 방법은 정성적 및 정량적 증거 스트림을 결합하여 재생 가능 재료 도입 경로에 대한 다각적인 이해를 구축합니다. 공급망 각 거점(자재 제조업체, 가공업체, 사양 수립자, 조달 책임자)에 대한 1차 인터뷰를 통해 운영상의 제약, 성능 검증의 필요성, 도입 저해요인에 대한 지식을 얻었습니다. 2차 분석에서는 규제 문서, 조달 정책, 기술 표준, 공개된 제품 테스트 결과를 통합하여 규범 및 인증 요건의 실무적 의미를 삼각 측량했습니다. 공급망 매핑 작업을 통해 관세 변경, 물류 제약, 원자재 공급 상황이 프로젝트 수행에 가장 큰 다운스트림 영향을 미치는 핵심 거점을 파악했습니다.

기술 검증, 조달 조정, 공급망 탄력성 통합이 건설 분야에서 지속가능성 목표를 실현 가능한 성과로 전환하는 데 필수적인 이유

결론적으로, 재생 건축자재의 진로는 이해관계자들이 정책 준비, 기술 검증, 공급망 탄력성을 어떻게 효과적으로 결합하는지에 따라 점점 더 결정될 것입니다. 규제 모멘텀과 구매자의 수요가 매장 탄소 감축과 순환성을 향한 강력한 가이드라인을 만들어내고 있으며, 제조 및 재활용 기술 발전이 역사적인 성능 격차를 좁혀가고 있습니다. 그러나 시장의 전환은 고르지 않을 것입니다: 성공 여부는 시험 및 인증에 대한 집중적인 투자, 무역 혼란을 관리하기 위한 현실적인 공급망 다각화, 일관된 결과를 보장하기 위한 설치업체의 규모 확장 능력에 달려 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 건설용 재생 재료 시장 : 소재 유형별

  • 바이오플라스틱
  • 재생 목재
  • 재생 강재

제9장 건설용 재생 재료 시장 : 용도별

  • 바닥재
    • 대나무 바닥재
    • 코르크 바닥재
    • 재생 목재 바닥재
  • 단열재
    • 셀룰로오스
    • 코르크
    • 천연 울
  • 내장 마감 재
  • 지붕재
    • 죽즙 나무 지붕
    • 그린 루프 시스템
    • 태양광발전 통합 지붕
  • 구조 부재

제10장 건설용 재생 재료 시장 : 최종 용도별

  • 상업용
  • 산업용
  • 인프라
  • 주거용

제11장 건설용 재생 재료 시장 : 유통 채널별

  • 직접 판매
  • 판매대리점
  • 온라인 판매

제12장 건설용 재생 재료 시장 : 기술별

  • 3D 프린팅
  • 프레파브 건축
  • 기존 공법

제13장 건설용 재생 재료 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 건설용 재생 재료 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 건설용 재생 재료 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Weyerhaeuser Company
    • UPM-Kymmene Corporation
    • Stora Enso Oyj
    • West Fraser Timber Co. Ltd.
    • Kronospan GmbH
    • Metsa Group
    • Canfor Corporation
    • Louisiana-Pacific Corporation
    • Interfor Corporation
    • Binderholz GmbH
KSM 25.12.02

The Construction Renewable Materials Market is projected to grow by USD 820.11 million at a CAGR of 12.21% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 326.08 million
Estimated Year [2025] USD 365.25 million
Forecast Year [2032] USD 820.11 million
CAGR (%) 12.21%

How converging environmental, regulatory, and supply chain pressures are shaping durable shifts toward renewable materials in construction procurement

The construction industry is at an inflection point where environmental imperatives, cost pressures, and innovation in material science are intersecting to redefine how projects are specified, financed, and delivered. Stakeholders across public and private sectors increasingly prioritize embodied carbon reductions, circularity, and resilience, driving a reassessment of traditional material choices. Simultaneously, supply chain fragility exposed by geopolitical shifts and raw material volatility is prompting developers, contractors, and material manufacturers to explore renewable alternatives that offer both performance and continuity of supply.

Transition drivers are not singular; they operate across procurement policies, corporate sustainability commitments, and evolving building codes that set minimum performance thresholds. These forces create both friction and opportunity: legacy procurement practices and incumbent supplier relationships slow adoption, while performance-based contracting and lifecycle-focused procurement create openings for renewable material solutions. For design teams and specifiers, the challenge is to reconcile aesthetic and structural expectations with new material characteristics, while for operations and facilities teams the focus centers on maintainability and total cost of ownership. Taken together, these dynamics establish a complex but navigable context for renewable construction materials where strategic positioning, rigorous testing, and interoperable supply chain solutions will determine winners and laggards.

The convergence of policy updates, fabrication advances, and capital allocation shifts that are catalyzing large-scale adoption of renewable construction materials

The landscape for renewable construction materials is being reshaped by transformative shifts that rewire demand signals, product development priorities, and capital flows. First, regulatory change at municipal, state, and national levels is creating new thresholds for embodied carbon and circularity that push projects to consider alternative materials earlier in the design process. Policy instruments such as procurement mandates and green building certifications now intersect with code updates to make sustainable materials an upstream design consideration rather than a post-design add-on.

Second, innovations in production and fabrication-spanning prefabrication advances, 3D printing of bio-based composites, and improved recycling streams-are expanding the technical envelope of renewable materials. These technological shifts reduce historical trade-offs between performance and sustainability and enable new hybrid solutions that combine reclaimed or bio-derived inputs with engineered performance. Third, buyer sophistication is increasing: owners and investors are embedding environmental and resilience metrics into underwriting and valuation models, which incentivizes product transparency and third-party verification. Lastly, strategic partnerships among suppliers, fabricators, and technology providers are creating vertically integrated offerings that lower adoption friction. As a result, the sector is moving from isolated pilots toward scalable integration pathways, especially in applications where regulatory and economic benefits align with demonstrable performance gains.

Evaluating how 2025 trade measures have amplified supply chain pressure and accelerated strategic localization and substitution across renewable material suppliers

The introduction of tariffs and trade measures in 2025 by the United States has added a new layer of complexity to the supply chains that support renewable construction materials. Tariff adjustments act as a cost and timing shock that differentially affect imported bio-based components, specialty recycled inputs, and certain prefabricated assemblies. In response, manufacturers and specifiers are recalibrating procurement strategies and accelerating localization efforts to reduce exposure to import duties and shipping volatility. This dynamic has prompted some international suppliers to establish domestic production footprints or strategic partnerships to preserve market access, while domestic producers have gained leverage to scale operations to meet redirected demand.

Beyond direct price effects, tariffs have introduced planning uncertainty that affects procurement lead times, contract terms, and inventory strategies. Project teams are increasingly building contingency clauses into contracts and shifting toward earlier material commitments to lock pricing and availability. At the same time, tariffs have stimulated investment in alternative feedstocks and circular supply loops, with reclaimed wood and recycled steel benefiting from intensified collection and processing efforts. For segments that rely on specialized imports-such as certain bioplastic formulations or finished bamboo assemblies-tariff-induced constraints have accelerated product substitution debates, encouraging specifiers to validate local analogues or engineered mixes. Overall, the tariff environment is influencing where and how value is created across the supply chain and elevating the importance of supplier resilience, nearshoring, and inventory agility for stakeholders seeking to maintain timelines and design intent.

Segment-driven imperatives that reveal how material classes, application domains, end-use sectors, distribution pathways, and technology enablers determine adoption outcomes

Understanding product performance and commercial pathways requires a segmentation-aware analysis that treats material classes, applications, end-use sectors, distribution methods, and technology enablers as interdependent vectors of adoption. Material orientation spans bamboo, bioplastics, reclaimed wood, and recycled steel, each presenting distinct processing requirements, certification paths, and life-cycle attributes. Application contexts encompass flooring, insulation, interior finishes, roofing, and structural components, with flooring subdivided into bamboo flooring, cork flooring, and recycled timber flooring; insulation subdivided into cellulose, cork, and natural wool; and roofing subdivided into bamboo thatched systems, green roof systems, and solar-integrated roofing. These material and application distinctions materially influence specification protocols, testing requirements, and warranty frameworks.

End-use segmentation across commercial, industrial, infrastructure, and residential projects shapes procurement cycles, investment horizons, and acceptance thresholds. Commercial and infrastructure clients often demand life-cycle evidence and third-party verification, while residential buyers balance aesthetic preferences with long-term performance expectations. Distribution channels-direct sales, distributors, and online sales-determine lead times, customization options, and after-sales support, and they influence how product education and installation training are delivered. Technology pathways such as 3D printing, prefabrication, and traditional methods create differing installation workflows and quality control mechanisms. Synthesizing these segments reveals practical strategies: specifying reclaimed or recycled inputs in structural components requires robust traceability and engineering validation; adopting prefabricated bamboo or recycled steel assemblies can compress onsite labor and reduce waste; and leveraging online channels for standardized interior finishes can accelerate adoption among smaller builders. The interplay of these segments also highlights where pilot projects, certification efforts, and installer training will have the greatest leverage in advancing mainstream acceptance.

How differentiated regional policy frameworks, manufacturing capabilities, and buyer preferences are shaping distinct adoption pathways across global construction markets

Regional dynamics profoundly shape supply chain choices, regulatory risk, and commercial opportunity for renewable construction materials, with distinct patterns emerging across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, a mix of municipal sustainability mandates, state-level green procurement policies, and active private-sector climate commitments is encouraging innovation in reclaimed wood programs and recycled steel supply chains, while also supporting pilot projects for bio-based insulation and flooring. Cross-border trade relationships and domestic production capacities influence how quickly alternative materials can scale, and stakeholders are prioritizing resilient sourcing and local processing partnerships to hedge against import volatility.

The Europe, Middle East & Africa region is characterized by some of the most advanced regulatory frameworks and voluntary certification systems, which drive rigorous life-cycle assessments and wide adoption of green roof systems and solar-integrated roofing in urban contexts. Public procurement frameworks in several European markets incentivize circular construction practices and favor materials with verified environmental credentials, prompting manufacturers to secure robust compliance documentation. Meanwhile, infrastructure projects across the Middle East and Africa are beginning to incorporate renewable options where lifecycle advantages and climate resilience converge.

Asia-Pacific presents a mixed but rapidly evolving picture: manufacturing scale, innovation in prefabrication, and established bamboo supply chains in several markets offer pathways to cost-competitive renewable components, yet differing regulatory expectations and variable certification regimes require careful market-entry strategies. Across all regions, cross-border collaboration on standards, supply chain transparency, and capacity building for installers will accelerate uptake, while regional policy alignments and investment incentives will determine the pace at which pilots convert into standardized practice.

The competitive ecosystem where product innovation, vertical integration, and verification-driven differentiation determine which suppliers capture long-term project pipelines

Competitive dynamics in renewable construction materials are driven by a mix of specialized manufacturers, systems integrators, testing and certification bodies, and distribution platforms. Leading material innovators focus on combining validated performance with clear transparency on sourcing and lifecycle impacts to meet the rigorous demands of institutional buyers. Strategic moves observed across the supplier landscape include vertical integration into prefabrication and assembly to control quality and delivery; partnerships with recyclers and feedstock aggregators to secure steady inputs; and investments in R&D to address fire, moisture, and load-bearing performance gaps that historically constrained broader use.

Intermediary players such as distributors and fabricators are differentiating through services-offering installation training, extended warranties, and bundled product-assurance programs that lower adoption barriers for contractors and owners. Certification and testing entities are also playing a pivotal role by establishing performance baselines and enabling transparent claims that buyers can trust. As procurement shifts toward performance-based specifications and lifecycle-aligned evaluations, companies that can demonstrate consistent product performance, localized supply stability, and credible environmental credentials will command preferential access to long-term projects and institutional frameworks. This environment favors agile firms that can scale pilot successes while maintaining traceability in supply chains and consistent installer support.

Actionable strategic priorities for corporate leaders to secure supply resilience, validate product performance, and accelerate mainstream adoption across project types

Industry leaders seeking to harness the transition to renewable construction materials should prioritize a set of pragmatic, high-impact actions that align procurement, product development, and commercial execution. Companies should invest in strengthening supply chain traceability and securing diversified feedstock channels to reduce exposure to tariff and transport shocks, while simultaneously pursuing localized manufacturing or strategic partnerships that shorten lead times and improve responsiveness to regional demand. Product teams must accelerate validation programs that address code compliance, fire and moisture resistance, and structural performance so that specifiers and insurers gain confidence in broader deployment.

Commercial teams should develop performance-based sales materials and case studies that translate lifecycle benefits into operational and financial outcomes for owners and facility managers, supporting procurement with decision-grade technical documentation. Collaborations with certifying bodies and early adopter clients can create replicable project models and accelerate standardization across design and construction communities. Finally, dedicating resources to installer training, after-sales support, and warranty management will reduce perceived risk for contractors and owners, smoothing the path from pilot to scale. These coordinated actions, when sequenced pragmatically, position organizations to capture the cumulative benefits of regulatory momentum and shifting buyer expectations while minimizing transition risk.

A transparent, multi-method research approach integrating stakeholder interviews, standards analysis, and scenario mapping to identify durable pathways for renewable materials

The research approach underpinning this executive summary combines qualitative and quantitative evidence streams to build a multi-dimensional understanding of renewable material adoption pathways. Primary interviews across supply chain nodes-material manufacturers, fabricators, specifiers, and procurement leaders-provided insights into operational constraints, performance validation needs, and adoption inhibitors. Secondary analysis incorporated regulatory texts, procurement policies, technical standards, and reported product testing outcomes to triangulate the practical implications of codes and certification requirements. Supply chain mapping exercises identified critical nodes where tariff changes, logistics constraints, or feedstock availability create the largest downstream impacts on project delivery.

Analytical rigor was reinforced through scenario analysis that explored alternative procurement and policy configurations to highlight resilient strategies for suppliers and buyers. For product-level assessments, engineering validation criteria and lifecycle indicators were used to compare relative suitability for different applications and to identify priority areas for third-party testing. The methodology emphasized transparency in data sourcing and conservative interpretation of single-source claims, favoring corroboration across multiple stakeholders. This composite approach yields insights that are both actionable and grounded in operational realities, enabling decision-makers to prioritize investments and design pilots that are most likely to de-risk adoption and scale impact.

Why integrating technical validation, procurement alignment, and supply chain resilience is essential to convert sustainability goals into deliverable construction outcomes

In conclusion, the trajectory for renewable construction materials is increasingly determined by how well stakeholders knit together policy readiness, technical validation, and supply chain resilience. Regulatory momentum and buyer demand create a compelling directive toward reduced embodied carbon and circularity, while technological advances in fabrication and recycling are closing historic performance gaps. However, market transitions will be uneven: success depends on targeted investments in testing and certification, pragmatic supply chain diversification to manage trade disruption, and scaled installer capacity to ensure consistent outcomes.

Leaders who proactively align product development with procurement requirements, engage in collaborative pilots with institutional buyers, and invest in traceability will be best positioned to translate sustainability commitments into deliverable projects. The combination of regulatory pressure, capital allocation shifts, and technology-enabled production pathways presents a strategic opening to re-architect how buildings are sourced and assembled. Organizations that adopt disciplined validation protocols and prioritize operational resilience will unlock durable competitive advantages as renewable materials transition from niche to mainstream practice.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Increasing integration of bio-based geopolymer concrete alternatives to reduce embodied carbon emissions
  • 5.2. Rising use of recycled ocean plastics in exterior cladding and roofing solutions for coastal buildings
  • 5.3. Emergence of bamboo-based laminated structural panels replacing traditional timber in sustainable housing
  • 5.4. Development of phase-change material-enhanced insulation boards for improved thermal performance
  • 5.5. Scaling production of hemp-fiber reinforced concrete composites for lightweight load-bearing applications
  • 5.6. Advanced manufacturing of 3d-printed recycled glass aggregate bricks for zero-waste construction sites
  • 5.7. Adoption of algae-infused biomaterials for self-healing coatings and moisture-regulating wall systems
  • 5.8. Regulatory incentives driving investment in carbon-sequestering wood-based cross-laminated timber projects
  • 5.9. Integration of modular renewable material panels with smart sensors for energy efficiency monitoring
  • 5.10. Collaborations between startups and contractors to commercialize mycelium-based structural foam insulation

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Construction Renewable Materials Market, by Material Type

  • 8.1. Bamboo
  • 8.2. Bioplastics
  • 8.3. Reclaimed Wood
  • 8.4. Recycled Steel

9. Construction Renewable Materials Market, by Application

  • 9.1. Flooring
    • 9.1.1. Bamboo Flooring
    • 9.1.2. Cork Flooring
    • 9.1.3. Recycled Timber Flooring
  • 9.2. Insulation
    • 9.2.1. Cellulose
    • 9.2.2. Cork
    • 9.2.3. Natural Wool
  • 9.3. Interior Finishes
  • 9.4. Roofing
    • 9.4.1. Bamboo Thatched
    • 9.4.2. Green Roof Systems
    • 9.4.3. Solar Integrated Roofing
  • 9.5. Structural Components

10. Construction Renewable Materials Market, by End Use

  • 10.1. Commercial
  • 10.2. Industrial
  • 10.3. Infrastructure
  • 10.4. Residential

11. Construction Renewable Materials Market, by Distribution Channel

  • 11.1. Direct Sales
  • 11.2. Distributors
  • 11.3. Online Sales

12. Construction Renewable Materials Market, by Technology

  • 12.1. 3D Printing
  • 12.2. Prefabrication
  • 12.3. Traditional Methods

13. Construction Renewable Materials Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Construction Renewable Materials Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Construction Renewable Materials Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Weyerhaeuser Company
    • 16.3.2. UPM-Kymmene Corporation
    • 16.3.3. Stora Enso Oyj
    • 16.3.4. West Fraser Timber Co. Ltd.
    • 16.3.5. Kronospan GmbH
    • 16.3.6. Metsa Group
    • 16.3.7. Canfor Corporation
    • 16.3.8. Louisiana-Pacific Corporation
    • 16.3.9. Interfor Corporation
    • 16.3.10. Binderholz GmbH
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제