시장보고서
상품코드
1870742

에너지 물류 시장 : 에너지원별, 운송 수단별, 서비스 유형별, 최종 이용 산업별 - 세계 예측(2025-2032년)

Energy Logistics Market by Energy Source, Transportation Mode, Service Type, End Use Industry - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

에너지 물류 시장은 2032년까지 CAGR 17.01%로 1조 4,401억 5,000만 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 4,097억 5,000만 달러
추정 연도 2025년 4,782억 8,000만 달러
예측 연도 2032년 1조 4,401억 5,000만 달러
CAGR(%) 17.01%

에너지 물류에 대한 전략적 접근 방식은 운영 현실, 규제 변화, 투자 우선순위를 통합하여 자산과 네트워크 전반에 걸쳐 경영진의 의사결정에 정보를 제공합니다.

본 Executive Summary는 상품, 운송 수단, 서비스 전반에 걸쳐 에너지 물류를 형성하고 있는 현재 동향에 대해 간략하게 개괄하는 것으로 시작됩니다. 이 부문은 탈탄소화 우선순위, 공급망 탄력성 확보의 필요성, 진화하는 규제 프레임워크에 따른 수요 측면의 급격한 변화와 오랜 기간 동안 지속된 인프라 제약과 지속적으로 조율하고 있습니다. 이러한 배경에서 조직은 단기적인 업무 연속성과 구조적 변화에 대비한 중기적인 전략적 투자 사이에서 균형을 맞춰야 합니다.

에너지 믹스의 진화, 운송 수단의 용량 전환, 디지털화 격차, 규제 환경의 강화로 인한 에너지 물류의 수렴적 구조적 변화

에너지 물류 환경은 여러 가지 수렴적인 변화를 겪고 있으며, 상품이 공급원에서 최종 사용처까지 이동하는 방식을 변화시키고 있습니다. 첫째, 운송 흐름의 에너지 원 구성이 변화하고 있습니다. 재생에너지, 수소, 바이오연료에 대한 수요가 증가함에 따라 기존 인프라와는 다른 취급, 저장, 안전 프로토콜이 필요하며, 이는 기존 인프라와 반드시 호환되지 않습니다. 이러한 진화에 따라 사업자는 터미널 구성의 재평가, 탱크의 개조, 광범위한 제품 특성을 관리하기 위한 인력의 재인증이 요구되고 있습니다.

2025년 관세 조치가 에너지 물류 업무의 항로 선택 인센티브, 계약 프레임워크, 전략적 공급망 발자취를 재구성하는 메커니즘

2025년 관세 조치 시행은 단순한 가격 전가를 넘어 에너지 물류 전반에 다층적인 영향을 미치고 있습니다. 관세는 운송 경로의 인센티브를 바꾸고, 추가 관세를 피하기 위해 운송 경로를 변경하는 화주도 등장하여 항해 거리 연장, 복합운송 증가, 하역 작업의 증가를 초래하고 있습니다. 이러한 운영상의 조정은 통관 관련 불확실성을 줄이기 위해 공급망에 추가 완충 시간을 포함시킴으로써 스케줄링 및 재고 관리의 복잡성을 증가시키고 있습니다.

에너지원, 운송 수단, 서비스 유형, 최종 용도별로 심층적인 세분화 분석을 통해 운영, 규제, 상업적 측면에서 차별화된 핵심 이슈를 파악할 수 있습니다.

세분화를 고려한 접근 방식은 에너지 원, 운송 모드, 서비스 유형, 최종 사용 산업별로 서로 다른 역학을 드러내고, 이를 종합적으로 고려하여 비즈니스 우선순위를 결정합니다. 에너지원을 고려할 때, 석탄 시장에서는 처리 및 저장 요구가 현저하게 다르며, 야금용 석탄은 일반 석탄과는 다른 물류 흐름이 필요합니다. 천연가스는 건조가스, LNG, 천연가스 액체(NGL) 등 다양한 형태로 존재하며, 압축, 극저온 저장, 안전관리 체계에서 각각 고유한 요구사항을 가지고 있습니다. 석유제품은 원유와 정제제품으로 나뉘며, 배치처리, 오염위험, 정제제품 사양이 터미널 관리를 좌우합니다. 바이오연료와 수소를 포함한 재생에너지는 새로운 적합성 기준과 인증 기준을 도입하고 전문적인 저장 및 이송 프로토콜을 필요로 합니다.

인프라 부존 현황, 규제 체계, 수요 프로파일을 비교한 지역별 분석(아메리카, 유럽, 중동 및 아프리카, 아시아태평양)

지역별로 인프라 구축 상황, 규제 환경, 수요 프로파일의 차이가 물류 전략을 형성하고 있습니다. 아메리카에서는 내륙의 생산기지, 연안의 수출 터미널, 광범위하지만 노후화된 도로 및 철도망의 상호 작용이 기회와 제약의 양면성을 모두 가지고 있습니다. 시장 진입 기업은 주요 중계 거점의 용량 병목현상과 노선 선정 및 운송 수단 선택에 영향을 미치는 지역별 규제 차이에 대한 조정이 필요합니다. 한편, 이 지역의 성숙한 상품 거래 기반과 첨단 디지털 서비스는 재고를 최적화하고 시장 대응력을 강화할 수 있는 길을 제공하고 있습니다.

주요 에너지 물류 기업이 자산 고도화, 통합 서비스, 상업적 혁신을 결합하여 회복탄력성을 구축하고 가치 제안을 차별화할 수 있는 방법

에너지 물류의 주요 기업들은 자산 최적화, 서비스 다각화, 디지털 투자를 결합하여 현재의 환경을 극복하고 있습니다. 일부 기업은 제품 오염 위험을 최소화하면서 증분 흐름을 확보하기 위해 터미널 현대화 및 다품종 취급 능력 강화를 우선순위로 삼고 있습니다. 반면, 선박 및 차량 개조를 통한 연비 개선, 배출가스 규제 준수 등 선대 최적화에 집중하는 기업도 있으며, 이는 규제 강화에 따른 장기적인 운영 변동성을 줄일 수 있는 방안이기도 합니다.

경영진이 가시성, 상업적 유연성, 인프라 적응성, 거버넌스, 파트너십 전략을 강화하고 비즈니스 회복탄력성을 확보하기 위한 실행 가능한 우선순위

업계 리더들은 즉각적인 회복탄력성과 구조적 변화를 위한 전략적 포지셔닝의 균형을 맞추는 우선순위를 추구해야 합니다. 첫째, 실시간 추적, 관세 영향 알림, 예지보전 시그널을 제공하는 타겟팅된 디지털 투자를 통해 공급망 가시성을 강화합니다. 병목지점이나 고가치 노드에서 가시성을 우선시함으로써 기업 전체의 플랫폼 교체 없이도 비례 이상의 운영상의 이점을 얻을 수 있습니다.

실무적 연관성과 견고성을 보장하기 위해 경영진과의 1차 인터뷰, 운영 데이터 검증, 교차 세분화 매핑, 전문가 동료 검토를 조합한 엄격한 혼합 방식을 채택했습니다.

본 조사 방법은 정성적 및 정량적 증거 스트림을 통합하여 에너지 물류의 역학에 대한 균형 잡힌 실증분석을 실현했습니다. 1차 조사에서는 해운, 터미널, 파이프라인 운영, 최종 소비 부문의 경영진을 대상으로 구조화된 인터뷰를 실시했으며, 무역 규정 준수 및 안전 전문가를 대상으로 한 토론을 통해 보완했습니다. 이러한 노력을 통해 시장 진입자들이 채택하는 운영상의 제약, 계약 메커니즘, 단기적 의사결정 기준에 대한 실제적인 인사이트를 얻을 수 있었습니다.

전체 에너지 물류 네트워크에서 혼란을 경쟁 우위로 전환하기 위해 운영상의 엄격함과 적응형 계획의 균형을 맞추는 전략적 요구사항의 통합

결론적으로, 에너지 물류는 인프라 관성과 급속한 시스템 변화의 교차점에 위치하고 있습니다. 진화하는 에너지 믹스, 요금 변동성, 운송 모드의 용량 제약이 교차하는 상황에서는 운영상의 우수성과 전략적 유연성을 모두 중시하는 섬세한 접근이 요구됩니다. 가시성에 대한 선택적 투자, 다품종 대응을 위한 핵심 자산의 리노베이션, 위험 분담을 위한 상업적 프레임워크의 재설계에 노력하는 조직은 혼란을 관리하고 새로운 흐름을 포착하는 데 있어 우위를 점할 수 있을 것입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 에너지 물류 시장 : 에너지원별

  • 석탄
    • 야금용 석탄
    • 일반탄
  • 천연가스
    • 드라이 가스
    • LNG
    • NGL
  • 석유
    • 원유
    • 석유 제품
  • 재생에너지
    • 바이오연료
    • 수소

제9장 에너지 물류 시장 : 운송 수단별

  • 항공
    • 항공화물
  • 해상 운송
    • 바지선
    • 탱커
  • 파이프라인
    • 오프쇼어
    • 온쇼어
  • 철도
    • 철도 탱크차
    • 유닛 트레인
  • 도로
    • ISO 컨테이너
    • 탱크 로리

제10장 에너지 물류 시장 : 서비스 유형별

  • 취급
    • 하역
    • 환적
  • 저장
    • 탱크 저장
    • 지하 저장고
  • 교통기관
  • 부가가치 서비스
    • 블렌드
    • 품질 분석

제11장 에너지 물류 시장 : 최종 이용 산업별

  • 상업용
  • 산업용
  • 발전
  • 주거용
  • 교통기관

제12장 에너지 물류 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 에너지 물류 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 에너지 물류 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Energy Transfer LP
    • Enbridge Inc.
    • Enterprise Products Partners L.P.
    • MPLX LP
    • Plains All American Pipeline, L.P.
    • TC Energy Corporation
    • Kinder Morgan, Inc.
    • The Williams Companies, Inc.
    • Cheniere Energy, Inc.
    • Buckeye Partners L.P.
KSM 25.12.17

The Energy Logistics Market is projected to grow by USD 1,440.15 billion at a CAGR of 17.01% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 409.75 billion
Estimated Year [2025] USD 478.28 billion
Forecast Year [2032] USD 1,440.15 billion
CAGR (%) 17.01%

A strategic orientation to energy logistics that integrates operational realities, regulatory inflections, and investment priorities to inform executive decision making across assets and networks

This executive summary opens with a concise orientation to current forces shaping energy logistics across commodities, modes, and services. The sector continues to reconcile longstanding infrastructure constraints with rapid demand-side shifts driven by decarbonization priorities, supply chain resilience imperatives, and evolving regulatory frameworks. Against this backdrop, organizations must balance short-term operational continuity with mid-term strategic investments that position them for structural change.

The analysis synthesizes observable market dynamics, policy developments, and operational implications to provide leaders with a coherent narrative of risk and opportunity. It emphasizes the interplay between energy source profiles, transportation modalities, and service offerings, highlighting how those interactions influence network design, asset utilization, and contractual terms. The intent is to equip executives with an actionable understanding of where value is created and where friction can be mitigated through targeted initiatives.

Readers should expect a pragmatic appraisal that integrates granular operational issues-such as storage configurations and modal constraints-with broader systemic trends like tariff policies and regional infrastructure shifts. The goal is to enable informed prioritization so that capital allocation, commercial strategy, and operational tuning can proceed with clarity and purpose.

Convergent structural shifts in energy logistics driven by evolving energy mixes, modal capacity transitions, digitalization disparities, and intensified regulatory dynamics

The landscape of energy logistics is undergoing several convergent shifts that are transforming how commodities move from source to end use. First, the mix of energy sources in transport flows is changing as renewables, hydrogen and biofuel offtake expand, prompting different handling, storage and safety protocols that are not always compatible with legacy infrastructure. This evolution requires operators to reassess terminal configurations, retrofit tanks and requalify personnel to manage a broader spectrum of product characteristics.

Second, transportation mode economics and capacity profiles are evolving. Pipeline networks continue to offer cost advantages for certain bulk products, but pipelines face increasing scrutiny on environmental and permitting grounds, driving modal substitution toward rail and marine in some corridors. At the same time, constrained vessel availability and crew dynamics are affecting maritime scheduling, while road networks are experiencing localized congestion and regulatory changes affecting heavy vehicle operations. These modal pressures create new routing, scheduling and contract optimization requirements.

Third, digitalization and data-driven operations are advancing, but uneven adoption means that digital maturity has become a competitive differentiator rather than a common baseline. Companies that deploy real-time visibility, predictive maintenance and automated scheduling are reducing dwell times and improving asset turns. Finally, regulatory and trade policy volatility has heightened the need for dynamic planning tools and adaptive commercial structures that can respond rapidly to tariff shifts, compliance stipulations and cross-border coordination challenges.

How 2025 tariff measures are reshaping routing incentives, contractual frameworks, and strategic supply chain footprints across energy logistics operations

The implementation of tariff measures in 2025 has exerted layered effects across energy logistics that transcend simple price transmission. Tariffs have altered routing incentives, with some shippers redirecting flows to avoid additional duties, thereby increasing voyage lengths, intermodal transfers and handling episodes. These operational adjustments have increased complexity for scheduling and inventory management, as supply chains incorporate additional buffer time to mitigate customs-related uncertainties.

Tariff-driven reconfiguration has also affected contractual relationships. Carriers and terminal operators have renegotiated terms to reflect higher transactional costs and added compliance burdens, while shippers have sought more flexible clauses to manage rerouting and force majeure contingencies. In some cases, the administrative cost of compliance has been disproportionately borne by smaller market participants, compressing their margins and accelerating consolidation in segments where scale provides a compliance and logistics advantage.

Beyond immediate transactional effects, tariffs have catalyzed strategic reassessments of sourcing and logistics footprints. Organizations are evaluating nearshoring, supplier diversification, and expanded use of third-party logistics providers to reduce exposure to tariff volatility. These strategic responses have implications for capacity planning, long-term contracts and capital deployment timelines, reinforcing the importance of scenario-based planning and cross-functional coordination between procurement, trade compliance and logistics teams.

Deep segmentation insights across energy source, transportation mode, service type, and end use that reveal differentiated operational, regulatory, and commercial imperatives

A segmentation-aware approach reveals differentiated dynamics across energy source, transportation mode, service type and end use industry that collectively shape operational priorities. When energy source is considered, coal markets present distinct handling and storage needs with metallurgical coal attracting different logistics flows than thermal coal. Natural gas manifests in several forms, with dry gas, LNG and natural gas liquids each imposing unique requirements for compression, cryogenic storage and safety regimes. Petroleum flows separate into crude oil and refined products, where batching, contamination risk and refined-product specifications drive terminal discipline. Renewables, including biofuels and hydrogen, introduce a new set of compatibility and certification criteria that require specialized storage and transfer protocols.

Transportation mode segmentation further sharpens operational trade-offs. Air and air cargo serve high-value, time-sensitive consignments but represent a marginal component of bulk energy logistics. Marine transport, divided into barges and tankers, remains central to long-distance seaborne movement, with port access, berth allocation and vessel size dictating throughput capabilities. Pipeline systems, whether offshore or onshore, offer continuous flow economics but are constrained by development timelines and permitting. Rail transport, comprising rail tank cars and unit trains, provides a flexible alternative for large inland movements, while road transport, using ISO containers and tanker trucks, delivers last-mile connectivity and smaller batch flexibility.

Service type segmentation affects margin pools and operational focus. Handling activities such as loading, unloading and transshipment require investments in equipment and labor protocols to maintain throughput while minimizing product loss. Storage modalities range from tank storage to underground caverns, each with distinct capital and safety considerations. Value added services-blending and quality analysis, for example-create differentiation opportunities and require integrated quality management systems that tie back into commercial terms and liability frameworks.

Finally, end use segmentation across commercial, industrial, power generation, residential and transportation sectors informs demand cadence and contractual form. Power generation needs can impose high-volume, predictable delivery patterns, whereas transportation fuels exhibit more volatile daily demand and regulatory compliance requirements. Understanding overlapping segmentation layers enables operators to tailor asset mixes, service packages and commercial models to the specific requirements of each flow, ultimately improving reliability and reducing avoidable cost.

Comparative regional intelligence that maps infrastructure endowments, regulatory regimes, and demand profiles across the Americas, Europe, Middle East & Africa, and Asia-Pacific

Regional dynamics are shaping logistics strategy through divergent infrastructure endowments, regulatory environments and demand profiles. In the Americas, the interplay between inland production hubs, coastal export terminals, and an extensive but aging road and rail network presents both opportunity and constraint. Market participants must reconcile capacity bottlenecks at key transshipment nodes with localized regulatory variations that affect routing and modal choice. Meanwhile, the region's mature commodity trading hubs and advanced digital services offer pathways to optimize inventory and enhance market responsiveness.

Europe, Middle East & Africa exhibits a multiplicity of conditions that require granular, country-level approaches. Western European markets are defined by dense infrastructure, strict environmental regulation and high service expectations, prompting investment in cleaner fuels handling and lower-emissions operations. The Middle East remains pivotal for seaborne crude and refined product flows, with port expansions and sovereign investment shaping regional hub dynamics. Africa presents a mix of high-growth potential and infrastructural gaps, where logistics initiatives often focus on improving last-mile connectivity and expanding storage capacity to stabilize domestic supply chains.

Asia-Pacific is characterized by rapid energy transitions, heavy industrial demand centers, and expansive maritime corridors. Port throughput capacity, hinterland connectivity and evolving regulatory standards for fuels and emissions drive strategic choices for asset deployment. Regional integration efforts, supply chain relocation trends and investments in both conventional and renewable energy infrastructures create complex routing and capacity planning considerations. Collectively, these regional nuances necessitate tailored commercial terms, differentiated investment timelines and adaptive operational models that align with local regulatory and market realities.

How leading energy logistics companies are combining asset upgrades, integrated services, and commercial innovation to build resilience and differentiate their value proposition

Leading firms in energy logistics are deploying a combination of asset optimization, service diversification and digital investments to navigate the current environment. Some companies are prioritizing terminal modernization and multi-product handling capabilities to capture incremental flows while minimizing product contamination risk. Others focus on fleet optimization, such as retrofitting vessels and vehicles for improved fuel efficiency and emissions compliance, which also reduces long-run operating volatility tied to regulatory tightening.

Strategic partnerships and integrated service offerings are increasingly common. Operators are forming alliances with storage providers, technology vendors and specialized transport firms to provide end-to-end solutions that absorb complexity for shippers. These collaborations often include performance-based contracts that align incentives around throughput, reliability and safety standards. Additionally, several firms have expanded value-added services like blending, quality analysis and customs facilitation to create sticky revenue streams and differentiate their proposition beyond pure transport and storage.

On the commercial front, savvy players are reconfiguring contract terms to include dynamic routing provisions, tariff pass-through mechanisms, and flexible volume commitments that reflect real-world volatility. Investment in talent and governance-particularly in trade compliance, environmental health and safety, and digital operations-has become a determinant of competitive positioning. Companies that maintain rigorous operational discipline while experimenting with new service bundles and technology-driven efficiencies are establishing durable advantages in a fragmented market.

Actionable priorities for executives to improve visibility, commercial flexibility, infrastructure adaptability, governance, and partnership strategies to secure operational resilience

Industry leaders should pursue a prioritized set of actions that balance immediate resilience with strategic positioning for structural change. First, enhance supply chain visibility through targeted digital investments that provide real-time tracking, tariff impact alerts and predictive maintenance signals. Prioritizing visibility at chokepoints and high-value nodes will yield disproportionate operational benefits without necessitating enterprise-wide platform swaps.

Second, redesign commercial arrangements to share risk while preserving flexibility. Contracts should incorporate mechanisms to address rerouting costs, tariff pass-throughs and variable volume profiles, thereby reducing disputes and improving cash flow predictability. Concurrently, develop modular service offerings that allow customers to select combinations of handling, storage, and value-added services, improving revenue diversification and customer retention.

Third, accelerate infrastructure adaptability by retrofitting existing assets for multi-product handling and by investing selectively in storage technologies that support both legacy fuels and emerging alternatives like hydrogen and biofuels. These moves extend asset life and open new revenue channels. Fourth, strengthen cross-functional governance between procurement, trade compliance, operations and commercial teams to enable faster scenario response and clearer ownership of tariff and regulatory contingencies.

Finally, cultivate partnerships that expand modal flexibility and regional reach. Collaborations with shortsea operators, rail providers and third-party logistics specialists can reduce exposure to single-mode constraints and provide alternative routing options during disruptions. Executing these recommendations will require disciplined project management, clear KPIs tied to downtime reduction and margin preservation, and executive sponsorship to align capital and operational priorities.

A rigorous mixed-methods approach combining primary executive interviews, operational data validation, cross-segmentation mapping, and expert peer review to ensure practical relevance and robustness

The research methodology combined qualitative and quantitative evidence streams to produce a balanced, evidence-based analysis of energy logistics dynamics. Primary research consisted of structured interviews with senior executives across shipping, terminals, pipeline operations, and end-use sectors, complemented by targeted discussions with trade compliance and safety specialists. These engagements provided real-world insight into operational constraints, contract mechanisms and near-term decision criteria employed by market participants.

Secondary research drew on public filings, regulatory notices, tariff schedules, port and terminal notices, and industry association guidance to contextualize primary findings. The analysis also incorporated operational data such as port throughput patterns, modal capacity reports and observed scheduling dynamics to validate interview accounts. Data triangulation ensured that anecdotal evidence was corroborated with observable market signals.

Analytical techniques included cross-segmentation mapping to identify where energy source, transportation mode, service type and end use intersect to create distinct logistics archetypes. Scenario analysis was used to evaluate alternative operational responses to tariff changes and infrastructure disruptions without projecting or forecasting market sizes. Finally, findings were subjected to peer review by domain experts to test robustness, identify blind spots and refine recommendations, ensuring practical relevance for decision-makers.

Synthesis of strategic imperatives that balance operational rigor and adaptive planning to convert disruption into competitive advantage across energy logistics networks

In closing, energy logistics sits at the intersection of infrastructural inertia and rapid systemic change. The confluence of evolving energy mixes, tariff volatility and modal capacity constraints requires a nuanced approach that prizes both operational excellence and strategic flexibility. Organizations that invest selectively in visibility, retrofit critical assets for multi-product handling, and redesign commercial frameworks to share risk will be better positioned to manage disruption and capture emergent flows.

The analysis underscores that no single measure will suffice. Instead, durable advantage will arise from a portfolio of actions: improving data-driven operations at key nodes, forging partnerships that broaden modal options, and aligning governance to manage regulatory and trade complexity. These steps will reduce exposure to short-term shocks while enabling the organization to respond to medium-term structural shifts in energy demand and supply chains.

Executives should treat the current environment as an opportunity to recalibrate asset and commercial strategies. Those who move deliberately, informed by segmentation-driven insight and regional nuance, can convert uncertainty into a source of competitive differentiation and long-term resilience.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Increased deployment of hydrogen fuel cell transport networks across Europe and Asia
  • 5.2. Implementation of blockchain enabled traceability solutions in offshore oil supply chains
  • 5.3. Deployment of AI driven predictive maintenance systems for offshore wind turbine logistics
  • 5.4. Development of low carbon shipping corridors powered by biofuel and ammonia bunkering
  • 5.5. Integration of digital twin technology for real time monitoring of LNG carrier fleets
  • 5.6. Adoption of electric heavy duty trucks for last mile energy product distribution networks
  • 5.7. Strengthening cybersecurity frameworks to protect critical energy transport infrastructure

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Energy Logistics Market, by Energy Source

  • 8.1. Coal
    • 8.1.1. Metallurgical Coal
    • 8.1.2. Thermal Coal
  • 8.2. Natural Gas
    • 8.2.1. Dry Gas
    • 8.2.2. LNG
    • 8.2.3. NGL
  • 8.3. Petroleum
    • 8.3.1. Crude Oil
    • 8.3.2. Refined Products
  • 8.4. Renewables
    • 8.4.1. Biofuels
    • 8.4.2. Hydrogen

9. Energy Logistics Market, by Transportation Mode

  • 9.1. Air
    • 9.1.1. Air Cargo
  • 9.2. Marine
    • 9.2.1. Barges
    • 9.2.2. Tankers
  • 9.3. Pipeline
    • 9.3.1. Offshore
    • 9.3.2. Onshore
  • 9.4. Rail
    • 9.4.1. Rail Tank Cars
    • 9.4.2. Unit Trains
  • 9.5. Road
    • 9.5.1. ISO Containers
    • 9.5.2. Tanker Trucks

10. Energy Logistics Market, by Service Type

  • 10.1. Handling
    • 10.1.1. Loading/Unloading
    • 10.1.2. Transshipment
  • 10.2. Storage
    • 10.2.1. Tank Storage
    • 10.2.2. Underground Caverns
  • 10.3. Transportation
  • 10.4. Value Added Services
    • 10.4.1. Blending
    • 10.4.2. Quality Analysis

11. Energy Logistics Market, by End Use Industry

  • 11.1. Commercial
  • 11.2. Industrial
  • 11.3. Power Generation
  • 11.4. Residential
  • 11.5. Transportation

12. Energy Logistics Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Energy Logistics Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Energy Logistics Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Energy Transfer LP
    • 15.3.2. Enbridge Inc.
    • 15.3.3. Enterprise Products Partners L.P.
    • 15.3.4. MPLX LP
    • 15.3.5. Plains All American Pipeline, L.P.
    • 15.3.6. TC Energy Corporation
    • 15.3.7. Kinder Morgan, Inc.
    • 15.3.8. The Williams Companies, Inc.
    • 15.3.9. Cheniere Energy, Inc.
    • 15.3.10. Buckeye Partners L.P.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제