|
시장보고서
상품코드
1870673
커넥티드 디바이스 시장 : 디바이스 유형별, 접속 기술, 용도, 최종사용자별 - 세계 예측(2025-2032년)Connected Device Market by Device Type, Connectivity Technology, Application, End User - Global Forecast 2025-2032 |
||||||
커넥티드 디바이스 시장은 2032년까지 CAGR 16.17%로 4조 5,000억 달러 규모로 성장할 것으로 예측되고 있습니다.
| 주요 시장 통계 | |
|---|---|
| 기준연도 2024 | 1조 3,500억 달러 |
| 추정연도 2025 | 1조 5,600억 달러 |
| 예측연도 2032 | 4조 5,000억 달러 |
| CAGR(%) | 16.17% |
커넥티드 디바이스 산업 환경은 기술 혁신의 융합, 규제 요건의 변화, 비즈니스 모델의 진화로 인해 전환점을 맞이하고 있습니다. 디바이스 레벨의 지능화, 연결성의 확산, 새로운 서비스 모델이 제품 설계, 제조, 수익화 방식을 변화시키고 있습니다. 데이터 보안, 지속가능성, 강력한 공급망에 대한 관심이 높아지면서 조직은 단기적인 비즈니스 과제와 장기적인 전략적 우선순위를 조화시켜야 합니다.
커넥티드 디바이스의 환경은 개별 구성 요소를 넘어 생태계, 공급망, 규제 프레임워크의 기반에 이르기까지 일련의 변혁적 변화를 통해 재편되고 있습니다. 첫째, 이기종 연결 스택의 성숙은 유연성을 높이는 동시에 통합 요구 사항도 증가시키고 있습니다. 조직은 지연, 통신 범위, 비용 목표를 달성하기 위해 저전력 광역 네트워크, 셀룰러 세대, 로컬 메시 프로토콜 간의 절충을 점점 더 신중하게 조정하고 있습니다. 둘째, 보안과 데이터 거버넌스는 더 이상 부차적인 문제가 아니라 신뢰성과 상업적 타당성의 핵심 결정 요인이 되어 조달 기준과 파트너 선정에 영향을 미치고 있습니다.
최근 미국이 도입한 관세 조치와 무역 정책 조정은 조달 결정, 부품 리드 타임, 가격 전략에 이르기까지 커넥티드 디바이스 생태계 전체에 다층적인 영향을 미치고 있습니다. 최근 영향으로는 관세 대상 지역과 관세에 취약한 부품에 대한 공급망 취약성에 대한 감시가 강화되고, 조달 부서는 공급업체 계약, 재고 관리 방법, 현지 조달 옵션에 대한 재평가를 요구받고 있습니다. 그 결과, 많은 조직들이 대체 공급업체 선정, 부품 조달처 다변화, 관세 리스크가 있는 부품에 대한 의존도를 줄이기 위한 제품 아키텍처 재검토에 박차를 가하고 있습니다.
세분화된 부문 분석을 통해 전체 커넥티드 디바이스 시장의 기술적, 운영적, 상업적 우선순위의 공통점과 차이점을 명확히 파악할 수 있습니다. 시장은 디바이스 유형에 따라 농업 장비, 자동차 및 운송 장비, CE(Consumer Electronics), 의료 장비, 산업 및 기업용 장비, 스마트 인프라로 분류됩니다. 농업 장비 분야에서는 내환경성 하드웨어, 저전력 연결성, 현장 유지보수성이 요구되는 가축 모니터링 트래커와 스마트 관개 시스템 등에 초점을 맞추었습니다. 자동차 및 운송 분야는 커넥티드카, 전기자동차 충전소, 차량 관리 시스템을 포괄하며, 모두 엄격한 안전 인증, 고신뢰성 통신, 차량 아키텍처와의 통합이 요구됩니다. 가전기기에는 게임기, 스마트홈 기기, 스마트TV, 스마트폰, 웨어러블 기기 등이 포함되며, 사용자 경험, 폼팩터, 빠른 혁신 주기가 최우선 과제입니다. 웨어러블 기기 자체도 피트니스 트래커와 스마트 워치로 세분화되며, 배터리 수명과 센서의 정확도가 중요시됩니다. 의료기기 분야에서는 커넥티드 의료 영상 장치, 원격 환자 모니터링 시스템, 웨어러블 건강 추적기 등이 대상이며, 엄격한 규제 감독과 상호 운용성에 대한 기대에 따라 작동합니다. 산업 및 기업용 디바이스 분야에서는 자산 추적 장치, 로봇 및 자동화 시스템, 스마트 제조 장비가 대상이며, 결정론적 성능, 실시간 텔레메트리, 시스템 통합이 매우 중요합니다. 스마트 인프라 분야에서는 커넥티드 가로등, 스마트 미터, 교통 관리 시스템이 대상이며, 내결함성, 장기 수명주기 지원, 도시 규모의 상호 운용성이 우선시됩니다.
지역별 동향은 기술 도입 패턴, 규제 체계, 공급망 전략에 실질적인 영향을 미치며, 주요 지역마다 각기 다른 기회와 리스크를 창출합니다. 아메리카 대륙은 첨단인 소비자 도입과 대규모 산업 현대화 프로젝트가 공존하는 다양한 환경입니다. 데이터 프라이버시 및 무역 정책에 대한 규제적 초점이 조달 및 현지화 결정에 영향을 미칩니다. 반면, 유럽-중동 및 아프리카은 규제 체계와 인프라 성숙도가 복잡한 모자이크 형태의 특징을 가지고 있습니다. 유럽의 규제 환경은 데이터 보호, 제품 안전, 지속가능성 보고를 중시하는 반면, 중동 및 아프리카 시장에서는 신속한 인프라 구축과 비용 효율적인 연결 솔루션이 우선시되는 경향이 있습니다.
커넥티드 디바이스 생태계에서 사업을 운영하는 기업 간의 경쟁 역학은 전략 수립과 파트너 선정에 영향을 미치는 몇 가지 지속적인 주제를 드러내고 있습니다. 첫째, 차별화와 이익률에 대한 보다 강력한 관리를 원하는 기업에게 수직적 통합은 여전히 유력한 선택입니다. 커넥티비티 관리, 클라우드 서비스, 분석 분야로 사업 영역을 확장하는 디바이스 OEM은 다운스트림 가치의 더 큰 점유율을 확보하는 한편, 운영상의 복잡성 증가를 수용하게 될 것입니다. 둘째, 파트너십과 생태계가 매우 중요하며, 플랫폼 프로바이더, 칩셋 공급업체, 클라우드 공급업체, 시스템 통합사업자가 협력 체제를 구축하여 엔드투엔드 요구사항을 충족하고 도입 시간을 단축하고 있습니다.
인사이트를 경쟁 우위로 전환하고자 하는 업계 리더은 기술 선택, 공급망 탄력성, 상업적 실행력 등의 문제를 해결하기 위한 실용적이고 우선순위를 정한 일련의 행동을 추구해야 합니다. 먼저, 제품 엔지니어링, 조달, 규제 대응, 상업 부문을 정기적인 의사결정 프로세스에 통합하는 부서 간 거버넌스를 구축하고, 연결 옵션, 부품 조달, 컴플라이언스 의무의 트레이드오프를 평가해야 합니다. 거버넌스와 병행하여 핵심 하드웨어와 빠르게 진화하는 소프트웨어 계층을 분리하는 모듈형 아키텍처에 투자하고, 고비용의 하드웨어 개정이 아닌 소프트웨어 업데이트를 통한 기능 차별화를 실현하십시오.
본 분석의 기초가 되는 조사는 엄격성, 관련성, 실용적 적용성을 보장하기 위해 설계된 구조화된 다중 방법론 접근법을 채택했습니다. 1차 조사에서는 디바이스 제조업체, 커넥티비티 프로바이더, 시스템 통합사업자, 기업 구매 담당자를 대상으로 심층 인터뷰를 진행했습니다. 또한 엔지니어링 책임자와 함께 기술 워크숍을 진행하여 연결성 트레이드오프와 수명주기 요구사항에 대한 가설을 검증했습니다. 이러한 질적 연구 결과는 핵심 부품의 흐름을 추적하고, 단일 공급원에 대한 의존도를 파악하며, 관세 및 물류 리스크를 조사하는 공급망 매핑 작업을 통해 상호 검증되었습니다.
종합적인 분석 결과, 커넥티드 디바이스 시대의 성공을 위해서는 제품 아키텍처, 공급망 전략, 생태계 연계의 동시 발전이 필수적이라는 것을 알 수 있습니다. 커넥티비티와 컴퓨팅에 대한 기술적 선택은 규율적인 수명주기관리, 견고한 보안 조치, 적응형 조달 전략과 결합하여 규제의 복잡성과 무역 정책의 변화를 극복할 수 있어야 합니다. 마찬가지로 상업적 모델도 서비스, 데이터 수익화, 연장된 제품수명주기의 중요성 증가를 반영하도록 진화해야 합니다.
The Connected Device Market is projected to grow by USD 4.50 trillion at a CAGR of 16.17% by 2032.
| KEY MARKET STATISTICS | |
|---|---|
| Base Year [2024] | USD 1.35 trillion |
| Estimated Year [2025] | USD 1.56 trillion |
| Forecast Year [2032] | USD 4.50 trillion |
| CAGR (%) | 16.17% |
The connected device landscape is undergoing an inflection driven by converging technological advances, shifting regulatory expectations, and evolving commercial models. Device-level intelligence, pervasive connectivity, and new service paradigms are changing how products are designed, built, and monetized. As organizations respond to intensifying concerns around data security, sustainability, and resilient supply chains, decision-makers must reconcile near-term operational pressures with longer-term strategic priorities.
In this context, executives require a clear, structured narrative that links device categories and connectivity technologies to application demand and end-user priorities. This report synthesizes cross-disciplinary insights to illuminate where engineering effort, investment, and partnerships will most effectively create durable competitive advantage. It emphasizes pragmatic guidance rather than abstract prognostication, focusing on actionable implications for product roadmaps, procurement policies, and regulatory engagement.
Throughout the analysis, attention is paid to interoperability, lifecycle management, and risk mitigation. Emerging protocols and hardware choices intersect with software platforms, analytics, and service orchestration, creating both complexity and opportunity. Consequently, the introduction frames the subsequent sections to help leaders prioritize interventions that reduce operational friction while accelerating time-to-value from connected deployments.
The landscape of connected devices is being reshaped by a set of transformative shifts that extend beyond individual components and into the fabric of ecosystems, supply chains, and regulatory frameworks. First, the maturation of heterogeneous connectivity stacks brings greater flexibility but also raises integration demands; organizations are increasingly balancing trade-offs between low-power wide-area networks, cellular generations, and local mesh protocols to meet latency, range, and cost objectives. Second, security and data governance are no longer secondary concerns; they are central determinants of trust and commercial viability, influencing procurement criteria and partnership selection.
Moreover, the economics of device ownership and operation are evolving as manufacturers embrace software-enabled service models, creating recurring revenue opportunities while requiring stronger after-sales support and remote management capabilities. At the same time, sustainability imperatives are prompting redesigns for repairability, energy efficiency, and end-of-life recycling, which in turn affect component selection, materials sourcing, and compliance pathways. In parallel, geopolitical realignments and trade policy volatility are accelerating supplier diversification and regionalization strategies, compelling firms to reassess risk tolerance across multi-tiered supply chains.
Taken together, these shifts demand an integrated response: product teams must design for secure, upgradeable devices; supply chain leaders must map critical dependencies and pursue alternative sourcing; commercial teams must articulate value propositions that blend hardware, connectivity, and services. As a result, organizations that proactively adapt their operating models will be better positioned to capture new opportunities and withstand systemic disruptions.
Recent tariff measures and trade policy adjustments introduced by the United States have produced layered effects across the connected device ecosystem that extend into sourcing decisions, component lead times, and pricing strategies. The immediate consequence has been heightened scrutiny of supply chain exposure to tariffed jurisdictions and tariff-sensitive components, prompting procurement teams to re-evaluate supplier contracts, inventory practices, and localization options. Consequently, many organizations are accelerating efforts to qualify alternative suppliers, diversify component footprints, and redesign product architectures to reduce reliance on tariff-exposed parts.
Indirectly, tariff-driven cost pressures have altered vendor negotiations and long-term supplier collaboration models. Buyers are seeking more transparent cost structures and stronger performance guarantees, while suppliers are exploring production shifts, dual-sourcing arrangements, or investment in nearshore facilities to mitigate tariff volatility. Regulatory compliance and customs classification have also become more front-and-center, requiring deeper engagement between product engineers and trade specialists to optimize bill-of-materials declarations and leverage available exemptions or tariff relief mechanisms.
Crucially, tariffs are influencing product strategy beyond immediate cost considerations. They catalyze conversations about component standardization, modular design, and software-enabled differentiation that can decouple value from tariff-sensitive hardware. Firms that invest in supply chain visibility, agile redesign cycles, and scenario-based procurement policies are better equipped to preserve margin, maintain product timelines, and retain competitive positioning amid an uncertain trade environment.
A granular segmentation-based view clarifies where technical, operational, and commercial priorities converge and diverge across the connected device landscape. Based on device type, the market encompasses Agriculture Devices, Automotive & Transportation, Consumer Electronics, Healthcare Devices, Industrial & Enterprise Devices, and Smart Infrastructure. Within Agriculture Devices, the focus is on livestock monitoring trackers and smart irrigation systems that require ruggedized hardware, low-power connectivity, and field-serviceability. Automotive & Transportation spans connected cars, electric vehicle charging stations, and fleet management systems, each of which demands stringent safety certifications, high-reliability communications, and integration with vehicle architectures. Consumer Electronics includes gaming consoles, smart home devices, smart TVs, smartphones, and wearables, where user experience, form factor, and rapid innovation cycles are paramount; wearables themselves subdivide into fitness trackers and smartwatches, emphasizing battery life and sensor fidelity. Healthcare Devices cover connected medical imaging devices, remote patient monitoring systems, and wearable health trackers that operate under strict regulatory oversight and interoperability expectations. Industrial & Enterprise Devices span asset tracking devices, robotics and automation systems, and smart manufacturing equipment where deterministic performance, real-time telemetry, and systems integration are critical. Smart Infrastructure encompasses connected streetlights, smart meters, and traffic management systems that prioritize resilience, long lifecycle support, and city-scale interoperability.
Connectivity technology segmentation further differentiates design and deployment choices: Bluetooth, cellular, LPWAN, satellite, Wi-Fi, and Zigbee each present distinct trade-offs. Cellular includes legacy 2G/3G variants alongside 4G and 5G generations that drive considerations of bandwidth, mobility, and lifecycle support. LPWAN options such as LoRaWAN and NB-IoT offer low-power, long-range alternatives for many telemetry applications, while Wi-Fi variations from Wi-Fi 4 through Wi-Fi 6 affect throughput and device density considerations. Application-level segmentation highlights use cases across asset tracking, connected vehicle management, healthcare monitoring, home automation, and smart metering. Asset tracking distinguishes inventory management from real-time locating deployments; connected vehicle management covers fleet management and telematics; healthcare monitoring addresses patient monitoring and remote diagnostics; home automation emphasizes energy management, lighting control, and security management; and smart metering includes electricity, gas, and water metering modalities. Finally, end-user segmentation - spanning agriculture, automotive, consumer, energy and utilities, healthcare, manufacturing, retail, and transportation and logistics - frames procurement cycles, deployment scale, and service expectations.
Integrating these dimensions reveals where investment should be concentrated: product architectures and platform roadmaps must align with the dominant connectivity choices for targeted applications, while regulatory and end-user requirements shape priorities for security, lifecycle support, and user experience. This segmentation-informed perspective supports more precise partner selection, development roadmaps, and commercialization strategies.
Regional dynamics materially influence technology adoption patterns, regulatory regimes, and supply chain strategies, creating differentiated opportunities and risks across major geographies. The Americas present a heterogeneous environment where advanced consumer adoption coexists with significant industrial modernization projects; regulatory emphasis on data privacy and trade policy considerations shapes procurement and localization decisions. Conversely, Europe, Middle East & Africa feature a complex mosaic of regulatory regimes and infrastructure maturity levels, with the European regulatory landscape placing particular emphasis on data protection, product safety, and sustainability reporting, while Middle Eastern and African markets often prioritize rapid infrastructure build-out and cost-effective connectivity solutions.
In the Asia-Pacific region, strong manufacturing ecosystems, high-capacity telecommunications infrastructure, and rapid enterprise digitization create fertile ground for scaled device deployments; however, geopolitical tensions and varying standards across jurisdictions necessitate careful compliance planning and supplier selection. Across all regions, urbanization trends, nationwide infrastructure initiatives, and sector-specific regulatory developments - such as energy metering mandates or automotive safety certifications - shape procurement windows and technical requirements. Consequently, organizations must adapt go-to-market models and engineering roadmaps to these regional nuances, balancing centralized platform strategies with localized product variants and certification pathways to accelerate adoption while maintaining compliance and operational resilience.
Competitive dynamics among companies operating in the connected device ecosystem reveal several persistent themes that influence strategy formulation and partner selection. First, vertical integration continues to be a compelling route for companies seeking tighter control over differentiation and margins; device OEMs that extend into connectivity management, cloud services, or analytics capture greater share of downstream value but accept increased operational complexity. Second, partnerships and ecosystems are critical, with platform providers, chipset suppliers, cloud vendors, and system integrators forming collaborative arrangements to address end-to-end requirements and accelerate time-to-deployment.
Third, interoperability and standards leadership are important differentiators; companies that invest in open interfaces, robust SDKs, and cross-vendor collaboration reduce integration friction for enterprise buyers. Fourth, specialized providers focusing on security, device lifecycle management, and analytics have emerged as essential adjuncts to core hardware manufacturers, enabling modular, faster-to-market solutions. Finally, mergers, strategic investments, and selective acquisitions remain a pragmatic approach for firms to fill capability gaps quickly, access specialized intellectual property, or scale distribution. For buyers, these dynamics mean evaluating vendors not only on product performance but also on roadmap alignment, partner ecosystems, and demonstrated ability to support long-term maintenance and regulatory compliance.
Industry leaders seeking to convert insight into competitive advantage should pursue a set of practical, prioritized actions that address technology selection, supply chain resilience, and commercial execution. Start by instituting a cross-functional governance mechanism that brings product engineering, procurement, regulatory affairs, and commercial teams into a recurring decision rhythm to evaluate trade-offs between connectivity options, component sourcing, and compliance obligations. Parallel to governance, invest in modular architectures that decouple core hardware from rapidly evolving software layers, enabling feature differentiation through software updates rather than costly hardware revisions.
On the supply chain front, develop multi-sourcing strategies for critical components, strengthen supplier scorecards to capture non-price risks, and run scenario planning to stress-test supplier portfolios against tariff exposure, logistics disruption, and lead-time variability. From a go-to-market perspective, refine value propositions to emphasize total cost of ownership, security and privacy assurances, and sustainability credentials, thereby aligning with enterprise procurement priorities. Additionally, accelerate investments in device security by embedding secure boot, hardware root-of-trust, and over-the-air update capabilities as baseline features, while establishing transparent incident response arrangements with customers.
Finally, pursue selective ecosystem partnerships to fill capability gaps in analytics, lifecycle management, and field services, and consider strategic consolidation options where rapid scale or IP acquisition will materially accelerate market entry. These actions, taken in combination, will reduce execution risk and create a foundation for sustained commercial differentiation.
The research underpinning this analysis employed a structured, multi-method approach designed to ensure rigor, relevance, and practical applicability. Primary research included in-depth interviews with senior executives across device manufacturers, connectivity providers, system integrators, and enterprise buyers, supplemented by technical workshops with engineering leads to validate assumptions around connectivity trade-offs and lifecycle requirements. These qualitative inputs were cross-validated with supply chain mapping exercises that traced critical component flows, identified single-source dependencies, and explored tariff and logistics exposure.
Secondary research encompassed an extensive review of regulatory texts, standards documentation, patent filings, and publicly available technical whitepapers to ground findings in verifiable sources. Scenario analysis was used to explore the implications of policy shifts, technology adoption rates, and supply chain disruptions, with a focus on stress-testing strategic options rather than forecasting specific market outcomes. Finally, findings were subjected to expert validation sessions with domain specialists across security, regulatory compliance, and industrial deployment to ensure recommendations were actionable and reflective of operational realities. This mixed-method design yields insights that are both empirically grounded and directly translatable into strategic initiatives.
The cumulative analysis underscores that success in the connected device era requires simultaneous advances in product architecture, supply chain strategy, and ecosystem collaboration. Technological choices around connectivity and compute must be married to disciplined lifecycle management, robust security practices, and adaptable sourcing strategies to navigate regulatory complexity and trade policy volatility. Equally, commercial models must evolve to reflect the increasing importance of services, data monetization, and extended product lifecycles.
Leaders who prioritize modular design, supply chain visibility, and interoperability will find themselves better positioned to innovate while containing risk. By aligning engineering, procurement, and go-to-market functions through clear governance and scenario-driven planning, organizations can transform uncertainty into strategic advantage. The conclusion therefore points to a pragmatic imperative: integrate technical excellence with operational resilience and commercial adaptability to realize the full potential of connected devices across industries.