시장보고서
상품코드
1870706

바이오액티브 유리 시장 : 용도별, 제품 유형별, 형태별, 최종사용자별, 유통 채널별 - 세계 예측(2025-2032년)

Bioactive Glass Market by Application, Product Type, Form, End User, Distribution Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 180 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

바이오액티브 유리 시장은 2032년까지 CAGR 8.44%로 509억 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 266억 1,000만 달러
추정연도 2025 288억 9,000만 달러
예측연도 2032 509억 달러
CAGR(%) 8.44%

생체활성 유리 기술에 대한 종합적인 배경 소개. 임상적 중요성, 재료의 진화, 의료 용도에서의 번역적 중요성에 대해 설명

생체활성 유리는 실험실에서의 획기적인 발견에서 여러 임상 및 연구 분야의 기초 재료로 발전해 왔습니다. 초기에는 뼈와 연조직과의 결합이라는 독특한 특성으로 개발되었으나, 현대의 조성 및 가공 기술을 통해 치과용 수복재, 약물전달 매트릭스, 정형외과용 임플란트, 인공조직 스캐폴드 등으로 그 용도가 확대되고 있습니다. 졸루겔 화학, 이온 치환, 표면 기능화의 발전으로 이제는 구조적 수리를 지원할 뿐만 아니라 세포 반응과 국소 미세환경을 능동적으로 조절하는 물질이 가능해졌습니다.

재료 혁신, 임상 수요, 규제 진화가 결합하여 생체활성 유리 분야의 제품 개발 및 상업화 경로를 재구성하는 방법

최근 수년간 과학적, 임상적, 상업적 요인이 결합하여 생체활성 유리 정세에 혁신적인 변화가 일어나고 있습니다. 과학적인 측면에서는 유리 화학의 정밀화와 적층 성형 기술을 통해 제어된 다공성 및 이온 방출 프로파일을 갖춘 맞춤형 구조가 실현되어 재현성 높은 생물학적 반응을 촉진합니다. 표면 코팅과 복합재료 통합의 병행적인 발전은 임플란트의 내구성과 적합성을 확대하고 염증 반응을 감소시키며 뼈 결합을 강화합니다.

2025년 관세 정책 동향이 전체 생리활성유리 밸류체인에서 공급망 전략, 제조 거점, 가격 책정 수단을 어떻게 재구성했는지 평가

최근 수년간의 정책 사이클에서 관세 부과와 강화는 생체활성 유리 밸류체인에 관련된 기업에게 복잡한 운영 및 전략적 영향을 미쳤습니다. 관세는 실리콘, 칼슘원 등 수입 원료 전구체, 졸겔 가공에 사용되는 특수 시약, 국경을 넘어 공급되는 완제품의 원가 기반을 변동시킵니다. 통합된 세계 공급망에 의존하는 제조업체의 경우, 이러한 비용 변동은 조달 전략, 재고 관리 정책, 국경 간 이전 가격의 재평가를 필요로 합니다.

임상 적용, 성분 선택, 제품 형태, 최종사용자 선호도, 유통 경로를 상업적 성과로 연결시키는 통합적 세분화 분석

세분화 분석을 통해 임상 수요와 제품 혁신 및 유통 역학이 교차하는 영역이 밝혀지고, 기술 개발 및 상업적 노력이 집중되는 분야가 부각될 수 있습니다. 치과 분야는 치내치료와 치주 치료를 모두 포함하며, 치아 구조 내부와 주변의 재생 요구를 충족시킵니다. 약물전달 분야에서는 항균제나 성장인자의 서방형 매트릭스로 생체활성 유리가 활용됩니다. 정형외과 분야는 뼈 재생과 척추 고정술에 중점을 두고, 비계 구조와 이온 방출이 매우 중요합니다. 조직공학은 뼈 조직, 연골 조직, 혈관 조직에 걸쳐 있으며, 각각 다른 기계적 특성과 생체 기능적 프로파일을 요구합니다.

지역별 동향과 채택 패턴의 차이가 규제 전략과 시장 개발을 형성

지역별 동향은 바이오활성유리 용도의 기술 도입, 규제 성숙도, 공급망 전략 형성에 있으며, 매우 중요합니다. 미국 대륙에서는 임상 시스템과 상환 환경이 증거 기반 도입을 자주 지지하고, 치과 분야의 혁신과 정형외과 임플란트 개발이 활발하게 이루어지고 있습니다. 제조 능력과 통합된 치과 공급 채널은 신속한 상업화 및 임상의를 위한 교육 프로그램을 지원합니다. 유럽, 중동 및 아프리카은 일부 유럽 시장의 규제 조화와 다른 관할권의 다양한 접근 및 조달 메커니즘이 대비되는 이질적인 상황을 보이고 있습니다. 이에 따라 비용 효율성과 임상적 성과를 중시하는 중앙집권적 승인과 지역에 기반을 둔 도입 전략이 혼재되어 있습니다.

생체활성 유리 제조업체 간의 경쟁적 차별화, 확장성, 임상 검증의 궤적을 결정하는 기업 전략과 협업 접근법

생체활성 유리 생태계에서 기업 차원의 행동은 규모, 기술적 배경, 시장 초점에 따라 각기 다른 전략적 태도를 보이고 있습니다. 다국적 소재업체들은 다양한 구성과 형태에 대응하기 위해 모듈식 생산라인과 국경을 초월한 규제 대응팀에 대한 투자를 진행하고 있습니다. 반면 소규모 전문 기업은 틈새 임상 적응증, 고부가가치 치과용 소모품 또는 독자적인 비계 구조에 초점을 맞추었습니다. 스타트업이나 대학발 벤처기업은 특히 적층제조나 생체기능화 기술에서 파괴적 혁신을 주도하는 경우가 많지만, 임상 채널 접근이나 제조 규모 확대를 위해 기존 유통업체나 공동개발 파트너와의 제휴를 선택하는 경우가 많습니다.

임상 도입과 조직적 회복력을 가속화할 수 있는 제품, 규제, 공급망, 상업적 전략에 대한 실용적이고 우선순위를 매긴 권고 사항

업계 리더은 채택을 가속화하기 위해 명확한 임상적 가치 제안과 증거 구축 프로세스에 따라 R&D 우선순위를 조정해야 합니다. 제품군 전체에 걸쳐 조성 조정이 가능한 기반 기술에 투자하여 단일 제조거점에서 다양한 적응증에 맞는 코팅, 분말, 퍼티, 비계 재료를 제공할 수 있도록 해야 합니다. 재료 개발과 병행하여 엄격한 전임상 평가지표, 가능하면 다기관 임상시험, 기능적 성과와 시술 효율을 입증하는 실제 데이터 수집을 포함한 번역적 증거 창출을 위한 체계적인 계획을 수립해야 합니다.

전문가 인터뷰, 문헌 통합, 시나리오 분석을 결합한 혼합 방법론 연구 프레임워크를 채택하여 기술적, 임상적, 상업적 지식을 신뢰할 수 있는 방식으로 검증

이 조사 방법은 질적 전문성과 체계적인 증거 통합을 결합하여 확고한 실무적 결론을 보장합니다. 1차 조사에서는 치과 및 정형외과 임상의, 병원 및 클리닉의 조달 책임자, 재료 및 장비 제조업체의 기술 책임자, 규제 전문가를 대상으로 구조화된 인터뷰를 실시했습니다. 이러한 대화를 통해 도입 결정에 있으며, 가장 중요한 시술 선호도, 취급 특성, 임상적 평가지표에 대한 인사이트를 얻을 수 있었습니다. 2차 조사에서는 피어리뷰 문헌, 규제 지침 문서, 임상시험 등록 정보, 공개 기술 표준에 대한 주제별 검토를 통해 성능 주장 및 안전성 고려 사항을 삼각 측량했습니다.

결론적으로 제품 전략, 근거 전략, 공급 전략의 연계가 생체활성 유리 기술의 보급 경로와 임상적 영향을 결정한다는 것을 강조하는 통합적 분석

요약하면, 생체활성 유리는 성숙한 재료 과학, 미묘한 임상적 요구, 진화하는 상업적 구조가 결합되어 보다 광범위한 채택을 위한 구체적인 경로를 만들어내는 분기점에 서 있습니다. 이 기술의 핵심 강점인 생체활성, 조절 가능한 용해 특성, 기능성 이온 방출 능력은 치과 수복, 정형외과적 재생, 인공조직의 임상 목표와 밀접하게 일치합니다. 그러나 이러한 재료의 잠재력을 완전히 실현하기 위해서는 제품 설계, 임상 증거 창출, 공급망 전략 전반에 걸친 협력적 노력이 필요합니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 바이오액티브 유리 시장 : 용도별

  • 치과
    • 치내요법 용도
    • 치주질환 치료
  • 약물 전달
  • 정형외과
    • 골재생
    • 척추고정술
  • 조직공학
    • 골조직
    • 연골 조직
    • 혈관 조직

제9장 바이오액티브 유리 시장 : 제품 유형별

  • 13-93
  • 45S5
  • 58S
  • S53P4

제10장 바이오액티브 유리 시장 : 형태별

  • 코팅
  • 분말
  • 접착제
  • 스캐폴드

제11장 바이오액티브 유리 시장 : 최종사용자별

  • 치과의원
  • 병원
  • 연구기관

제12장 바이오액티브 유리 시장 : 유통 채널별

  • 직접 판매
  • 판매 대리점

제13장 바이오액티브 유리 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 바이오액티브 유리 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 바이오액티브 유리 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Stryker Corporation
    • 3M Company
    • NovaBone Products, LLC
    • Mo-Sci Corporation
    • Bonalive Biomaterials Ltd
    • Biomin GmbH
    • Orthovita, Inc.
    • Shanghai Bio-lu Biomaterials Co., Ltd.
    • CoorsTek, Inc.
    • AGC Inc.
KSA 25.12.02

The Bioactive Glass Market is projected to grow by USD 50.90 billion at a CAGR of 8.44% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 26.61 billion
Estimated Year [2025] USD 28.89 billion
Forecast Year [2032] USD 50.90 billion
CAGR (%) 8.44%

A comprehensive contextual introduction to bioactive glass technology outlining its clinical relevance, material evolution, and translational significance across healthcare applications

Bioactive glass has transitioned from a laboratory breakthrough to a cornerstone material across multiple clinical and research domains. Initially developed for its unique ability to bond with bone and soft tissues, modern compositions and processing techniques have expanded its utility into dental restoratives, drug delivery matrices, orthopedic implants, and engineered tissue scaffolds. Advances in sol-gel chemistry, ion substitution, and surface functionalization now enable materials that not only support structural repair but actively modulate cellular responses and local microenvironments.

This introduction frames the technology's relevance to clinicians, materials scientists, and commercial strategists. In clinical practice, bioactive glass applications span endodontic procedures and periodontal therapies in dentistry, while orthopedics leverages formulations for bone regeneration and fusion. In parallel, tissue engineering research exploits compositional tuning to promote osteogenesis, chondrogenesis, and vascularization. Coupled with varied product forms such as coatings, powders, putties, and scaffolds, these developments underpin a diversified supply chain from specialized manufacturers to hospital procurement.

As regulatory pathways evolve and translational pipelines accelerate, understanding the material science alongside clinical evidence and distribution dynamics becomes essential. This report synthesizes the technical foundations and application contexts to equip leaders with a clear orientation of where bioactive glass delivers differentiated clinical value and where further innovation is required to overcome adoption barriers.

How material innovation, clinical demand, and regulatory evolution are collectively reshaping product development and commercialization pathways in the bioactive glass sector

Recent years have witnessed transformative shifts across the bioactive glass landscape driven by converging scientific, clinical, and commercial forces. At the scientific front, precision in glass chemistry and additive manufacturing have enabled bespoke architectures with controlled porosity and ion release profiles, which in turn drive more reproducible biological responses. Parallel improvements in surface coatings and composite integration have expanded implant longevity and compatibility, reducing inflammatory responses and enhancing osseointegration.

Clinically, there is a discernible move from single-use, filler-type applications toward multifunctional constructs that combine structural repair with localized therapeutic delivery. This paradigm shift reflects broader healthcare priorities emphasizing minimally invasive procedures, faster recovery times, and lower infection risks. Commercially, strategic alliances between materials firms, dental suppliers, and implant manufacturers are reshaping route-to-market strategies, concentrating on bundled solutions that simplify clinician workflows and procurement.

Regulatory expectations and payer scrutiny are also evolving; device dossiers increasingly require robust preclinical models, histological endpoints, and translational biomarkers to substantiate clinical benefits. Consequently, organizations that align their R&D, regulatory, and clinical evidence-generation strategies are better positioned to navigate reimbursement landscapes and accelerate adoption. Taken together, these shifts indicate a maturing field where incremental material advances are being translated into systemic changes in how therapies are designed, delivered, and valued.

Assessing how tariff policy dynamics in 2025 have reoriented supply chain strategies, manufacturing footprints, and pricing levers across the bioactive glass value chain

The imposition and escalation of tariffs in recent policy cycles have introduced a complex set of operational and strategic impacts for companies engaged in the bioactive glass value chain. Tariffs alter the cost basis for imported raw precursors such as silicon and calcium sources, specialized reagents used in sol-gel processing, and finished components supplied across borders. For manufacturers relying on integrated global supply chains, these cost shifts necessitate reassessment of sourcing strategies, inventory policies, and cross-border transfer pricing.

Beyond direct cost effects, tariffs influence competitive positioning. Organizations with localized manufacturing footprints or vertical integration can internalize fewer external cost shocks, creating relative advantages in margin stability and price competitiveness. Conversely, firms dependent on third-party suppliers or contract manufacturers in tariff-affected jurisdictions face margin compression or must accept lead-time variability as procurement shifts to alternative suppliers.

Operationally, some companies respond by redesigning bills of materials to reduce tariff exposure, substituting components where clinically and regulatory feasible, or increasing emphasis on domestic supply relationships. Others accelerate investments in automation and process efficiency to offset rising input costs without compromising clinical specifications. Importantly, tariffs also amplify the strategic value of distribution choices: direct sales channels enable tighter margin control and dynamic pricing, whereas reliance on distributors can diffuse tariff-related costs across broader networks but may conceal incremental pricing pressures from end-users. Overall, the tariff environment in 2025 has elevated supply chain resilience and manufacturing localization from tactical priorities to central pillars of corporate strategy.

Integrated segmentation analysis connecting clinical applications, compositional choices, product forms, end-user preferences, and distribution pathways to commercial outcomes

Segmentation insights reveal where clinical demand intersects with product innovation and distribution dynamics, highlighting areas of concentrated technical development and commercial focus. When viewed through the lens of application, dentistry encompasses both endodontic applications and periodontal treatment, addressing regenerative needs inside and around the tooth structure; drug delivery leverages bioactive glass as a controlled-release matrix for antimicrobials and growth factors; orthopedics is oriented toward bone regeneration and spinal fusion procedures where scaffold architecture and ion release are paramount; and tissue engineering spans bone tissue, cartilage tissue, and vascular tissue, each demanding distinct mechanical and biofunctional profiles.

Examining product type sheds light on compositional preferences and performance trade-offs. Classic formulations such as 13-93 and 45S5 remain reference points for bioactivity and dissolution behavior, while variants like 58S and S53P4 are selected for specific angiogenic or antimicrobial attributes. Form factor decisions-coating, powder, putty, and scaffold-reflect clinical workflows and handling requirements; coatings are optimized for implant surfaces, powders and putties for defect filling and minimally invasive delivery, and scaffolds when structural support and cell infiltration are required. End users include dental clinics, hospitals, and research institutes, each placing different emphases on ease of use, regulatory branding, and evidence thresholds. Finally, distribution choices between direct sales and distributors influence market reach, pricing transparency, and the ability to offer integrated training or product bundling. Together, these segmentation dimensions map the technical design choices to real-world clinical adoption patterns and commercial pathways.

Regional dynamics and differential adoption patterns across the Americas, Europe Middle East & Africa, and Asia-Pacific shaping regulatory strategy and market deployment

Regional dynamics are pivotal in shaping technology adoption, regulatory maturity, and supply chain strategies across bioactive glass applications. In the Americas, clinical systems and reimbursement environments frequently favor evidence-driven adoption, with strong activity in dental innovation and orthopedic implant development; manufacturing capacity and consolidated dental supply channels support rapid commercialization and clinician training programs. Europe, the Middle East & Africa presents a heterogenous landscape where regulatory harmonization in some European markets contrasts with varied access and procurement mechanisms in other jurisdictions, driving a mix of centralized approvals and localized adoption strategies that emphasize cost-effectiveness and clinical outcomes.

Asia-Pacific markets are characterized by both fast-growing clinical demand and significant manufacturing capabilities. Several countries in the region are notable for rapid hospital infrastructure expansion and active research ecosystems that advance translational applications in tissue engineering and drug delivery. These regional differences influence decisions on where to locate pilot production, how to design clinical evidence packages, and the nature of partnerships with local distributors or clinical networks. Navigating the nuanced regulatory, reimbursement, and procurement realities across these regions is essential for firms seeking scalable international rollouts and for tailoring product portfolios to local clinical and cost constraints.

Corporate strategies and collaborative approaches that determine competitive differentiation, scalability, and clinical validation trajectories across bioactive glass producers

Company-level behaviors within the bioactive glass ecosystem demonstrate divergent strategic postures depending on scale, technical heritage, and market focus. Multinational materials manufacturers are investing in modular production lines and cross-border regulatory teams to support a range of compositions and form factors, while smaller specialized firms concentrate on niche clinical indications, high-value dental consumables, or proprietary scaffold architectures. Startups and university spinouts often drive disruptive technical innovations, particularly in additive manufacturing and biofunctionalization, but they frequently partner with established distributors or co-development partners to access clinical channels and scale manufacturing.

Across these organizational types, successful companies share several common practices: disciplined IP strategies that protect formulation specificity and processing know-how; early engagement with regulatory bodies to streamline approval pathways; and investment in post-market evidence collection to demonstrate long-term clinical benefits. Firms are also differentiating via service layers such as clinician training, procedural support, and bundled implant systems that reduce the complexity of adoption. Strategic M&A and licensing arrangements are occurring where larger players seek to internalize specialized capabilities, while collaborative consortia with hospitals and research institutes accelerate clinical validation. Overall, corporate insights point toward a balanced mix of technological depth, regulatory acumen, and commercialization partnerships as determinants of competitive advantage.

Practical and prioritized recommendations for product, regulatory, supply chain, and commercial strategies that accelerate clinical adoption and organizational resilience

Industry leaders should align R&D priorities with clear clinical value propositions and evidence pathways to accelerate adoption. Invest in platform technologies that allow compositional tuning across a family of products so that a single manufacturing backbone can deliver coatings, powders, putties, and scaffolds adapted to different indications. Parallel to material development, create a structured plan for generating translational evidence that includes rigorous preclinical endpoints, multicenter clinical studies where feasible, and real-world data collection to demonstrate functional outcomes and procedural efficiencies.

Operationally, diversify supply chain sources and examine regional manufacturing or toll-production options to reduce exposure to tariff volatility and logistics disruptions. Adopt modular production practices and quality systems that facilitate rapid validation of new compositions without extensive requalification. Commercially, tailor go-to-market models by region and end user: dental clinics often favor products that reduce chair time and simplify protocols, hospitals emphasize integrated implant systems with predictable inventory management, and research institutes seek open platforms that enable collaborative studies. Finally, cultivate strategic partnerships spanning distribution, clinical research, and complementary implant technologies to extend reach and share risk in evidence generation. Executing on these recommendations will improve resilience, accelerate clinical uptake, and create defensible differentiation in a competitive field.

A mixed-methods research framework combining expert interviews, literature synthesis, and scenario analysis to validate technical, clinical, and commercial insights reliably

The research methodology integrates qualitative expertise with systematic evidence synthesis to ensure robust, actionable conclusions. Primary research comprised structured interviews with clinicians across dentistry and orthopedics, procurement leaders from hospitals and clinics, technical leaders at materials and device firms, and regulatory specialists. These conversations provided insight into procedural preferences, handling characteristics, and clinical endpoints that matter most to adoption decisions. Secondary research involved thematic review of peer-reviewed literature, regulatory guidance documents, clinical trial registries, and publicly available technical standards to triangulate performance claims and safety considerations.

Analytical frameworks included segmentation mapping across applications, product types, form factors, end users, and distribution channels, enabling cross-sectional analysis of adoption barriers and commercial levers. Supply chain stress-testing scenarios were constructed to evaluate responses to cost shocks and tariff changes, emphasizing operational tactics such as localized production and BOM substitution. Data validation procedures combined cross-interview corroboration with document-level evidence, and findings were iteratively refined through expert review sessions. This mixed-method approach ensures that the report's insights reflect both lived clinical experience and the rigor of technical and regulatory documentation.

Conclusive synthesis highlighting how coordinated product, evidence, and supply strategies will determine the trajectory and clinical impact of bioactive glass technologies

In summary, bioactive glass stands at a juncture where matured material science, nuanced clinical needs, and evolving commercial structures are creating tangible pathways to broader adoption. The technology's core strengths-bioactivity, tunable dissolution, and capacity for functional ion release-align closely with clinical objectives in dental repair, orthopedic regeneration, and engineered tissues. However, realizing the full potential of these materials requires coordinated action across product design, clinical evidence generation, and supply chain strategy.

Leaders who prioritize modular product platforms, proactive regulatory engagement, and diversified manufacturing footprints will be better equipped to navigate policy-induced cost pressures and regional market complexities. Similarly, strategic partnerships that bundle technical capability with clinical training and distribution reach will reduce friction during clinician adoption. Ultimately, the trajectory of bioactive glass will be determined not only by laboratory innovation but by the capacity of organizations to translate material advantages into reproducible, cost-effective clinical outcomes that satisfy regulators, payers, and providers alike.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of bioactive glass composites with 3D printed scaffolds for bone tissue regeneration
  • 5.2. Development of multifunctional bioactive glass nanofibers for targeted drug delivery applications
  • 5.3. Expansion of bioactive glass coatings for orthopedic implants to enhance antibacterial properties
  • 5.4. Adoption of sustainable bioactive glass production methods using agricultural waste feedstocks
  • 5.5. Rising investment in clinical trials exploring bioactive glass for dental tissue regeneration therapies
  • 5.6. Growth of bioactive glass-based wound dressings incorporating antibacterial silver nanoparticles
  • 5.7. Collaborations between biotech firms and academic institutions accelerating bioactive glass innovation pipelines
  • 5.8. Increasing use of doped bioactive glass formulations to stimulate vascularization in tissue engineering

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Bioactive Glass Market, by Application

  • 8.1. Dentistry
    • 8.1.1. Endodontic Applications
    • 8.1.2. Periodontal Treatment
  • 8.2. Drug Delivery
  • 8.3. Orthopedics
    • 8.3.1. Bone Regeneration
    • 8.3.2. Spinal Fusion
  • 8.4. Tissue Engineering
    • 8.4.1. Bone Tissue
    • 8.4.2. Cartilage Tissue
    • 8.4.3. Vascular Tissue

9. Bioactive Glass Market, by Product Type

  • 9.1. 13-93
  • 9.2. 45S5
  • 9.3. 58S
  • 9.4. S53P4

10. Bioactive Glass Market, by Form

  • 10.1. Coating
  • 10.2. Powder
  • 10.3. Putty
  • 10.4. Scaffold

11. Bioactive Glass Market, by End User

  • 11.1. Dental Clinics
  • 11.2. Hospitals
  • 11.3. Research Institutes

12. Bioactive Glass Market, by Distribution Channel

  • 12.1. Direct Sales
  • 12.2. Distributors

13. Bioactive Glass Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Bioactive Glass Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Bioactive Glass Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Stryker Corporation
    • 16.3.2. 3M Company
    • 16.3.3. NovaBone Products, LLC
    • 16.3.4. Mo-Sci Corporation
    • 16.3.5. Bonalive Biomaterials Ltd
    • 16.3.6. Biomin GmbH
    • 16.3.7. Orthovita, Inc.
    • 16.3.8. Shanghai Bio-lu Biomaterials Co., Ltd.
    • 16.3.9. CoorsTek, Inc.
    • 16.3.10. AGC Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제