시장보고서
상품코드
1870868

결정성 폴리에틸렌 테레프탈레이트 시장 : 용도별, 등급별, 최종 용도 산업별, 제조 프로세스별, 물리 형태별 - 세계 예측(2025-2032년)

Crystalline Polyethylene Terephthalate Market by Application, Grade, End Use Industry, Production Process, Physical Form - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 180 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

결정성 폴리에틸렌 테레프탈레이트 시장은 2032년까지 CAGR 7.44%로 235억 3,000만 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 132억 5,000만 달러
추정연도 2025 142억 6,000만 달러
예측연도 2032 235억 3,000만 달러
CAGR(%) 7.44%

결정질 폴리에틸렌 테레프탈레이트의 기본 개요 : 재료 성능 특성과 산업 응용에서의 전략적 역할에 중점을 둡니다.

결정질 폴리에틸렌 테레프탈레이트는 고분자 과학과 고성능 산업 응용의 교차점에서 중요한 위치를 차지하고 있습니다. 그 결정 구조는 열 안정성, 기계적 강도, 장벽 특성을 향상시키고, 보다 비정질적인 폴리머 변종과 차별화되어 까다로운 포장 형태, 엔지니어링 부품, 의료기기에 가장 적합한 소재입니다. 이 보고서에서는 상업적 채택을 지원하는 재료 특성, 조달 결정에 영향을 미치는 주요 다운스트림 용도, 그리고 산업계가 밸류체인 전반에서 가치 실현을 최적화하기 위해 활용할 수 있는 전략적 수단에 대해 설명합니다.

규제 요인, 화학적 재활용 기술의 발전, 그리고 지속가능성에 대한 기대가 결정질 PET의 밸류체인과 경쟁적 포지셔닝을 재구성하는 방법

결정질 PET 분야는 규제 압력, 화학적 재활용 기술의 성숙, 지속가능한 포장에 대한 소비자의 기대치가 높아짐에 따라 혁신적인 변화를 겪고 있습니다. 여러 관할권의 규제 동향은 재활용 재료 함량 및 재활용 가능성에 대한 요구 사항을 가속화하고 있습니다. 한편, 탈중합 기술과 용매 기반 정제 기술의 발전은 화학적 재생 PET의 실용성을 확대하고 있습니다. 이러한 기술적 변화는 생산자에게 새로운 원료 조달의 유연성을 제공하는 동시에, 일관된 버진 소재의 특성과 다양한 재생 원료의 변동성을 평가해야 하는 다운스트림 프로세서의 조달 결정 기준을 변화시키고 있습니다.

2025년까지 시행되는 미국 관세 조치가 결정질 PET의 조달 및 운영에 미치는 누적 공급망 및 전략적 영향 평가

2025년까지 시행되는 미국의 관세 조정은 공급망 비용, 지역 조달 동향, 전략적 조달 행동에 걸쳐 관찰 가능한 누적 영향을 미치고 있습니다. 특정 폴리머 수입품 및 중간체에 대한 관세 인상은 특정 수지 등급의 착륙 비용을 상승시켰고, 이에 따라 일부 가공업체들은 공급원 다변화와 니어쇼어링 정책을 가속화했습니다. 이러한 변화는 기업이 비용 변동을 완화하고 다운스트림 고객에 대한 서비스 수준을 유지하기 위해 물류 최적화와 재고 관리의 중요성을 강조하고 있습니다.

통합 세분화 분석을 통해 용도, 등급, 최종 사용 산업, 생산 공정 및 물리적 형태가 상호 작용하여 재료 선택 및 밸류체인상의 의사결정을 형성하는 메커니즘이 밝혀졌습니다.

부문 레벨 분석을 통해 용도 분야, 등급 선택, 최종 사용 산업, 생산 공정, 물리적 형태에 따라 각기 다른 수요 요인과 기술 요구 사항을 파악할 수 있습니다. 용도별로는 단층 및 다층 구조의 병이 투명성과 가스 차단 성능으로 인해 음료 및 소비재 포장 분야에서 계속 주류를 이루고 있습니다. 한편, 압출 및 사출성형에 의한 엔지니어링 플라스틱은 자동차 및 전기 장비의 구조 부품을 제공합니다. 필라멘트 원사 및 단섬유로 생산되는 섬유는 강도와 염색성에 대한 섬유 및 산업 분야의 요구를 충족시킵니다. 한편, 연신 및 비연신 형태로 생산되는 필름 및 시트는 포장 및 산업 분야의 배리어성 요구에 대응합니다. 식품 용기는 비용과 기능적 성능의 균형을 맞추기 위해 사출성형과 열성형 기법을 사용하며, 의료용 포장은 멸균과 치수 정확도가 매우 중요한 주사기 및 바이알에 대한 엄격한 사양을 요구합니다.

지역별 동향과 정책적 주도권의 차이는 전 세계 공급망 구조, 재활용 투자 및 재료 채택에 영향을 미칠 수 있습니다.

결정질 PET의 지역별 동향은 북미, 남미, 유럽, 중동 및 아프리카, 아시아태평양 수요 패턴, 규제 프레임워크, 인프라 구축의 성숙도를 반영하고 있습니다. 아메리카 지역에서는 대규모 소비재 포장 시장, 국내 재활용 및 화학적 회수 기술에 대한 투자, 재활용 재료 사용을 촉진하는 정책적 조치가 결합되어 수요 압력이 형성되고 있습니다. 북미 컨버터들은 공급 연속성과 물류 효율을 우선시하는 경향이 강하며, 이는 이 지역공급업체 구조와 재생수지 및 혼합수지의 채택률에 영향을 미치고 있습니다.

결정질 PET 밸류체인의 차별화 요소로 원료의 유연성, 재활용 통합, 다운스트림 공정의 능력을 강조하는 경쟁적이고 전략적인 기업 수준의 관점

생산자와 밸류체인 참여자의 경쟁적 포지셔닝은 원료의 유연성, 재활용 기술, 다운스트림 통합 능력에 의해 점점 더 결정되고 있습니다. 주요 수지 제조업체 및 컨버터들은 화학적 재활용 원료에 대한 투자, 폐기물 관리 및 선별 전문업체와의 제휴, 재활용 원료 사용시 변동성을 최소화하기 위한 공정 제어 강화를 통해 차별화를 꾀하고 있습니다. 일부 기업은 원료 공급원 확보를 위해 수직계열화를 추진하는 반면, 다른 기업은 특수 등급, 가공 기술 지원, 배리어 성능 최적화 등 부가가치 서비스에 집중하고 있습니다. 이러한 전략적 움직임은 이익률 구조, 고객 유지, 지속가능한 신제품 시장 출시 속도에 영향을 미칩니다.

결정질 PET 사업 및 공급망에서 탄력성, 순환성, 경쟁적 차별화를 강화하기 위한 기업 리더를 위한 실질적인 전략적 조치

결정성 PET 산업이 발전하는 상황에서 업계 리더는 회복력과 경쟁 우위를 확보하기 위해 다음과 같은 실천적 조치를 우선적으로 취해야 합니다. 첫째, 원료의 다양화(버진 원료, 기계적 재생 원료, 화학적 재생 원료의 균형)에 대한 투자는 무역 마찰과 원료 가격 변동에 대한 노출을 줄이는 동시에 높아지는 재생재 함량 기대치에 대응할 수 있게 해줍니다. 둘째, 제품 설계 및 공급업체 계약에 폐쇄 루프 사고를 통합하여 사용 후 제품 처리의 복잡성을 줄이고 회수율을 향상시킵니다. 여기에는 분리를 용이하게 하는 다층 구조의 재설계와 가능한 범위 내에서 단일 폴리머 시스템으로의 전환이 포함됩니다.

주요 이해관계자 인터뷰, 기술 프로세스 분석, 시나리오 평가를 결합한 조사 방법을 통해 결정성 PET에 대한 확고한 실용적 인사이트를 얻었습니다.

본 조사는 업계 이해관계자들과의 1차 인터뷰, 신뢰할 수 있는 산업 정보원의 2차 문헌, 그리고 폴리머 성능 및 가공 방법에 대한 기술 분석을 통합한 결과입니다. 1차 자료로는 수지 제조업체, 가공업체, 재활용업체, 브랜드 소유주와의 구조화된 인터뷰와 함께 가능한 한 현장 평가를 실시하여 가공상의 제약과 품질관리 방법을 검증했습니다. 규제 동향, 재활용 기술의 성숙도, 물류에 미치는 영향을 맥락화하기 위해 2차 정보 출처를 면밀히 조사했습니다. 사실의 정확성을 확보하기 위해 권위 있는 산업 잡지, 규제 문서, 특허 정세를 우선적으로 참고했습니다.

결정질 PET 시장에서 장기적인 가치 창출을 위한 성능, 지속가능성, 운영 탄력성의 균형에 대한 총체적 견해

결정질 폴리에틸렌 테레프탈레이트는 재료 성능에 대한 기대와 지속가능성에 대한 요구가 일치하는 가운데, 매력적인 기회와 도전이라는 두 가지 측면을 모두 가지고 있습니다. 이 소재의 독특한 열적 및 기계적 특성은 포장, 섬유, 필름, 엔지니어링 용도에서 지속적인 중요성을 보장하는 한편, 재활용 기술의 발전과 순환형 사회를 향한 규제 모멘텀은 조달 및 생산 전략을 재구성하고 있습니다. 이 분야에서 사업을 운영하는 기업의 성공 여부는 원료의 유연성을 통합하는 능력, 가공의 탄력성에 대한 투자, 제품 설계와 폐기시 현실과의 정합성에 달려 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 결정성 폴리에틸렌 테레프탈레이트 시장 : 용도별

  • 보틀
    • 단층 보틀
    • 다층 보틀
  • 엔지니어링 플라스틱
    • 압출 성형
    • 사출성형
  • 섬유
    • 필라멘트사
    • 단섬유
  • 필름·시트
    • 비연신 필름
    • 연신 필름
  • 식품 용기
    • 사출성형 용기
    • 열성형 용기
  • 의료용 포장
    • 주사기
    • 바이알

제9장 결정성 폴리에틸렌 테레프탈레이트 시장 : 등급별

  • 재생품
    • 화학적 재생품
    • 기계적 재생품
  • 버진

제10장 결정성 폴리에틸렌 테레프탈레이트 시장 : 최종 용도 산업별

  • 자동차
    • 외장 부품
    • 내장 부품
  • 건설
    • 단열재
    • 지붕재
  • 전기·전자기기
    • 회로 기판
    • 커넥터 및 하우징
  • 포장
    • 식품 및 음료 포장
    • 산업용 포장
  • 섬유·의류
    • 의류
    • 홈텍스타일

제11장 결정성 폴리에틸렌 테레프탈레이트 시장 : 제조 프로세스별

  • 블로우 성형
    • 압출 블로우 성형
    • 사출 블로우 성형
  • 압출
    • 필름 압출
    • 시트 압출
  • 섬유 방사
    • 건식 방사
    • 용융 방사
  • 사출성형
    • 단단식
    • 2단식

제12장 결정성 폴리에틸렌 테레프탈레이트 시장 : 물리 형태별

    • 아몰퍼스 칩
    • 결정성 칩
  • 펠릿
    • 착색 펠릿
    • 투명 펠릿
  • 분말
    • 조 분말
    • 미분말

제13장 결정성 폴리에틸렌 테레프탈레이트 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 결정성 폴리에틸렌 테레프탈레이트 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 결정성 폴리에틸렌 테레프탈레이트 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Indorama Ventures Public Company Limited
    • China Petroleum & Chemical Corporation
    • Far Eastern New Century Corporation
    • M&G Chemicals S.p.A.
    • Alpek S.A.B. de C.V.
    • Reliance Industries Limited
    • SK Global Chemical Co., Ltd.
    • Toray Industries, Inc.
    • Teijin Limited
    • Qenos Pty Ltd
KSA 25.12.03

The Crystalline Polyethylene Terephthalate Market is projected to grow by USD 23.53 billion at a CAGR of 7.44% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 13.25 billion
Estimated Year [2025] USD 14.26 billion
Forecast Year [2032] USD 23.53 billion
CAGR (%) 7.44%

Foundational overview of crystalline polyethylene terephthalate highlighting its material performance attributes and strategic role across industrial applications

Crystalline polyethylene terephthalate occupies a critical position at the intersection of polymer science and high-performance industrial applications. Its crystalline morphology imparts enhanced thermal stability, mechanical strength, and barrier characteristics that distinguish it from more amorphous polymer variants, making it a preferred material for demanding packaging formats, engineered components, and medical-grade devices. This introduction synthesizes the material attributes that underpin commercial adoption, the primary downstream applications that drive procurement decisions, and the strategic levers that industry actors can employ to optimize value realization across the value chain.

Understanding crystalline PET requires appreciation of both its intrinsic polymer chemistry and the processing decisions that influence crystallinity, orientation, and end-use performance. Processing pathways such as fiber spinning, blow molding, extrusion, and injection molding interact with thermal histories to deliver predictable performance envelopes. Consequently, the material's commercial relevance stems from the combination of tunable physical form, adaptability across production processes, and compatibility with recycling streams, which collectively shape product design choices and capital investment strategies for manufacturers and brand owners.

How regulatory drivers, advances in chemical recycling, and evolving sustainability expectations are reshaping crystalline PET value chains and competitive positioning

The crystalline PET landscape is undergoing transformative shifts driven by regulatory pressure, technology maturation in chemical recycling, and evolving consumer expectations for sustainable packaging. Regulatory trajectories in multiple jurisdictions are accelerating requirements for recycled content and recyclability, while advances in depolymerization and solvent-based purification are expanding the practical viability of chemically recycled PET. These technology shifts are creating new feedstock flexibility for producers and altering procurement calculus for downstream converters who must weigh the trade-offs between consistent virgin properties and the variability introduced by different recycled feedstocks.

Concurrently, the industry is seeing convergence between material innovation and circular economy initiatives, prompting investments in design for recyclability and increased integration of resin grading strategies across supply chains. Brands and converters are adapting product specifications to accommodate material blends, multilayer constructions, and barrier-enhancing treatments that preserve performance while improving end-of-life outcomes. Together, these dynamics are reshaping supplier relationships, capital allocation toward recycling and sorting infrastructure, and the competitive landscape as firms differentiate through sustainable product portfolios and vertically integrated feedstock strategies.

Assessment of the cumulative supply chain and strategic consequences of United States tariff measures enacted through 2025 on crystalline PET procurement and operations

United States tariff adjustments implemented through 2025 have produced cumulative effects that are observable across supply chain costs, regional sourcing dynamics, and strategic procurement behavior. Increased duties on selected polymer imports and intermediates have elevated landed costs for certain resin grades, which in turn prompted some processors to diversify supply sources and accelerate nearshoring initiatives. Those changes have emphasized the importance of logistics optimization and inventory management as companies seek to mitigate cost volatility and maintain service levels to downstream customers.

The tariff environment has also influenced capital planning decisions, encouraging both incremental domestic capacity investments and strategic partnerships with regional suppliers to reduce exposure to trade frictions. In parallel, tariffs have intensified interest in recycled feedstocks and in-process scrap repurposing as cost containment and sustainability goals align. Importantly, companies have responded with a mix of price pass-through where market conditions allowed and operational adjustments where margins were under pressure, reinforcing the need for scenario planning and contractual flexibility with both suppliers and customers.

Integrated segmentation insights revealing how application, grade, end-use industry, production process, and physical form interact to shape material selection and value chain decisions

Segment-level analysis reveals differentiated demand drivers and technical requirements across application domains, grade selections, end-use industries, production processes, and physical forms. Within applications, bottles-comprised of monolayer and multilayer constructions-continue to dominate in beverage and consumer packaging due to the material's clarity and gas-barrier performance, while engineering plastics deployed via extrusion and injection molding provide structural components for automotive and electrical assemblies. Fibers produced as filament yarn and staple fiber satisfy textile and industrial requirements for strength and dyeability, and films and sheets-manufactured as oriented and non-oriented formats-address packaging and industrial barrier needs. Food containers utilize injection molded and thermoformed approaches to balance cost and functional performance, and medical packaging demands stringent specifications for syringes and vials where sterility and dimensional precision are critical.

Grade selection between recycled and virgin options introduces another strategic axis; chemically recycled PET offers feedstock quality closer to virgin performance while mechanically recycled material tends to be cost-advantaged but exhibits greater variability. End-use industry segmentation highlights distinct adoption patterns: automotive components for interior and exterior applications emphasize thermal and dimensional stability, construction applications prioritize insulation and roofing materials resistance to environmental factors, electrical and electronics use circuit boards and connectors where dielectric performance matters, packaging continues to bifurcate between food and beverage and industrial applications, and textile and apparel segments differentiate between performance apparel and home textiles. Production process choices such as blow molding variants, film and sheet extrusion methods, and fiber spinning technologies determine achievable property sets, and physical form-chips in amorphous or crystalline variants, pellets in colored or transparent formats, and powders in coarse or fine gradations-further influences downstream handling, melting behavior, and additive compatibility. These intersecting segmentation dimensions force manufacturers and specifiers to balance performance requirements, processing constraints, and circularity ambitions when selecting material and supply strategies.

Regional dynamics and policy-driven divergences that influence supply chain structure, recycling investments, and material adoption across global geographies

Regional dynamics for crystalline PET reflect divergent demand patterns, regulatory frameworks, and infrastructure maturity across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, demand pressures are shaped by a combination of large consumer packaging markets, investment in domestic recycling and chemical recovery technologies, and policy measures that encourage recycled content. North American converters often prioritize supply continuity and logistics efficiency, influencing the regional structure of suppliers and the adoption rate of recycled or blended resins.

The Europe, Middle East & Africa region is characterized by stringent regulatory drivers around recyclability and extended producer responsibility, which have catalyzed investment in collection and sorting systems as well as advanced recycling facilities. These policy environments have accelerated product redesign and material substitution strategies among brand owners. Asia-Pacific continues to be a major production hub with diverse end-use markets; here, investments in both virgin capacity and recycling infrastructure coexist with strong demand for bottles, fibers, and films. Regional trade flows, energy cost differentials, and local feedstock availability further inform competitive dynamics and capital investment choices across these geographies.

Competitive and strategic company-level perspectives highlighting feedstock flexibility, recycling integrations, and downstream capability as differentiators in crystalline PET value chains

Competitive positioning among producers and value chain participants is increasingly determined by capabilities in feedstock flexibility, recycling technologies, and downstream integration. Leading resin manufacturers and converters are differentiating through investments in chemically recycled feedstocks, partnerships with waste management and sorting specialists, and enhancements in process control to minimize variability when using recycled inputs. Some organizations have pursued vertical integration to secure feedstock streams, while others have focused on specialty grades and value-added services such as technical support for conversion and barrier optimization. These strategic movements have implications for margin structures, customer retention, and speed to market for new sustainable products.

Across the supply chain, mid-tier converters and regional producers play a pivotal role in local markets by offering responsiveness and tailored formulations, while global players leverage scale and technology transfer to support multinational brand requirements. Collaboration between feedstock suppliers, recycling technology firms, and brand owners has become more prevalent, enabling pilot projects and proof-of-concept runs that de-risk broader adoption of recycled or hybrid resin systems. Ultimately, the competitive landscape favors organizations that can combine technical expertise, reliable procurement channels, and credible sustainability narratives to meet evolving customer and regulatory expectations.

Practical strategic actions for corporate leaders to enhance resiliency, circularity, and competitive differentiation within crystalline PET operations and supply chains

Industry leaders should prioritize a set of pragmatic actions to secure resilience and competitive advantage as the crystalline PET landscape evolves. First, investing in feedstock diversification-balancing virgin, mechanically recycled, and chemically recycled inputs-will mitigate exposure to trade frictions and raw material volatility while enabling compliance with rising recycled content expectations. Second, embedding closed-loop thinking into product design and supplier contracts will reduce end-of-life complexity and facilitate higher recovery rates; this includes redesigning multilayer structures for easier separation or adopting single-polymer system approaches where feasible.

Third, strengthening supplier relationships through long-term agreements and collaborative recovery programs will enhance transparency and supply continuity. Fourth, targeted capital allocation toward process control upgrades can improve tolerance to recycled feedstocks and reduce scrap rates, delivering both sustainability and cost benefits. Fifth, pursuing regional manufacturing footprints in response to tariff and logistics pressures will shorten lead times and improve responsiveness to local demand. Finally, executives should prioritize capability development in circular technologies, partnerships with waste management specialists, and scenario-based planning to ensure agility as regulatory and technological landscapes continue to shift.

Methodological framework combining primary stakeholder interviews, technical process analysis, and scenario evaluation to ensure robust and actionable crystalline PET insights

This research synthesizes primary engagements with industry stakeholders, secondary literature from credible industrial sources, and technical analysis of polymer performance and processing practices. Primary inputs include structured interviews with resin producers, converters, recyclers, and brand owners, augmented by site-level assessments where available to validate processing constraints and quality control practices. Secondary sources were reviewed to contextualize regulatory trends, technology maturations in recycling, and logistics implications; priority was given to authoritative trade publications, regulatory documents, and patent landscapes to ensure factual accuracy.

Analytical procedures combined qualitative synthesis with process-level evaluation to interpret how production methods affect crystalline morphology and downstream performance. Scenario analysis was employed to examine supply chain stressors such as tariff shifts and feedstock variability, while technology readiness assessments informed conclusions about chemical recycling applicability. Wherever possible, insights were corroborated through cross-validation between primary interviews and secondary technical references to ensure reliability and relevance to decision-makers.

Concluding perspectives on balancing performance, sustainability, and operational resilience to capture long-term value in crystalline PET markets

Crystalline polyethylene terephthalate presents a compelling set of opportunities and challenges as material performance expectations align with sustainability imperatives. The material's distinct thermal and mechanical characteristics ensure continued relevance across packaging, fibers, films, and engineering applications, while technological advances in recycling and regulatory momentum toward circularity are reshaping procurement and production strategies. Success for firms operating in this space will depend on their ability to integrate feedstock flexibility, invest in processing resilience, and align product designs with end-of-life realities.

Decision-makers should view the current environment as an inflection point where operational investments and strategic partnerships can yield durable advantage. By focusing on adaptable production platforms, credible recycled feedstock sourcing, and proactive engagement with regulatory developments, companies can both meet immediate customer needs and position themselves for the longer-term transition toward more circular material systems. The balance between performance, cost, and sustainability will remain central to competitive differentiation in the years ahead.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Advancements in bio-based feedstocks driving sustainable crystalline PET production improvements
  • 5.2. Integration of high-performance additives enhancing barrier and thermal properties of crystalline PET packaging
  • 5.3. Scaling chemical recycling processes to convert post-consumer crystalline PET into virgin-quality resins
  • 5.4. Development of lightweight crystalline PET bottle designs reducing material use and transportation emissions
  • 5.5. Implementation of real-time process analytics for crystallinity monitoring in PET manufacturing lines
  • 5.6. Emergence of nanocomposite-enhanced crystalline PET with improved mechanical strength and clarity
  • 5.7. Regulatory compliance strategies driving low-extractable crystalline PET formulations for food contact

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Crystalline Polyethylene Terephthalate Market, by Application

  • 8.1. Bottles
    • 8.1.1. Monolayer Bottles
    • 8.1.2. Multilayer Bottles
  • 8.2. Engineering Plastics
    • 8.2.1. Extrusion Molding
    • 8.2.2. Injection Molding
  • 8.3. Fibers
    • 8.3.1. Filament Yarn
    • 8.3.2. Staple Fiber
  • 8.4. Film & Sheet
    • 8.4.1. Non Oriented Film
    • 8.4.2. Oriented Film
  • 8.5. Food Containers
    • 8.5.1. Injection Molded Containers
    • 8.5.2. Thermoformed Containers
  • 8.6. Medical Packaging
    • 8.6.1. Syringes
    • 8.6.2. Vials

9. Crystalline Polyethylene Terephthalate Market, by Grade

  • 9.1. Recycled
    • 9.1.1. Chemically Recycled
    • 9.1.2. Mechanically Recycled
  • 9.2. Virgin

10. Crystalline Polyethylene Terephthalate Market, by End Use Industry

  • 10.1. Automotive
    • 10.1.1. Exterior Components
    • 10.1.2. Interior Components
  • 10.2. Construction
    • 10.2.1. Insulation
    • 10.2.2. Roofing Materials
  • 10.3. Electrical & Electronics
    • 10.3.1. Circuit Boards
    • 10.3.2. Connectors & Housings
  • 10.4. Packaging
    • 10.4.1. Food & Beverage Packaging
    • 10.4.2. Industrial Packaging
  • 10.5. Textile & Apparel
    • 10.5.1. Apparel
    • 10.5.2. Home Textiles

11. Crystalline Polyethylene Terephthalate Market, by Production Process

  • 11.1. Blow Molding
    • 11.1.1. Extrusion Blow Molding
    • 11.1.2. Injection Blow Molding
  • 11.2. Extrusion
    • 11.2.1. Film Extrusion
    • 11.2.2. Sheet Extrusion
  • 11.3. Fiber Spinning
    • 11.3.1. Dry Spinning
    • 11.3.2. Melt Spinning
  • 11.4. Injection Molding
    • 11.4.1. Single Stage
    • 11.4.2. Two Stage

12. Crystalline Polyethylene Terephthalate Market, by Physical Form

  • 12.1. Chips
    • 12.1.1. Amorphous Chips
    • 12.1.2. Crystalline Chips
  • 12.2. Pellets
    • 12.2.1. Colored Pellets
    • 12.2.2. Transparent Pellets
  • 12.3. Powder
    • 12.3.1. Coarse Powder
    • 12.3.2. Fine Powder

13. Crystalline Polyethylene Terephthalate Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Crystalline Polyethylene Terephthalate Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Crystalline Polyethylene Terephthalate Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Indorama Ventures Public Company Limited
    • 16.3.2. China Petroleum & Chemical Corporation
    • 16.3.3. Far Eastern New Century Corporation
    • 16.3.4. M&G Chemicals S.p.A.
    • 16.3.5. Alpek S.A.B. de C.V.
    • 16.3.6. Reliance Industries Limited
    • 16.3.7. SK Global Chemical Co., Ltd.
    • 16.3.8. Toray Industries, Inc.
    • 16.3.9. Teijin Limited
    • 16.3.10. Qenos Pty Ltd
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제