시장보고서
상품코드
1870236

컴퓨터 온 모듈 시장 : 유형별, 폼팩터별, 용도별, 연결성별, 동작 온도별, 유통 채널별 - 세계 예측(2025-2032년)

Computer-on-Module Market by Type, Form Factor, Application, Connectivity, Operating Temperature, Distribution Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 186 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

컴퓨터 온 모듈 시장은 2032년까지 CAGR 5.91%로 18억 6,000만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 11억 7,000만 달러
추정 연도 2025년 12억 4,000만 달러
예측 연도 2032 18억 6,000만 달러
CAGR(%) 5.91%

모듈형 컴퓨팅 엔진이 산업 전반에 걸쳐 제품 개발, 조달, 장기적인 플랫폼 유지보수를 어떻게 변화시키고 있는지에 대한 간략한 개요

컴퓨터 온 모듈(COM) 분야는 임베디드 컴퓨팅, 하드웨어의 상품화, 시스템 레벨 차별화의 교차점에서 매우 중요한 위치를 차지하고 있습니다. 컴팩트성, 전력 효율성, 규제에 대응하는 견고성에 대한 요구를 충족시키기 위해 디바이스 아키텍처가 진화하는 가운데, COM은 설계의 유연성을 유지하면서 개발 기간을 단축할 수 있는 기반 컴퓨팅 요소로 작용합니다. 이 주요 요약은 컴포넌트 벤더, 시스템 통합업체 및 기업 고객의 선택을 좌우하는 기술 트렌드, 공급망 압력 및 채택 동향을 통합한 보고서입니다.

프로세서의 다양성, 진화하는 모듈 형태, 강화된 연결성 요구사항이 설계 선택, 공급업체 선택, 제품 라이프사이클을 재구성하고 있습니다.

COM 환경은 프로세서의 다양화, 진화하는 폼팩터, 그리고 연결성과 내열성에 대한 강조로 인해 여러 가지 혁신적인 변화를 경험하고 있습니다. 변화의 한 축은 Arm 기반 설계와 x86 아키텍처 간의 격차 축소에서 비롯되었습니다. Arm의 전력 효율성과 x86의 레거시 소프트웨어 우위가 차별화된 가치 제안을 만들어 내고 있습니다. 이 분기는 공급업체 생태계를 재구성하고 펌웨어 전략과 장기적인 소프트웨어 지원 약속에 대한 이사회 차원의 의사결정에 영향을 미치고 있습니다.

임베디드 플랫폼 전반의 조달 전략, 제조 거점, 공급업체 리스크 완화 방안에 대한 미국 관세 조치의 다층적 영향에 대한 대응

미국의 무역 정책에서 비롯된 최근의 관세 조치는 임베디드 컴퓨팅 부품의 공급업체 전략, 조달 결정, 총착륙 비용 계산을 더욱 복잡하게 만들었습니다. 특정 전자부품 및 서브 어셈블리에 대한 관세 부과로 인해 공급업체와 OEM 제조업체는 제조 거점을 재평가하고, 새로운 공급 조건 협상, 부품 조달 경로의 대안을 모색하여 비용 및 납기 리스크를 줄여야 하는 상황에 직면해 있습니다.

프로세서 선택, 폼팩터 표준, 애플리케이션 요구사항, 연결 방식, 열 등급, 유통 채널을 통합하여 제품 전략과 채널 전략 수립에 반영합니다.

미묘한 세분화 관점은 제품 전략과 시장 출시 우선순위가 유형, 폼팩터, 애플리케이션, 연결성, 작동 온도, 유통 채널에 따라 어떻게 달라질 수 있는지를 보여줍니다. 프로세서 제품군 평가에서 시장은 일반적으로 Arm과 x86으로 분석되며, x86 부문은 AMD와 Intel과 같은 주요 벤더별로 세분화됩니다. 각 벤더는 고유한 명령어 세트 최적화, 열적 특성, 생태계 지원 고려 사항을 제공합니다. 이 프로세서의 차이는 펌웨어 선택부터 장기적인 소프트웨어 유지보수 전략에 이르기까지 모든 결정에 영향을 미칩니다.

지역별 공급망 생태계, 규제 요건, 산업 수요 패턴이 전 세계 지리적 영역에서 조달, 인증, 제조 선택에 미치는 영향

지역별 동향은 COM 생태계 전반의 공급망 복원력, 규제 준수, 시장 진입 전략 형성에 있어 핵심적인 역할을 합니다. 아메리카에서는 산업 자동화 투자, 자동차 전동화 프로그램, 기업 및 통신 분야에서의 엣지 컴퓨팅 개념의 강력한 존재감이 수요 패턴에 영향을 미치며 모듈식 및 유지보수성이 높은 컴퓨팅 구성요소에 대한 요구 사항을 주도하고 있습니다. 현지 지원 체계와 북미 제조 역량을 갖춘 공급업체는 공급망 투명성과 중요 도입 사안에 대한 신속한 대응을 우선시하는 조달 사이클에 보다 적절하게 대응할 수 있습니다.

실리콘 기존 기업, 모듈 전문 기업, 통합업체가 협력하여 안전하고 지속가능하며 수직 통합된 임베디드 컴퓨팅 솔루션을 제공하는 경쟁사 평가

COM 부문 내 경쟁 역학은 실리콘 공급업체, 모듈 전문업체, 시스템 통합업체가 혼합되어 있으며, 각 업체는 수직적 통합과 생태계 파트너십의 균형을 맞추는 전략을 추구하고 있습니다. 강력한 소프트웨어 생태계와 강력한 개발 툴체인을 보유한 실리콘 공급업체는 모듈 설계 결정에 큰 영향력을 행사하는 반면, 전문 모듈 공급업체는 열 설계, 캐리어 보드 호환성, 연장된 수명주기 보증으로 경쟁합니다. 시스템 통합업체는 엔지니어링 리소스가 제한된 고객의 통합 리스크를 줄여주는 턴키 솔루션을 제공함으로써 부가가치를 창출합니다.

모듈형 컴퓨팅 플랫폼의 통합 위험 감소, 탄력성 강화, 시장 출시 기간 단축을 위한 제품, 공급망 및 보안 책임자를 위한 실용적인 전략

업계 리더들은 제품 로드맵을 강화하고, 공급망을 강화하며, 모듈형 컴퓨팅 아키텍처의 채택을 가속화하기 위한 실질적인 노력을 기울여야 합니다. 첫째, 아키텍처 로드맵을 멀티벤더 프로세서 전략과 일치시킴으로써 단일 공급원 리스크를 줄이고, 성능, 전력 소비, 소프트웨어 이식성 요구사항에 따라 Arm 또는 x86 플랫폼을 신중하게 선택함으로써 제품 차별화를 실현합니다. 이러한 접근 방식에는 락인 방지 및 향후 업그레이드를 가능하게 하는 명확한 펌웨어 및 OS 마이그레이션 계획이 함께 수립되어야 합니다.

전문가 인터뷰, 기술 문서 분석, 공급망 삼각측량 등을 결합한 투명하고 혼합된 조사 방식을 통해 실용적인 업계 인사이트를 제공합니다.

본 조사는 1차 조사와 2차 조사의 데이터 소스를 통합하여 기술 동향, 공급업체 행동, 지역적 역학에 대한 균형 잡힌 관점을 구축합니다. 엔지니어링 리더, 조달 책임자, 벤더 제품 관리자와의 인터뷰를 통합하여 설계 우선순위, 조달 제약 조건, 로드맵 선호도에 대한 질적 인사이트를 수집합니다. 이러한 논의는 공개된 기술 문서, 규제 지침, 인프라 투자 패턴 분석으로 보완되어 맥락의 정확성을 보장합니다.

기술, 상업적, 규제적 요인의 통합으로 인해 경영진이 해결해야 할 과제는 모듈형 컴퓨팅 배포에 있어 견고성, 업그레이드 가능성, 컴플라이언스를 갖춘 모듈형 컴퓨팅 배포를 실현하는 것입니다.

요약하면, 컴퓨터 온 모듈의 상황은 모듈식 유연성과 긴 수명, 규제 대상, 그리고 종종 미션 크리티컬한 애플리케이션의 운영 요구 사항 사이의 긴장 관계에 의해 정의됩니다. 프로세서 제품군, 모듈 형태, 연결 기능, 열 등급에 대한 결정은 엔지니어링, 조달, 지원 기능 전반에 걸쳐 영향을 미칩니다. 이러한 선택을 공급업체의 역량, 지역 제조 현실, 보안 요구사항과 신중하게 일치시키는 조직은 신뢰할 수 있고 업그레이드 가능한 제품을 대규모로 제공할 수 있는 유리한 입장에 서게 될 것입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 컴퓨터 온 모듈 시장 : 유형별

  • Arm
  • X86
    • AMD
    • 인텔

제9장 컴퓨터 온 모듈 시장 : 폼팩터별

  • Com Express
    • 유형 6
    • 유형 7
  • ETX/XTX
    • ETX
    • XTX
  • Qseven
  • Smarc

제10장 컴퓨터 온 모듈 시장 : 용도별

  • 자동차
  • 가전제품
  • 방위·항공우주
  • 산업 자동화
  • IoT 게이트웨이
  • 의료
  • 통신

제11장 컴퓨터 온 모듈 시장 : 연결성별

  • Bluetooth
  • 셀룰러
    • 4G
    • 5G
  • 이더넷
  • Wi-Fi

제12장 컴퓨터 온 모듈 시장 동작 온도별

  • 상업용
  • 확장 온도
  • 산업용

제13장 컴퓨터 온 모듈 시장 : 유통 채널별

  • 다이렉트 판매
  • 판매대리점
  • 온라인

제14장 컴퓨터 온 모듈 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 컴퓨터 온 모듈 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 컴퓨터 온 모듈 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Advantech Co., Ltd.
    • Kontron AG
    • Congatec AG
    • SECO S.p.A.
    • Toradex AG
    • DFI Inc.
    • Avalue Technology Inc.
    • iWave Systems Technologies Pvt. Ltd.
    • Nexcom International Co., Ltd.
    • iBASE Technology Inc.
KSM 25.12.02

The Computer-on-Module Market is projected to grow by USD 1.86 billion at a CAGR of 5.91% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.17 billion
Estimated Year [2025] USD 1.24 billion
Forecast Year [2032] USD 1.86 billion
CAGR (%) 5.91%

A concise orientation to how modular compute engines reshape product development, procurement, and long-term platform sustainment across industries

The Computer-on-Module (COM) sector occupies a pivotal position at the intersection of embedded computing, hardware commoditization, and system-level differentiation. As device architectures evolve to meet demands for compactness, power efficiency, and regulatory robustness, COMs serve as the foundational compute element that allows original equipment manufacturers to compress development timelines while maintaining design flexibility. This executive summary synthesizes technical trends, supply chain pressures, and adoption dynamics shaping the choices of component vendors, system integrators, and enterprise customers.

Across industries from industrial automation to medical devices, stakeholders increasingly favor modular approaches that separate compute lifecycles from application-specific I/O and mechanical design. That separation enables faster upgrades to processing engines and connectivity stacks without redesigning an entire platform. Consequently, architectural decisions around form factor, thermal envelope, and processor families are central to how organizations balance time-to-market against long-term sustainment and cybersecurity requirements.

In the following sections, readers will encounter a concise exploration of transformative market shifts, regulatory headwinds including tariff developments, segmentation-driven product strategies, regional competitive dynamics, vendor behavior, and recommended actions. The goal is to provide executives and engineering leaders with a clear synthesis of the factors that should inform procurement, product roadmaps, and partner selection throughout the next procurement cycles.

How processor variety, evolving module form factors, and enhanced connectivity requirements are reshaping design choices, supplier selection, and product lifecycles

The COM landscape is undergoing multiple transformative shifts driven by processor diversity, evolving form factors, and a pronounced emphasis on connectivity and thermal resilience. One axis of change emerges from the increasing parity between Arm-based designs and x86 architectures, where Arm's power efficiency and x86's legacy software advantages create differentiated value propositions. This divergence is reshaping supplier ecosystems, influencing board-level decisions on firmware strategy and long-term software support commitments.

Simultaneously, form factor innovation is influencing integration approaches. Standards such as compact, energy-efficient modules are receiving renewed interest from designers who need to reconcile dense I/O requirements with constrained mechanical envelopes. The rise of modularity enables OEMs to separate compute upgrades from platform redesigns, creating iterative product lifecycles that accelerate innovation while controlling sustainment costs. In effect, companies are shifting toward ecosystems that prioritize interchangeability and backward compatibility to support multi-year device deployments.

Connectivity requirements are also a driver of change; as edge use cases proliferate, embedded wireless stacks and high-speed Ethernet capabilities become baseline expectations. The push toward 5G-capable modules bolsters low-latency applications and distributed compute models, even as 4G remains relevant for many legacy or cost-sensitive deployments. Concurrently, operating temperature requirements extend the traditional commercial envelope, pushing vendors to offer extended and industrial-grade variants for harsher environments. These combined shifts necessitate more rigorous supplier evaluation criteria and stronger collaboration between hardware, software, and service teams to deliver secure, long-lived products.

Navigating the layered effects of recent United States tariff measures on sourcing strategies, manufacturing footprints, and supplier risk mitigation across embedded platforms

Recent tariff actions originating from United States trade policy have introduced additional complexity into supplier strategies, sourcing decisions, and total landed cost calculations for embedded computing components. The imposition of tariffs on specific electronic components and subassemblies has compelled suppliers and original equipment manufacturers to reevaluate manufacturing footprints, negotiate new supplier terms, and explore alternative routing for components to mitigate cost exposure and delivery lead-time risk.

In response, some vendors have increased regional manufacturing and final assembly to reduce customs exposure, while others have absorbed incremental costs through margin compression or adjusted product configurations to preserve price competitiveness. The cumulative impact of these measures has been uneven across product segments; high-volume, commodity-focused modules are more sensitive to marginal tariff adjustments, whereas premium, performance-differentiated offerings can pass through a greater portion of cost increases to end customers. These dynamics are prompting longer-term strategic decisions around supplier diversification and nearshoring of production capacity to maintain resilience.

Moreover, tariffs have intensified the focus on supply chain transparency and contractual protections. Organizations are negotiating more explicit clauses around customs duties, lead times, and force majeure to minimize downstream commercial surprises. As a consequence, procurement teams now prioritize vendors with geographically distributed supply chains, clear traceability, and demonstrated experience in navigating tariff regimes. The net effect is a recalibration of supplier risk assessments and a sustained emphasis on operational flexibility to handle regulatory shifts without compromising product roadmaps.

Integrating processor choices, form factor standards, application requirements, connectivity modalities, thermal grades, and distribution channels to inform product and channel strategies

A nuanced segmentation view reveals how product strategies and go-to-market priorities differ across type, form factor, application, connectivity, operating temperature, and distribution channels. When evaluating processor families, the market is commonly studied across Arm and x86, with the x86 segment further differentiated by major vendors such as AMD and Intel, each bringing distinct instruction set optimizations, thermal profiles, and ecosystem support considerations. This processor distinction informs everything from firmware selection to long-term software maintenance strategies.

Form factor segmentation is equally influential. Modules conforming to widely adopted standards such as COM Express, ETX/XTX, Qseven, and SMARC each serve different integration needs; within COM Express, the Type 6 and Type 7 variants target differing I/O and graphics priorities, while ETX/XTX splits into ETX and XTX to address legacy pinout compatibilities and expansion requirements. These form factor choices drive carrier board design complexity, influence supply chain modularity, and determine the ease of future upgrades for fielded systems.

Application segmentation further shapes technical roadmaps. Automotive environments demand rigorous functional safety and long-term availability commitments, consumer electronics prioritize cost and scale, defense and aerospace require ruggedization and extended lifecycle support, industrial automation focuses on deterministic operation in harsh conditions, IoT gateways emphasize secure connectivity and edge processing, medical platforms demand regulatory compliance and traceability, and telecom deployments require high throughput and low-latency networking.

Connectivity segmentation underscores the importance of wireless and wired interfaces. Bluetooth and Wi-Fi address short-range connectivity and local edge interactions, Ethernet remains the backbone for high-throughput, low-latency links, and cellular connectivity-spanning 4G and increasingly 5G-enables broad area coverage and new service models. Operating temperature brackets differentiate commercial, extended, and industrial grades to meet environmental tolerances, while distribution channel segmentation into direct sales, distributors, and online channels dictates how vendors engage customers, fulfill orders, and provide post-sale support. Taken together, these segmentation lenses provide a comprehensive framework for selecting module architectures aligned to technical, regulatory, and commercial constraints.

How regional supply chain ecosystems, regulatory expectations, and industrial demand patterns influence procurement, certification, and manufacturing choices across global geographies

Regional dynamics play a central role in shaping supply chain resiliency, regulatory compliance, and go-to-market strategies across the COM ecosystem. In the Americas, demand patterns are influenced by industrial automation investments, automotive electrification programs, and a strong presence of edge computing initiatives in enterprise and telecom sectors, which drive requirements for modular, serviceable compute building blocks. Suppliers with localized support and North American manufacturing capabilities can better address procurement cycles that prioritize supply chain transparency and rapid response for critical deployments.

Across Europe, the Middle East & Africa, regulatory complexity and diversified industrial bases create demand for both ruggedized and standards-compliant modules. European OEMs often emphasize functional safety, environmental directives, and long-term maintainability, while Middle Eastern and African markets present growth opportunities tied to infrastructure projects and defense modernization efforts. Local engineering partnerships and certification capabilities are valuable differentiators for vendors seeking to establish trust and long-term contracts in these territories.

In the Asia-Pacific region, a dense electronics manufacturing ecosystem, strong OEM presence, and rapid adoption of consumer and industrial IoT use cases shape competitive dynamics. Suppliers that can offer scale, cost efficiency, and deep relationships with regional contract manufacturers are well placed to serve high-volume consumer applications and emerging industrial deployments. Across all regions, cross-border trade policies, tariff regimes, and logistics reliability influence where vendors choose to locate capacity and how customers structure procurement to balance cost, lead time, and compliance.

Evaluating competitive dynamics where silicon incumbents, module specialists, and integrators converge to deliver secure, sustainable, and vertically optimized embedded computing solutions

Competitive dynamics within the COM sector reflect a mix of silicon providers, module specialists, and systems integrators, each pursuing strategies that balance vertical integration with ecosystem partnerships. Silicon suppliers that command strong software ecosystems and robust development toolchains exert an outsized influence on module design decisions, whereas specialist module vendors compete on thermal design, carrier board compatibility, and extended lifecycle commitments. Systems integrators add value by offering turnkey solutions that reduce integration risk for customers with constrained engineering bandwidth.

Strategic partnerships and alliances are common as companies seek to combine processor roadmaps with proven module form factors and carrier board expertise. Vendor differentiation increasingly relies on the ability to offer secure boot capabilities, long-term availability commitments, and a clear path for firmware updates to address cybersecurity and product sustainment concerns. Additionally, companies that can demonstrate manufacturing flexibility and nearshoring options gain an advantage in procurement conversations that emphasize tariff exposure and lead-time certainty.

Mergers, acquisitions, and collaborative development agreements continue to shape the vendor landscape, enabling firms to expand into adjacent markets such as edge servers, ruggedized gateways, and vertical-specific platforms. Importantly, vendor reputations for documentation quality, reference design support, and post-sale engineering assistance are often decisive factors for enterprise customers when selecting module suppliers for mission-critical applications.

Practical strategies for product, supply chain, and security leaders to reduce integration risk, enhance resilience, and accelerate time to market for modular compute platforms

Industry leaders should pursue a set of actionable initiatives to strengthen product roadmaps, fortify supply chains, and accelerate adoption of modular computing architectures. First, aligning architecture roadmaps with a multi-vendor processor strategy reduces single-source risk and enables product differentiation through careful selection of Arm or x86 platforms based on performance, power, and software portability requirements. This approach should be accompanied by clear firmware and OS migration plans to avoid lock-in and to enable future upgrades.

Second, invest in carrier board reference designs and validation suites to reduce integration time for customers and to create defensible differentiation. Offering robust validation artifacts, including thermal characterization, EMC testing reports, and certified software stacks, helps accelerate customer acceptance and reduces field integration issues. Third, strengthen supply chain resilience by diversifying manufacturing footprints, establishing regional fulfillment nodes, and negotiating contractual protections against tariff and logistics volatility. These measures improve lead-time certainty for high-priority deployments.

Fourth, prioritize security and lifecycle management capabilities such as secure boot, signed firmware updates, and long-term availability commitments. Embedding these features into product offerings enhances attractiveness for regulated industries and long-life applications. Finally, tailor commercial models to customer needs by offering modular licensing, extended support packages, and configurable hardware options that reduce upfront costs while preserving upgrade pathways for performance and connectivity enhancements. Taken together, these actions create a holistic posture that balances agility with reliability.

A transparent mixed-methods research approach combining expert interviews, technical document analysis, and supply chain triangulation to produce actionable sector insights

This research synthesizes primary and secondary data sources to develop a balanced perspective on technology trends, supplier behavior, and regional dynamics. The approach integrates interviews with engineering leaders, procurement executives, and vendor product managers to capture qualitative insights about design priorities, sourcing constraints, and roadmap preferences. These discussions are complemented by analysis of public technical documentation, regulatory guidance, and infrastructure investment patterns to ensure contextual accuracy.

Triangulation across multiple information streams underpins the methodology. Technical evaluations include review of reference designs, firmware release notes, and compliance documentation to assess product maturity and suitability for targeted applications. Supply chain assessments use supplier disclosures, trade policy announcements, and observed fulfillment behaviors to evaluate operational risk. Validation of insights is achieved through iterative cross-checking with industry experts to reduce bias and to surface divergent viewpoints.

The study emphasizes transparency about data provenance and limitations. Where proprietary contract terms or confidential commercial arrangements exist, the analysis relies on anonymized patterns and aggregated observations rather than specific contractual excerpts. This methodological stance ensures that conclusions are actionable while acknowledging the complexity and opacity that can characterize embedded component supply chains.

A synthesis of technical, commercial, and regulatory factors that executives must reconcile to achieve resilient, upgradeable, and compliant modular computing deployments

In summary, the Computer-on-Module landscape is defined by the tension between modular flexibility and the operational demands of long-lived, regulated, and often mission-critical applications. Decisions about processor family, module form factor, connectivity capabilities, and thermal grade carry implications that extend across engineering, procurement, and support functions. Organizations that thoughtfully align these choices with supplier capabilities, regional manufacturing realities, and security requirements will be better positioned to deliver reliable, upgradeable products at scale.

Tariff-related complexities and regional trade dynamics add an additional layer of consideration, urging companies to prioritize supply chain transparency and contractual safeguards. Meanwhile, vendors who invest in comprehensive validation assets, flexible manufacturing footprints, and robust lifecycle management will differentiate themselves in procurement processes that increasingly weight serviceability and sustainment alongside price and performance.

Ultimately, success in the COM domain requires cross-functional collaboration, continuous reassessment of supplier risk, and a pragmatic embrace of modular architectures that decouple compute evolution from application-specific design. By marrying technical rigor with strategic sourcing and customer-centric commercial models, stakeholders can unlock both short-term deployment wins and long-term platform resilience.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Growing adoption of AI accelerator-equipped computer-on-modules for real-time edge inferencing in robotics
  • 5.2. Rapid expansion of secure enclave and TPM integration in system-on-modules for industrial IoT security
  • 5.3. Rising demand for ARM-based low-power computer-on-modules in battery-powered medical and wearable devices
  • 5.4. Surge in modular edge computing solutions supporting PCIe Gen5 and CXL standards for high-bandwidth applications
  • 5.5. Increased focus on functional safety certification and automotive AEC-Q100 compliance for ADAS computer-on-modules
  • 5.6. Development of ruggedized computer-on-modules certified for extreme temperature and vibration in oil and gas exploration
  • 5.7. Growing preference for heterogeneous computing modules combining CPU GPU and FPGA fabrics for AI inference at the edge
  • 5.8. Emphasis on sustainable design and RoHS REACH compliance in computer-on-module manufacturing and lifecycle management

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Computer-on-Module Market, by Type

  • 8.1. Arm
  • 8.2. X86
    • 8.2.1. AMD
    • 8.2.2. Intel

9. Computer-on-Module Market, by Form Factor

  • 9.1. Com Express
    • 9.1.1. Type 6
    • 9.1.2. Type 7
  • 9.2. Etx/Xtx
    • 9.2.1. Etx
    • 9.2.2. Xtx
  • 9.3. Qseven
  • 9.4. Smarc

10. Computer-on-Module Market, by Application

  • 10.1. Automotive
  • 10.2. Consumer Electronics
  • 10.3. Defense & Aerospace
  • 10.4. Industrial Automation
  • 10.5. IoT Gateways
  • 10.6. Medical
  • 10.7. Telecom

11. Computer-on-Module Market, by Connectivity

  • 11.1. Bluetooth
  • 11.2. Cellular
    • 11.2.1. 4G
    • 11.2.2. 5G
  • 11.3. Ethernet
  • 11.4. Wi-Fi

12. Computer-on-Module Market, by Operating Temperature

  • 12.1. Commercial
  • 12.2. Extended
  • 12.3. Industrial

13. Computer-on-Module Market, by Distribution Channel

  • 13.1. Direct Sales
  • 13.2. Distributors
  • 13.3. Online

14. Computer-on-Module Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Computer-on-Module Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Computer-on-Module Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Advantech Co., Ltd.
    • 17.3.2. Kontron AG
    • 17.3.3. Congatec AG
    • 17.3.4. SECO S.p.A.
    • 17.3.5. Toradex AG
    • 17.3.6. DFI Inc.
    • 17.3.7. Avalue Technology Inc.
    • 17.3.8. iWave Systems Technologies Pvt. Ltd.
    • 17.3.9. Nexcom International Co., Ltd.
    • 17.3.10. iBASE Technology Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제