시장보고서
상품코드
1870618

컴프레서 제어 시장 : 컴프레서 유형별, 제어 기술별, 최종사용자 산업별, 구동 유형별 - 세계 예측(2025-2032년)

Compressor Control Market by Compressor Type, Control Technology, End User Industry, Drive Type - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 196 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

컴프레서 제어 시장은 2032년까지 CAGR 6.70%로 109억 6,000만 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 65억 2,000만 달러
추정연도 2025 69억 6,000만 달러
예측연도 2032 109억 6,000만 달러
CAGR(%) 6.70%

운영 우선순위, 규제 요인, 디지털 제어가 압축기 제어 의사결정의 틀을 어떻게 재구성하고 있는지를 설명하는 전략적 입문서

압축기 제어 분야는 운영 우선순위, 규제 압력, 제어 기술의 급속한 발전과 함께 체계적인 정교화 단계에 접어들었습니다. 이 보고서에서는 산업 및 유틸리티 분야의 조달, 사양 수립 및 수명주기관리 의사결정에 영향을 미치는 주요 요인을 개괄적으로 설명합니다. 제어 전략이 개별 구성 요소 업데이트에서 신뢰성, 효율성, 안전성을 우선시하는 통합된 데이터 중심 접근 방식으로 전환되고 있다는 점을 강조합니다.

센싱, 연결성, 상호운용성, 보안 분야의 급속한 기술 혁신은 컴프레서 제어를 단순한 기능적 구성 요소에서 전략적 운영 기반으로 변화시키고 있습니다.

여러 변혁적 요인이 제품 설계, 조달 행동, 운영 전략을 재구성하는 가운데, 압축기 제어 환경은 빠르게 변화하고 있습니다. 센싱 기술과 임베디드 전자기기의 발전으로 보다 세밀한 예측 제어가 가능해졌고, 상태 모니터링의 정확도도 향상되고 있습니다. 그 결과, 제조업체들은 실시간 공정 데이터와 적응형 제어 로직을 결합한 스마트 제어 장치를 통합하여 효율성을 높이고 예기치 않은 다운타임을 줄이고 있습니다.

조달 탄력성 및 부품 현지화 전략에 영향을 미치는 무역정책이 조달처 선정, 설계 선택 및 공급업체 계약에 미치는 영향 평가

최근 수입품 및 부품에 영향을 미치는 무역 조치로 인해 기업은 압축기 제어 시스템공급망, 조달 전략 및 비용 배분을 재검토해야 할 필요성이 대두되고 있습니다. 미국내 관세 조정은 중요한 서브 어셈블리의 현지 조달, 국내 공급업체 인증 가속화, 관세 영향을 받기 쉬운 부품에 대한 의존도를 낮추는 설계 선택을 촉진하는 구체적인 인센티브를 창출했습니다. 그 결과, 조달팀은 벤더 선정 및 전체 조달 일정에 있으며, 관세 리스크를 점점 더 많이 고려하고 있습니다.

압축기 토폴로지, 제어 기술, 최종사용자 요구 사항, 구동 방식을 정밀한 제어 요구 사항 및 설치 선택로 연결하는 세부적인 세분화 관점

부문 수준의 명확성은 제품 로드맵을 최종사용자의 요구사항 및 운영 현실과 일치시키는 데 필수적입니다. 컴프레서 제어를 기종별로 살펴보면 원심식, 왕복동식, 회전식 각 아키텍처의 차이가 매우 중요합니다. 각 토폴로지마다 고유한 제어 요구사항이 존재하기 때문입니다. 원심 유닛은 종종 다단 및 단단 구성으로 평가되며, 제어 로직은 서지 보호, 흡기 가이드 베인 또는 디퓨저 작동, 복잡한 서지 방지 전략에 대응해야 합니다. 한편, 왕복동식 컴프레서에서는 밸브의 동특성, 윤활 관리, 진동 모니터링의 균형을 맞추기 위해 단단식 및 2단식 구성에 특화된 제어 방식이 필요합니다. 로터리식 컴프레서(로브식, 스크류식, 스크롤식 포함)는 가변 용량 작동, 오일 관리, 전체 작동 범위에서 연속적인 변조에 최적화된 제어가 요구됩니다.

주요 세계 시장에서의 채택 패턴의 차이, 규제 체계, 인프라 성숙도, 조달 기준이 어떻게 주요 세계 시장의 채택 패턴을 주도하는지를 설명하는 통합적 지역 분석

지역별 상황은 제어 전략 도입에 영향을 미치는 운영 우선순위, 인프라 성숙도, 규제 압력의 차이를 나타냅니다. 북미와 남미에서는 비용 절감과 지속가능성 목표에 의해 추진되는 에너지 절약 조치와 개보수 활동이 강조되는 경향이 있습니다. 또한 설치 기반 규모가 크기 때문에 원격 진단 및 기업 자산관리 시스템과의 통합에 대한 수요도 강합니다. 한편, 유럽, 중동 및 아프리카에서는 엄격한 배출 및 안전 규제를 준수해야 하는 기존 설비의 갱신과 신규 설치가 혼재되어 있으며, 다양한 현장 요건을 충족하는 인증된 제어 플랫폼 및 모듈형 시스템에 대한 투자가 촉진되고 있습니다.

기술 혁신, 시스템 통합 능력, 공급망 복원력이 압축기 제어 공급업체들 간의 경쟁 우위를 정의하는 방법

압축기 제어 분야의 경쟁력 구조는 심층적인 응용 기술과 강력한 시스템 통합 능력을 겸비한 기업에 의해 형성되고 있습니다. 주요 공급업체들은 일반적으로 내장형 진단 기능, 보안 통신, 수명주기 지원 서비스에 대한 투자를 통해 차별화를 꾀하고 있습니다. 이 제품 포트폴리오는 하드웨어의 견고함과 소프트웨어 제품군을 결합하여 상태 기반 유지보수, 과거 실적 분석, 원격 매개변수 조정을 가능하게 합니다. 이를 통해 다운타임을 줄이고 운영 비용을 최적화할 수 있습니다.

제어 기술 혁신을 측정 가능한 신뢰성 향상, 수명주기 비용 절감, 공급망 탄력성 강화로 전환하기 위한 공급업체와 운영자를 위한 실용적인 권장 사항

업계 리더는 기술 역량을 측정 가능한 운영 성과로 전환하는 계획적인 일련의 행동을 추구해야 합니다. 우선, 모듈식 도입과 개방형 통신 표준을 지원하는 제어 플랫폼을 우선시하여 대규모 교체 없이 업그레이드 및 타사 통합을 수행할 수 있도록 합니다. 이러한 접근 방식은 자본 투자를 보호하고, 분석에 기반한 지속적인 개선을 가능하게 하며, 진부화 위험을 줄일 수 있습니다.

압축기 제어 기술에 대한 검증되고 운영 관련성이 높은 지식을 얻기 위해 전문가와의 집중적인 대화와 체계적인 2차 분석을 결합한 혼합 방식을 채택했습니다.

엄격한 조사 방법을 통해 전문 지식을 가진 전문가와의 직접 대화와 공개된 기술 문헌에 대한 체계적인 2차 조사를 결합하여 압축기 제어 기술과 도입 동향에 대한 지식을 삼각 측량합니다. 1차 조사에는 엔지니어, 유지보수 관리자, 조달 책임자와의 구조화된 인터뷰를 통해 현장의 운영 과제, 조달 요인, 제어 솔루션의 실제 운영 성능을 직접 파악합니다. 이러한 대화는 기술적 선택의 배경을 밝히고, 제품 자료에서 볼 수 없는 도입 장벽을 강조하는 질적 깊이를 제공합니다.

다양한 운영 환경에서 신뢰성, 에너지 성능 및 조달 탄력성 향상에 있으며, 현대적 제어 시스템이 수행하는 전략적 역할을 강조하는 간략한 개요

결론적으로 컴프레서 제어는 부품 수준의 고려사항에서 에너지 성능, 운영 신뢰성, 규제 준수에 영향을 미치는 전략적 역량으로 진화하고 있습니다. 견고한 하드웨어, 적응형 소프트웨어, 통합 진단 기능을 통합한 현대적 제어 플랫폼을 통해 운영자는 기존 자산에서 더 큰 가치를 창출하는 동시에 수명주기 리스크를 줄일 수 있습니다. 동시에 무역 정책의 조정과 지역별 규제 차이와 같은 외부 압력으로 인해 조달 및 공급망 전략이 재구성되어 유연한 조달 및 모듈식 설계의 필요성이 더욱 커지고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 컴프레서 제어 시장 : 컴프레서 유형별

  • 원심식
    • 다단식
    • 단단식
  • 왕복동식
    • 단단식
    • 2단식
  • 로터리
    • 로브식
    • 스크류
    • 스크롤

제9장 컴프레서 제어 시장 제어 기술별

  • 전자식
  • 기계식
  • 공기압식

제10장 컴프레서 제어 시장 : 최종사용자 산업별

  • 화학·석유화학
  • 제조업
    • 자동차
    • 식품 및 음료
    • 제약
  • 석유 및 가스
  • 발전

제11장 컴프레서 제어 시장 : 드라이브 유형별

  • 전기식
  • 가스 엔진
  • 유압식

제12장 컴프레서 제어 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 컴프레서 제어 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 컴프레서 제어 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Emerson Electric Co.
    • Siemens AG
    • ABB Ltd.
    • Schneider Electric SE
    • Honeywell International Inc.
    • Mitsubishi Electric Corporation
    • Rockwell Automation, Inc.
    • General Electric Company
    • Yokogawa Electric Corporation
    • Ingersoll Rand Inc.
KSA 25.12.02

The Compressor Control Market is projected to grow by USD 10.96 billion at a CAGR of 6.70% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 6.52 billion
Estimated Year [2025] USD 6.96 billion
Forecast Year [2032] USD 10.96 billion
CAGR (%) 6.70%

A strategic primer describing how operational priorities, regulatory drivers, and digital controls are reshaping compressor control decision frameworks

The compressor control landscape is undergoing a phase of systemic refinement driven by converging operational priorities, regulatory pressures, and rapid advances in control technology. This introduction frames the primary forces influencing procurement, specification, and lifecycle management decisions across industrial and utility settings. It emphasizes how control strategies are shifting from discrete component updates to integrated, data-centric approaches that prioritize reliability, efficiency, and safety.

Organizational leaders increasingly evaluate compressor control through a total-cost-of-ownership lens that accounts for energy consumption, maintenance cadence, and interoperability with broader automation systems. As a result, engineering teams are rethinking legacy control architectures and procurement frameworks to prioritize modularity, diagnostics, and remote operability. Simultaneously, regulatory and environmental expectations are prompting clearer definitions of acceptable performance baselines, which in turn influence specification clauses and vendor selection criteria.

This introduction also highlights the expanding role of digital diagnostics and the implications for workforce skills, contract structures, and spare-parts strategies. It sets the stage for the subsequent sections by linking high-level drivers to practical decisions that design engineers, operations managers, and commercial leaders must address when modernizing compressor control environments.

How rapid innovation in sensing, connectivity, interoperability, and security is transforming compressor control from a functional component into a strategic operational enabler

The landscape for compressor control is shifting rapidly as several transformative forces reshape product design, procurement behavior, and operational strategy. Advances in sensing and embedded electronics are enabling more granular, predictive control while enhancing the fidelity of condition monitoring. Consequently, manufacturers are integrating smarter controllers that combine real-time process data with adaptive control logic, which improves efficiency and reduces unplanned downtime.

At the same time, the emergence of open communication standards and increased demand for interoperability are driving a move away from proprietary, siloed systems toward interoperable architectures. This trend supports smoother integration with plant-wide asset management and enterprise systems, enabling more cohesive decision-making across maintenance, engineering, and operations teams. As a result, procurement criteria now frequently include compatibility with existing automation ecosystems and the ability to support secure remote access.

Regulatory expectations and energy management commitments are also accelerating change. Operators are prioritizing control solutions that enable energy optimization and emissions transparency, leading to wider adoption of advanced control sequences and automated efficiency routines. In parallel, cybersecurity considerations are becoming integral to product roadmaps, prompting vendors to bake secure-by-design principles into firmware and communications stacks. Taken together, these shifts are transforming compressor control from a functional necessity into a strategic enabler of operational excellence.

An assessment of trade policy impacts on sourcing, design choices, and supplier contracts that influence procurement resilience and component localization strategies

Recent trade measures affecting imports and components have prompted companies to reassess supply chains, sourcing strategies, and cost allocation for compressor control systems. Tariff adjustments in the United States have created tangible incentives for localization of critical subassemblies, accelerated qualification of domestic suppliers, and encouraged design choices that reduce reliance on tariff-sensitive parts. As a result, procurement teams are increasingly factoring tariff exposure into vendor selection and total procurement timelines.

In response, several OEMs and system integrators have begun to diversify component sourcing and to establish dual-sourcing arrangements that mitigate single-country exposure. This shift reduces lead-time risk and supports continuity when policy changes introduce sudden cost variances. Moreover, some manufacturers are redesigning modules to substitute commodity components with alternatives that have more favorable trade treatment, thereby smoothing cost volatility without compromising performance.

Beyond supply chain tactics, tariffs have affected contractual terms between buyers and vendors, with more emphasis on fixed-price agreements, longer-term supplier commitments, and clearer clauses about duty pass-through. They have also prompted greater use of advanced inventory management techniques to absorb short-term shocks. Collectively, these adjustments show how tariff dynamics influence not only cost structures but also design decisions, supplier ecosystems, and contractual safeguards that determine the resilience of compressor control deployments.

A detailed segmentation perspective tying compressor topologies, control technologies, end user imperatives, and drive modalities to precise control requirements and deployment choices

Segment-level clarity is essential for aligning product roadmaps with end user requirements and operational realities. When examining compressor control through the lens of compressor type, distinctions among centrifugal, reciprocating, and rotary architectures are critical because each topology carries unique control needs. Centrifugal units are often evaluated across multi stage and single stage configurations, with control logic that must address surge protection, inlet guide vane or diffuser actuation, and complex anti-surge strategies. Reciprocating compressors, in turn, require control schemes tailored for single stage and two stage arrangements that balance valve dynamics, lubrication management, and vibration monitoring. Rotary compressors - including lobe, screw, and scroll variants - demand controls optimized for variable displacement behavior, oil management, and continuous modulation across operating envelopes.

Control technology selection further shapes system capabilities, with electronic controllers enabling finer closed-loop regulation, enhanced data capture, and software-based diagnostics, while mechanical and pneumatic systems offer robustness and simplicity in austere environments. End user industry priorities also drive functional requirements: chemical and petrochemical settings prioritize hazardous-area compliance and tight process integration; manufacturing environments such as automotive, food and beverage, and pharmaceuticals need sanitation-aware reliability and repeatable cycle control; oil and gas contexts emphasize ruggedness and remote operability; and power generation focuses on grid-responsive performance and long-duration reliability.

Drive type selection completes the segmentation picture, as electric drives, gas engine drives, and hydraulic drives impose different control interfaces, fault modes, and maintenance profiles. Each drive modality interacts with control logic in distinct ways, shaping protective schemes, start/stop sequences, and efficiency strategies. Understanding these layered segments enables vendors and end users to tailor control architectures that reconcile physical compressor dynamics with operational, regulatory, and maintenance objectives.

An integrated regional analysis explaining how regulatory regimes, infrastructure maturity, and procurement norms drive differentiated adoption patterns across major global markets

Regional landscapes present divergent operational priorities, infrastructure maturity, and regulatory pressures that influence control strategy adoption. In the Americas, emphasis is often placed on energy efficiency initiatives and retrofit activity driven by both cost containment and sustainability objectives; this region also shows strong demand for remote diagnostics and integration with enterprise asset management systems due to the scale of installed bases. In contrast, Europe, Middle East & Africa sees a blend of legacy asset renewal and new installations that must comply with stringent emissions and safety regulations, prompting investments in certified control platforms and modular systems capable of meeting diverse site requirements.

Across Asia-Pacific, rapid industrialization and expanding process industries encourage adoption of modular, scalable control solutions that can be deployed quickly and adapted to a wide variety of performance conditions. The competitive supplier landscape in this region accelerates innovation while also fostering local manufacturing of components that support faster lead times. Differences in workforce skill levels, standards alignment, and infrastructure resilience across regions drive variation in the preferred balance between on-site expertise and remote service offerings.

Taken together, these regional dynamics mean that product roadmaps and commercial strategies must be tailored to local procurement norms, regulatory regimes, and operational practices. Vendors that align their support models, certification pathways, and supply chain footprints to regional priorities will be better positioned to convert technical capability into commercial advantage.

How technical innovation, systems integration capabilities, and supply chain resilience combine to define competitive advantage among compressor control suppliers

Competitive dynamics in compressor control are shaped by companies that combine deep application expertise with strong systems integration capabilities. Leading suppliers typically distinguish themselves through investments in embedded diagnostics, secure communications, and lifecycle support services. Their product portfolios often blend hardware robustness with software suites that enable condition-based maintenance, historical performance analysis, and remote parameter adjustment, which in turn reduce downtime and optimize operating costs.

Partnership strategies and channel models also influence market positioning. Firms that cultivate strong relationships with OEMs, system integrators, and aftermarket service providers secure broader access to end users and create recurring revenue streams through service contracts, upgrades, and training. Additionally, vendor commitments to open protocols and third-party interoperability can be decisive when buyers seek to protect long-term flexibility and avoid vendor lock-in. Technology roadmaps that emphasize modularity and upgradability enhance the longevity of installed systems and strengthen customer retention.

Finally, supply chain resilience and manufacturing footprint decisions affect competitive strength. Companies that maintain flexible sourcing, localized assembly, and comprehensive warranty and spare-parts programs are more capable of meeting tight delivery windows and supporting critical operations. This combination of technical, commercial, and operational capabilities defines the contours of competitive advantage in compressor control.

Practical recommendations for vendors and operators to convert control innovation into measurable reliability gains, lower lifecycle costs, and stronger supply chain resilience

Industry leaders should pursue a deliberate set of actions that translate technical capability into measurable operational outcomes. First, prioritize control platforms that support modular deployment and open communication standards so that upgrades and third-party integrations can be executed without wholesale replacements. This approach protects capital investments and enables continuous improvement driven by analytics while lowering the risk of obsolescence.

Next, embed diagnostics and predictive maintenance functionality as standard deliverables rather than optional extras. By doing so, organizations can shift maintenance paradigms from reactive to condition-based practices, reduce unplanned downtime, and better align spare parts inventories with actual asset health. Complementing this, invest in workforce upskilling focused on digital tools and remote troubleshooting to realize the full value of advanced controls and to reduce reliance on external service interventions.

Additionally, reassess procurement frameworks to incorporate supplier performance metrics related to delivery lead times, spare-part availability, and software support cadence. Structure commercial agreements to encourage vendor accountability for lifecycle outcomes, including service-level commitments and clear protocols for firmware and cybersecurity updates. Finally, develop regional supplier strategies and dual-sourcing options to mitigate trade and logistics disruptions, integrating these plans into capital expenditure cycles and risk registers to ensure continuity under shifting policy or market conditions.

A mixed methods approach combining targeted expert engagements with systematic secondary analysis to produce validated, operationally relevant insights on compressor control

A rigorous research methodology combines primary engagement with subject matter experts and systematic secondary analysis of publicly available technical literature to triangulate insights into compressor control technologies and deployment trends. Primary research includes structured interviews with engineers, maintenance managers, and procurement leaders to capture first-hand operational challenges, procurement drivers, and the real-world performance of control solutions. These engagements provide qualitative depth that contextualizes technical choices and highlights adoption barriers that are not visible in product literature.

Secondary analysis complements this by reviewing technical standards, regulatory guidance, vendor technical white papers, and engineering case studies to map capabilities, compliance requirements, and typical control architectures. Emphasis is placed on synthesizing evidence across sources to avoid overreliance on any single vendor narrative. Data validation occurs through cross-referencing interview findings with documented performance characteristics and regional regulatory frameworks to ensure that conclusions are robust and actionable.

Throughout the research process, attention is paid to identifying implicit assumptions, distinguishing between feature claims and documented outcomes, and capturing nuanced trade-offs that influence specification choices. This mixed-methods approach ensures that recommendations reflect both operational realities and the technical constraints that shape effective compressor control strategies.

A concise synthesis emphasizing the strategic role of modern control systems in improving reliability, energy performance, and procurement resilience across diverse operational contexts

In conclusion, compressor control is evolving from a component-level consideration into a strategic capability that influences energy performance, operational reliability, and regulatory compliance. Modern control platforms that blend robust hardware, adaptable software, and integrated diagnostics enable operators to extract greater value from existing assets while lowering lifecycle risk. At the same time, external pressures such as trade policy adjustments and regional regulatory divergence are reshaping procurement and supply chain strategies, reinforcing the need for flexible sourcing and modular design.

Decision-makers should therefore treat control system specification as a multidimensional exercise that aligns technical requirements with contractual structures, workforce development, and risk management practices. By doing so, organizations can accelerate the transition from reactive maintenance to predictive operations and capture the operational benefits of interconnected control architectures. The path forward requires deliberate collaboration between engineering, procurement, and commercial teams to ensure that technology choices support both immediate operational needs and longer-term resilience objectives.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising integration of AI and machine learning to enable predictive compressor maintenance and performance optimization
  • 5.2. Implementation of IoT-enabled remote monitoring solutions for real-time compressor fault detection and control adjustments
  • 5.3. Expansion of variable speed drive technology for enhanced operational flexibility and reduced energy consumption in compressors
  • 5.4. Deployment of advanced sensor fusion platforms for comprehensive compressor health analytics and process automation
  • 5.5. Growing demand for oil-free compression systems with integrated smart controls to meet stringent air quality standards

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Compressor Control Market, by Compressor Type

  • 8.1. Centrifugal
    • 8.1.1. Multi Stage
    • 8.1.2. Single Stage
  • 8.2. Reciprocating
    • 8.2.1. Single Stage
    • 8.2.2. Two Stage
  • 8.3. Rotary
    • 8.3.1. Lobe
    • 8.3.2. Screw
    • 8.3.3. Scroll

9. Compressor Control Market, by Control Technology

  • 9.1. Electronic
  • 9.2. Mechanical
  • 9.3. Pneumatic

10. Compressor Control Market, by End User Industry

  • 10.1. Chemical & Petrochemical
  • 10.2. Manufacturing
    • 10.2.1. Automotive
    • 10.2.2. Food & Beverage
    • 10.2.3. Pharmaceuticals
  • 10.3. Oil & Gas
  • 10.4. Power Generation

11. Compressor Control Market, by Drive Type

  • 11.1. Electric
  • 11.2. Gas Engine
  • 11.3. Hydraulic

12. Compressor Control Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Compressor Control Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Compressor Control Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Emerson Electric Co.
    • 15.3.2. Siemens AG
    • 15.3.3. ABB Ltd.
    • 15.3.4. Schneider Electric SE
    • 15.3.5. Honeywell International Inc.
    • 15.3.6. Mitsubishi Electric Corporation
    • 15.3.7. Rockwell Automation, Inc.
    • 15.3.8. General Electric Company
    • 15.3.9. Yokogawa Electric Corporation
    • 15.3.10. Ingersoll Rand Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제