시장보고서
상품코드
1870812

항공 증강현실 및 가상현실 시장 : 기술별, 제공 형태별, 용도별, 최종 용도별, 도입 형태별 - 세계 예측(2025-2032년)

Aviation Augmented & Virtual Reality Market by Technology, Offering, Application, End Use, Deployment - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 181 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

항공 증강현실·가상현실 시장은 2032년까지 CAGR 8.69%로 26억 7,000만 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 13억 7,000만 달러
추정연도 2025 14억 9,000만 달러
예측연도 2032 26억 7,000만 달러
CAGR(%) 8.69%

몰입형 기술이 파일럿 실험에서 전체 항공 워크플로우 및 이해관계자의 목표 달성을 가능하게 하는 운영 툴로 진화하는 과정을 통합적으로 설명

항공 산업은 새로운 시대를 맞이하고 있습니다. 증강현실(AR)과 가상현실(VR)이 실험적인 파일럿 단계에서 설계, 제조, 정비, 훈련 등 업무 전반에 통합된 운영 툴로 전환되고 있습니다. 디스플레이, 센서, 엣지 컴퓨팅의 기술적 성숙도, 시뮬레이션 정확도 및 상호운용성 표준의 발전과 함께 항공 이해관계자들이 기존 물리적 모형, 강의실 교육, 수작업 검사에 의존하던 업무 흐름을 재검토할 수 있는 환경이 조성되고 있습니다. 되었습니다.

몰입형 솔루션이 항공 생태계와 워크플로우에 통합되는 방식을 재정의하고, 기술, 운영 및 규정의 수렴적 변화에 대한 심층적인 분석을 제공

항공 몰입형 기술 환경에서는 항공기의 설계, 유지보수, 운항 방식을 재구성하는 여러 가지 혁신적 변화가 일어나고 있습니다. 첫째, 고화질 가상 환경과 실시간 센서 오버레이를 통해 가상 체크리스트와 실측 텔레메트리가 공존하는 하이브리드 워크플로우가 실현되어 시뮬레이션과 실제 항공기 운항의 경계가 좁혀지고 있습니다. 이러한 통합은 기술자와 조종사의 컨텍스트 전환을 줄이고, 보다 예측적인 유지보수 및 시나리오 기반 훈련의 기회를 창출하고 있습니다.

관세 중심의 세계 무역 변화가 항공 몰입형 기술 프로그램에 미치는 영향: 조달 설계 재구축, 공급업체 다양화, 모듈식 엔지니어링 방법론의 필요성

관세를 도입하는 정책 변화는 항공 몰입형 솔루션의 세계 공급망, 조달 전략, 프로젝트의 경제성에 연쇄적인 영향을 미칩니다. 수입 관세로 인해 헤드 마운트 디스플레이, 광학 기기, 관련 전자 부품의 비용 구조가 변동하는 가운데, 조달팀은 공급업체 선정을 재검토하고, 집중화 위험을 줄이기 위해 다각화 조달 및 이중 소싱 전략을 우선시합니다. 그 결과, 특정 하드웨어 부품의 리드타임 연장 및 단가 상승으로 인해 총소유비용(TCO) 및 지원 모델에 대한 재평가가 이루어질 수 있습니다.

몰입형 항공 솔루션의 기술 유형, 제공 모델, 용도 이용 사례, 최종사용자 그룹, 도입 전략에 따라 명확한 가치 경로를 파악할 수 있는 상세한 세분화 분석

항공 몰입형 시장을 기술별로 세분화하면 가치 창출을 위한 명확한 경로가 명확해집니다. 증강현실(AR)과 가상현실(VR)은 각각 상호 보완적인 요구를 충족시키며, AR은 실시간 오버레이 및 작업 흐름 안내에, VR은 절차 리허설을 위한 몰입형 시뮬레이션에 중점을 두고 활용됩니다. AR 분야에서는 광학 투과형 솔루션이 유지보수 및 조종석 확장에 있으며, 자연스러운 시야 통합에 중점을 두는 반면, 영상 투과형 구현은 훈련 및 객실 시뮬레이션에서 제어된 시각적 확장을 실현합니다. 가상현실(VR)은 이동성을 우선시하는 독립형 헤드셋과 복잡한 시뮬레이션 시나리오를 위한 고화질의 경험을 제공하는 유선 연결형 헤드셋으로 나뉩니다.

주요 세계 시장의 몰입형 항공 기술 도입 동향, 규제 영향, 산업 촉진요인을 비교하는 지역별 분석

지역별 동향은 항공 분야의 몰입형 기술 채택 속도와 패턴을 형성하고 있습니다. 미주 대륙은 항공사의 혁신 프로그램, 첨단 정비 생태계, 운영 절차를 몰입형 워크플로우로 빠르게 전환할 수 있는 시스템 통합사업자 및 컨텐츠 스튜디오의 집적과 함께 상업적 도입에 있으며, 선도적인 입지를 유지하고 있습니다. 이 지역에는 주요 교육 네트워크도 존재하며, 규제 요건에 부합하는 디지털 커리큘럼을 검증하여 배포를 위한 재현 가능한 모델을 구축하고 있습니다.

경쟁 환경의 전략적 개요: 하드웨어 차별화, 소프트웨어 분야에서의 리더십, 운영 통합을 가속화하는 통합업체 간 협력 강조

항공 몰입형 공간에서의 경쟁 역학은 하드웨어 혁신, 소프트웨어 전문성, 시스템 통합 능력의 균형을 중심으로 전개되고 있습니다. 하드웨어 업체들은 산업 항공 환경에 적합한 인체공학, 센서 성능, 견고성으로 경쟁하고, 소프트웨어 업체들은 정비 워크플로우, 시뮬레이션 정확도, 학습 과학의 전문 영역 지식으로 차별화를 꾀하고 있습니다. 시스템 통합사업자와 플랫폼 프로바이더는 기내 데이터와 훈련 관리 시스템, 기체 정비 데이터베이스를 연계하는 턴키 솔루션을 제공함으로써 부가가치를 창출하고 있습니다.

몰입형 프로그램 확장을 위한 단계적 파일럿 도입, 조달 균형, IT 아키텍처 선택, 컨텐츠 거버넌스, 인재 육성에 관한 실질적인 전략 및 운영 플레이북

업계 리더은 몰입형 기술을 일회성 구매가 아닌 프로그램적 변화로 인식해야 합니다. 먼저, 복잡한 정기 정비 작업, 고위험군 조종사 절차 훈련, 중요한 객실 비상 훈련 등 영향력이 큰 소수의 이용 사례를 식별하고, 측정 가능한 운영 KPI와 몰입형 개입을 연결하는 반복적인 파일럿을 배포합니다. 이러한 파일럿은 질적 사용자 피드백과 더 광범위한 배포를 안내할 수 있는 정량적 프로세스 지표를 생성하도록 설계되어야 합니다.

전문가 인터뷰, 관찰 현장조사, 삼각측량을 통한 2차 분석을 결합한 혼합 방법론 조사 접근법에 대한 투명한 개요. 이를 통해 조사 결과와 권고안의 타당성을 검증

본 조사방법은 정성적, 정량적 기법을 결합하여 검증을 거친 견고한 조사결과를 도출합니다. 1차 조사에서는 항공사, MRO 시설, OEM 엔지니어링 팀, 교육 기관, 기술 벤더 전문가를 대상으로 구조화된 인터뷰와 워크숍을 실시하여 이용 사례, 통합 과제, 인증 우선순위에 대한 1차적 지식을 수집했습니다. 현장 시찰과 시연을 통해 정비 베이와 훈련 센터의 인간과 기계의 상호 작용, 인체공학, 운영상의 제약을 맥락에 따라 관찰했습니다.

몰입형 항공기술의 성공적인 도입에 필요한 전제조건과 지속적인 운영상 이점을 가져다 줄 수 있는 전략적 행동을 강조한 요약

몰입형 기술은 항공 밸류체인 전반에 걸쳐 구체적인 운영상 이점을 제공할 수 있는 잠재력을 가지고 있지만, 그 잠재력을 실현하기 위해서는 체계적인 프로그램 관리, 신중한 조달, 기술 역량과 운영 우선순위를 명확히 일치시켜야 합니다. 가장 성공적인 도입 사례는 반복적인 파일럿 프로그램과 견고한 컨텐츠 거버넌스, 확장 가능한 통합 아키텍처, 적극적인 공급업체 리스크 관리를 결합하는 것입니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 항공 증강현실·가상현실 시장 : 기술별

  • 증강현실(AR)
    • 광학식 시스루
    • 비디오 시스루
  • 가상현실
    • 스탠드얼론형 헤드셋
    • 유선 접속형 헤드셋

제9장 항공 증강현실·가상현실 시장 : 제공별

  • 하드웨어
    • 헤드 마운트 디스플레이(HMD)
    • 스마트 글래스
  • 소프트웨어
    • 유지보수 소프트웨어
    • 시뮬레이션 소프트웨어
    • 훈련 소프트웨어

제10장 항공 증강현실·가상현실 시장 : 용도별

  • 항공기 설계·제조
  • 객실 승무원 훈련
  • 기내 엔터테인먼트
  • 정비·점검
  • 파일럿 훈련

제11장 항공 증강현실·가상현실 시장 : 최종 용도별

  • 항공회사
  • 정비·수리·점검
  • OEM(Original Equipment Manufacturers)
  • 훈련기관

제12장 항공 증강현실·가상현실 시장 : 배포별

  • 클라우드
    • 하이브리드 클라우드
    • 프라이빗 클라우드
    • 퍼블릭 클라우드
  • 온프레미스

제13장 항공 증강현실·가상현실 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 항공 증강현실·가상현실 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 항공 증강현실·가상현실 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • CAE Inc.
    • Thales S.A.
    • The Boeing Company
    • Lockheed Martin Corporation
    • Airbus SE
    • Honeywell International Inc.
    • Raytheon Technologies Corporation
    • Dassault Systemes SE
    • PTC Inc.
    • Microsoft Corporation
KSA 25.12.02

The Aviation Augmented & Virtual Reality Market is projected to grow by USD 2.67 billion at a CAGR of 8.69% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.37 billion
Estimated Year [2025] USD 1.49 billion
Forecast Year [2032] USD 2.67 billion
CAGR (%) 8.69%

An integrative overview explaining how immersive technologies are evolving from pilot experiments into operational enablers across aviation workflows and stakeholder objectives

The aviation sector is entering a new era where augmented reality and virtual reality are shifting from experimental pilots to integrated operational tools across design, manufacturing, maintenance, and training. Technological maturation in displays, sensors, and edge compute, combined with advances in simulation fidelity and interoperability standards, has created a fertile environment for aviation stakeholders to rethink workflows that historically relied on physical mockups, classroom instruction, and manual inspections.

This transition is driven by converging incentives. Airlines and maintenance providers seek consistent training outcomes, faster turnarounds, and reduced human error, while OEMs and training institutes pursue scalable methods to validate designs and accelerate workforce readiness. At the same time, hardware vendors are producing lighter, more capable headsets and glasses, and software developers are delivering domain-specific simulation and maintenance applications that fit into existing operational ecosystems.

As a result, executive teams must evaluate technology adoption not solely as a capital investment but as a strategic enabler of safety, efficiency, and competitiveness. Early adopters are capturing operational learnings that inform procurement standards, content pipelines, and workforce transformation programs. Moving forward, success will hinge on aligning technology capabilities with regulatory requirements and measurable performance metrics that matter to both operational leaders and training directors.

Detailed analysis of the converging technology, operational, and regulatory shifts that are redefining how immersive solutions integrate into aviation ecosystems and workflows

The landscape of aviation immersive technologies is experiencing multiple transformative shifts that are reshaping how aircraft are designed, maintained, and operated. First, the boundary between simulation and live operations is narrowing as high-fidelity virtual environments and real-time sensor overlays enable hybrid workflows in which virtual checklists and live telemetry coexist. This convergence reduces context-switching for technicians and pilots while creating opportunities for more predictive maintenance and scenario-based training.

Second, hardware ergonomics and battery life improvements are enabling longer usage cycles in maintenance bays and training centers, which in turn changes content production priorities from short demos to sustained operational procedures. Third, software architectures are shifting toward modular, API-driven ecosystems that permit integration with maintenance information systems, digital twin platforms, and learning management systems, supporting seamless data flows and traceability.

Lastly, human factors and regulatory considerations are coming to the forefront. Authorities and operators are collaborating to define safe use cases, certification pathways, and data security expectations. Together, these shifts are creating a pragmatic adoption road map where pilots inform standards, and standards accelerate broader deployment across fleets and facilities.

How tariff-driven shifts in global trade are forcing procurement redesigns, supplier diversification, and modular engineering approaches in aviation immersive technology programs

Policy changes that introduce tariffs have cascading effects across global supply chains, procurement strategies, and project economics for aviation immersive solutions. When import duties alter the cost structure for head-mounted displays, optics, and associated electronic components, procurement teams reassess supplier selections, favoring diversified sourcing and dual-sourcing strategies to mitigate concentration risk. As a result, longer lead times and higher unit costs for specific hardware components prompt a re-evaluation of total cost of ownership and support models.

In response, many stakeholders accelerate efforts to localize assembly or to negotiate vendor-managed inventory arrangements that reduce exposure to cross-border cost volatility. Software suppliers and system integrators also adjust commercial models, offering subscription-based delivery and cloud-hosted services that decouple upfront hardware investments from ongoing access to content and platform updates. Furthermore, tariffs incentivize innovation in system design that emphasizes component modularity and the reuse of non-proprietary subassemblies to maintain price competitiveness.

Operational teams must therefore plan for phased rollouts that account for procurement uncertainty, prioritizing critical use cases such as high-value maintenance tasks and pilot training where the cost-benefit profile is clearest. Equally important is building contractual flexibility into supplier relationships and maintaining a forward-looking supplier risk register that aligns with fleet modernization timelines and certification roadmaps.

In-depth segmentation analysis revealing distinct value pathways across technology types, offering models, application use cases, end-user groups, and deployment strategies for immersive aviation solutions

Segmenting the aviation immersive market by technology clarifies distinct pathways to value: augmented reality and virtual reality each serve complementary needs, with augmented reality commonly applied to real-time overlays and workflow guidance and virtual reality focused on immersive simulation for procedural rehearsal. Within augmented reality, optical see-through solutions emphasize natural field-of-view integration for maintenance and cockpit augmentation, while video see-through implementations enable controlled visual augmentation in training and cabin simulations. Virtual reality splits into standalone headsets that prioritize mobility and tethered headsets that deliver higher-fidelity experiences for complex simulation scenarios.

Evaluating offerings reveals a hardware-versus-software dichotomy where head-mounted displays and smart glasses represent the physical interface while domain-specific applications such as maintenance software, simulation software, and training software deliver operational value. Hardware choices influence ergonomics, durability, and integration complexity, whereas software defines instructional design, data integration, and compliance tracking. Application segmentation highlights where immersive technologies create the most operational leverage: aircraft design and manufacturing benefit from collaborative visualization and digital mockups, cabin crew training leverages scenario-based rehearsals, in-flight entertainment experiments with passenger engagement concepts, maintenance and inspection use augmented overlays to reduce error rates, and pilot training relies on high-fidelity simulators for procedural and emergency training.

End-use segmentation maps adoption paths across stakeholders with airlines focusing on operational reliability and passenger experience, maintenance repair and overhaul providers concentrating on throughput and quality, original equipment manufacturers integrating immersive tools into design and validation cycles, and training institutes scaling curriculum delivery. Deployment choices between cloud and on-premises architectures, including hybrid, private, and public cloud models, determine data governance, latency, and scalability characteristics, influencing which segments prioritize what mix of deployment models.

Comparative regional analysis of adoption trends, regulatory influences, and industry enablers shaping immersive aviation deployments across major global markets

Regional dynamics shape both the pace and the pattern of adoption for aviation immersive technologies. The Americas continue to lead in commercial deployments driven by a combination of airline innovation programs, advanced maintenance ecosystems, and a concentration of system integrators and content studios that can rapidly translate operational procedures into immersive workflows. This region also hosts major training networks that validate digital curricula against regulatory expectations, creating repeatable models for rollouts.

Europe, Middle East & Africa exhibits a heterogeneous landscape where regulatory harmonization and public-private investment strategies influence adoption. In several markets, national aviation authorities and large OEMs collaborate on certification approaches and standards, while digital twin initiatives and advanced manufacturing clusters provide fertile ground for design and MRO applications. The region also emphasizes sustainability and lifecycle considerations, leading to adoption scenarios that prioritize reduced physical prototyping and energy-efficient hardware.

Asia-Pacific demonstrates rapid experimentation coupled with strategic industrial policies that encourage local manufacturing and vertical integration. Airlines and MRO providers in this region often engage in large-scale pilot programs with a focus on scale and cost-efficiency, and public investments in training infrastructure accelerate the deployment of VR labs and AR-assisted maintenance centers. Across all regions, interoperability, regulatory clarity, and skills development remain common enablers of broader adoption.

Strategic overview of the competitive ecosystem emphasizing hardware differentiation, software domain leadership, and integrator partnerships that accelerate operational assimilation

Competitive dynamics in the aviation immersive space revolve around a balance of hardware innovation, software specialization, and systems integration capabilities. Hardware manufacturers compete on ergonomics, sensor capability, and ruggedization appropriate for industrial aviation environments, while software vendors differentiate through domain expertise in maintenance workflows, simulation fidelity, and learning science. Systems integrators and platform providers capture additional value by delivering turnkey solutions that bridge on-aircraft data with training management systems and fleet maintenance databases.

Strategic activity frequently takes the form of partnerships and co-development agreements that pair OEMs, airlines, and technology vendors to reduce the time between concept validation and operational deployment. Open standards and interoperable APIs accelerate ecosystem growth by enabling third-party application development and simplifying certification pathways. At the same time, service providers that offer content-authoring tools and managed services are becoming essential for organizations that lack the in-house capability to produce high-quality instructional content at scale.

To stay competitive, corporate leaders must prioritize modular product roadmaps, invest in lifecycle support and analytics, and cultivate partnerships that provide access to domain knowledge, aircraft telematics, and regulatory expertise. The companies that succeed will blend product excellence with a clear pathway for operational integration and measurable outcomes.

Actionable strategic and operational playbook advising phased pilots, procurement balance, IT architecture choices, content governance, and workforce enablement to scale immersive programs

Industry leaders should treat immersive technologies as a programmatic transformation rather than a one-off purchase. Begin by identifying a small number of high-impact use cases-such as complex scheduled maintenance tasks, high-stakes pilot procedural training, or critical cabin emergency drills-and deploy iterative pilots that connect measurable operational KPIs to immersive interventions. These pilots should be designed to generate both qualitative user feedback and quantitative process metrics that can inform broader rollouts.

Concurrently, adopt a layered procurement strategy that balances in-house capability building with external partnerships. Invest in content-authoring capabilities and governance frameworks so training assets can be updated rapidly as procedures change. For hardware, prioritize ergonomics, maintenanceability, and vendor roadmaps that align with expected fleet lifecycles. From an IT perspective, evaluate deployment choices against latency, security, and data residency requirements; consider hybrid architectures that keep sensitive telematics on-premises while leveraging cloud scalability for content distribution and analytics.

Finally, commit to human-centered design and change management to ensure adoption. Train instructors and technicians not only on new tools but on new workflows, and embed continuous learning loops so lessons from initial deployments are formalized into standards and operating procedures. These steps will reduce adoption friction and convert early wins into sustained operational improvements.

Transparent overview of the mixed-methods research approach combining expert interviews, observational fieldwork, and triangulated secondary analysis to validate findings and recommendations

The research methodology combines qualitative and quantitative techniques to produce robust, validated findings. Primary research involved structured interviews and workshops with domain experts across airlines, MRO facilities, OEM engineering teams, training institutes, and technology vendors to capture first-order insights about use cases, integration challenges, and certification priorities. Site visits and demonstrations provided contextual observations of human-machine interaction, ergonomics, and operational constraints in maintenance bays and training centers.

Secondary research included systematic review of technical literature, standards documentation, product specifications, and publicly available case studies to build a taxonomy of technology options and deployment models. Data triangulation methods were applied to reconcile divergent perspectives, and thematic analysis was used to surface recurring barriers and enablers. Validation rounds with subject-matter experts refined the narrative and ensured that recommendations were practical, risk-aware, and aligned with regulatory realities.

Throughout the research process, special attention was paid to reproducibility and transparency: assumptions were documented, information gaps were flagged for follow-up, and scenario-based analysis was used to explore sensitivity to procurement, regulatory, and supply chain variables.

Concluding synthesis highlighting the prerequisites for successful adoption of immersive aviation technologies and the strategic actions that deliver durable operational benefits

Immersive technologies are poised to deliver tangible operational benefits across aviation value chains, but realizing that potential requires disciplined program management, thoughtful procurement, and a clear alignment between technology capabilities and operational priorities. The most successful deployments will be those that couple iterative pilot programs with robust content governance, scalable integration architectures, and proactive supplier risk management.

Tariff and trade dynamics introduce additional complexity to procurement planning, making supplier diversification and design modularity more important than ever. Regional nuances-ranging from regulatory approaches to local manufacturing incentives-mean that a one-size-fits-all strategy will underperform. Instead, leaders should adopt regionally informed road maps that reflect local certification pathways and ecosystem strengths.

Ultimately, immersive solutions that are designed with operator workflows, validated by measurable performance indicators, and supported by enduring partnerships will shift from experimental projects to standard practices. Organizations that act now to build the necessary skills, governance, and integration foundations will capture disproportionate operational and safety advantages as adoption matures.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of AR maintenance overlays to reduce aircraft turnaround times and errors
  • 5.2. Use of VR pilot training modules with real-time haptic feedback for emergency scenario preparedness
  • 5.3. Implementation of mixed reality cabin crew training programs to enhance safety and customer service skills
  • 5.4. Deployment of AR-enabled ground operations for real-time baggage handling and logistics optimization
  • 5.5. Adoption of VR-based passenger experience previews to personalize in-flight entertainment and seat selection
  • 5.6. Leveraging digital twin and VR for predictive aircraft health monitoring and maintenance scheduling
  • 5.7. Collaboration between aerospace OEMs and AR software providers for next-generation cockpit displays

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Aviation Augmented & Virtual Reality Market, by Technology

  • 8.1. Augmented Reality
    • 8.1.1. Optical See-Through
    • 8.1.2. Video See-Through
  • 8.2. Virtual Reality
    • 8.2.1. Standalone Headsets
    • 8.2.2. Tethered Headsets

9. Aviation Augmented & Virtual Reality Market, by Offering

  • 9.1. Hardware
    • 9.1.1. Head-Mounted Display
    • 9.1.2. Smart Glasses
  • 9.2. Software
    • 9.2.1. Maintenance Software
    • 9.2.2. Simulation Software
    • 9.2.3. Training Software

10. Aviation Augmented & Virtual Reality Market, by Application

  • 10.1. Aircraft Design And Manufacturing
  • 10.2. Cabin Crew Training
  • 10.3. In-Flight Entertainment
  • 10.4. Maintenance And Inspection
  • 10.5. Pilot Training

11. Aviation Augmented & Virtual Reality Market, by End Use

  • 11.1. Airlines
  • 11.2. Maintenance Repair And Overhaul
  • 11.3. Original Equipment Manufacturers
  • 11.4. Training Institutes

12. Aviation Augmented & Virtual Reality Market, by Deployment

  • 12.1. Cloud
    • 12.1.1. Hybrid Cloud
    • 12.1.2. Private Cloud
    • 12.1.3. Public Cloud
  • 12.2. On-Premises

13. Aviation Augmented & Virtual Reality Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Aviation Augmented & Virtual Reality Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Aviation Augmented & Virtual Reality Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. CAE Inc.
    • 16.3.2. Thales S.A.
    • 16.3.3. The Boeing Company
    • 16.3.4. Lockheed Martin Corporation
    • 16.3.5. Airbus SE
    • 16.3.6. Honeywell International Inc.
    • 16.3.7. Raytheon Technologies Corporation
    • 16.3.8. Dassault Systemes SE
    • 16.3.9. PTC Inc.
    • 16.3.10. Microsoft Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제