시장보고서
상품코드
1870964

생물학적 이미징 시약 시장 : 제품 유형별, 이미징 모달리티별, 최종사용자별, 용도별 - 세계 예측(2025-2032년)

Biologic Imaging Reagents Market by Product Type, Imaging Modality, End User, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

생물학적 이미징 시약 시장은 2032년까지 연평균 복합 성장률(CAGR) 8.19%로 290억 8,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 154억 8,000만 달러
추정 연도 : 2025년 167억 3,000만 달러
예측 연도 : 2032년 290억 8,000만 달러
CAGR(%) 8.19%

생물학적 이미징 시약에 대한 종합적인 소개와 학술 및 임상 환경에서 현대 진단 및 중개 연구에서의 중요한 역할을 소개합니다.

생물학적 이미징 시약은 현대의 진단, 전임상 연구, 중개과학에서 없어서는 안 될 기초 기술로 자리 잡고 있습니다. 이러한 시약은 컴퓨터 단층촬영(CT) 및 자기공명영상(MRI)에 사용되는 조영제, 분자 과정을 시각화하는 형광 표지 및 발광 프로브, 정밀한 광학 신호를 제공하는 양자점 등 다양합니다. 이들은 종합적으로 in vitro assay 개발 및 ex vivo 조직 특성 평가에서 in vivo 진단 이미징 및 치료 모니터링에 이르기까지 광범위한 응용을 지원하여 연구자, 임상의사, 산업 개발자 모두에게 동등하게 기여하고 있습니다.

기술 융합, 규제 진화, 새로운 번역적 응용이 주도하는 생물학적 이미징 시약의 혁신적 변화 분석

생물학적 이미징 시약의 환경은 기술, 규제, 번역적 수요의 상호 작용으로 인해 혁신적인 변화를 겪고 있습니다. 기술적 측면에서는 나노물질, 단백질 공학, 프로브 화학의 발전으로 더 높은 신호 대 잡음비, 향상된 표적 특이성, 개선된 생물학적 안정성을 실현하는 시약이 가능해졌습니다. 이러한 기능들은 복잡한 이미징 양식에 대한 채택을 가속화하고 치료 모니터링 및 정밀 진단에서 새로운 이용 사례를 개척하고 있습니다.

미국의 새로운 관세 정책이 생물학적 이미징 시약공급망, 조달 전략, 상업적 접근에 미치는 누적 영향 평가

2025년 미국에서 도입된 새로운 관세 정책은 생물학적 이미징 시약의 조달, 제조 및 구매 전략 전반에 파급되는 일련의 누적 영향을 미치고 있습니다. 많은 시약은 희소 원소, 자체 개발 염료, 나노 입자 전구체 등 전문 원자재에 의존하고 있으며, 이러한 원자재는 국제적으로 조달되는 경우가 많기 때문에 관세로 인한 비용 압박으로 인해 기업은 공급업체 포트폴리오를 재평가하고 재고 버퍼를 강화하며 국경 간 가격 변동에 대한 노출을 줄이고 전략적 수직적 통합을 모색하도록 유도하고 있습니다.

제품 유형, 이미징 양식, 최종 사용자, 용도 경로 등 혁신 및 조달 결정에 영향을 미치는 요소를 강조하는 상세한 세분화 분석

생물학적 이미징 시약 분야의 전략적 의사결정을 위해서는 세분화의 역학에 대한 정확한 이해가 필수적입니다. 제품 유형별로 보면, 이 생태계에는 조영제, 형광 표지, 발광 프로브, 양자점 등이 포함됩니다. 조영제 내에서는 마이크로버블, 상자성 조영제, 초상자성 산화철이 각각 특정 양식의 요구에 대응하고, 형광표시는 형광단백질, 나노입자, 유기색소, 발광 프로브는 생물발광과 화학발광의 접근법으로 구분되며, 양자점은 탄소계와 카드뮴 셀레늄화 분류됩니다. 각 제품군은 고유의 개발 경로, 규제 고려사항, 응용 호환성 등 R&D 우선순위와 상업적 포지셔닝에 영향을 미치는 고유한 개발 경로를 가지고 있습니다.

채용 및 투자 우선순위를 주도하는 지역별 동향과 전략적 시사점: 미주, 유럽-중동 및 아프리카, 아시아태평양 동향

지역별 동향은 생물학적 이미징 시약에 대한 수요 패턴과 전략적 우선순위를 형성합니다. 미국 대륙에서는 탄탄한 임상 연구 인프라, 확립된 생명공학 클러스터, 중개과학에 대한 높은 투자로 인해 임상시험 및 진단 혁신을 지원하는 첨단 시약에 대한 수요가 증가하고 있습니다. 이 지역의 조달 주기에서는 규제 추적 가능성과 장기적인 공급업체 관계가 중요시되며, 조직은 전임상 검증에서 임상 도입으로 원활하게 전환할 수 있는 시약을 찾는 경향이 있습니다.

생물학적 이미징 시약 시장을 형성하는 전략적 동향, 공동 연구, 역량 투자에 초점을 맞춘 경쟁 정보 및 기업 분석

생물학적 이미징 시약 분야의 기업 차원의 동향은 전문적 혁신과 전략적 규모의 균형을 반영하고 있습니다. 기존 공급업체는 임상 및 기관 고객을 위해 제조의 엄격성, 규제 문서화, 광범위한 양식 호환성에 투자하고 있습니다. 한편, 소규모 전문 기업들은 새로운 화학 기술, 표적 프로브, 번역 연구의 관련성을 가속화하는 공동 개발 모델을 중시하고 있습니다. 경쟁 환경 전반에서 시약 개발 기업, 기기 제조업체, 임상 연구 제공업체 간의 파트너십은 신제품 검증과 실제 임상에서 유용성을 입증하기 위한 일반적인 방법론이 되었습니다.

업계 리더이 혁신을 가속화하고, 강력한 공급망을 확보하며, 이미징 시약 포트폴리오의 상용화를 최적화할 수 있는 실용적 제안

기술 변화와 정책적 불확실성 속에서 업계 리더이 입지를 강화할 수 있는 몇 가지 실질적인 단계가 있습니다. 첫째, 지리적으로 분산된 공급업체 선정, 강력한 품질 관리, 지역별 제조 옵션 검토를 통해 공급망 탄력성 강화에 우선적으로 투자하여 국경을 초월한 혼란에 대한 노출을 줄입니다. 이러한 조치는 연속성을 향상시키고, 임상 및 연구 고객과의 장기적인 관계 구축을 지원합니다.

투명성 높은 조사방법을 통해 데이터 수집 방법, 이해관계자 참여 방법, 엄격성과 재현성을 보장하는 분석 프레임워크를 명시합니다.

본 보고서를 뒷받침하는 조사는 신뢰성과 관련성을 확보하기 위해 주요 이해관계자와의 직접 대화와 엄격한 2차 조사 및 상호 검증을 병행하여 진행되었습니다. 시약 개발자, 중개 연구자, 임상 사용자, 조달 담당자를 대상으로 구조화된 인터뷰를 실시하여 시약 선택, 공급 동향, 검증 요구사항에 대한 실무적 고찰을 수집하였습니다. 이러한 질적 연구 결과를 바탕으로 화학, 영상진단, 규제 업무 각 분야의 전문가들과 함께 대상별 후속 논의 및 가설 검증을 진행하였습니다.

생물학적 이미징 시약 전략에서 의사 결정자를 안내하는 전략적 우선순위, 새로운 기회, 위험 고려사항의 결정적 통합

요약하면, 생물학적 이미징 시약은 재료과학, 분자생물학, 임상적 유용성의 중요한 교차점에 위치하고 있습니다. 프로브 케미컬과 나노물질의 혁신은 전체 이미징 양식에 걸쳐 역량을 확장하고 있으며, 높아지는 규제 기대치와 정책적 변화는 강력한 제조 및 문서화 관행의 필요성을 강조하고 있습니다. 공급망 탄력성에 적극적으로 대응하고, 번역 검증을 우선시하며, 모듈식 및 확장 가능한 시약 플랫폼에 투자하는 기업은 채택 경로가 진화하는 과정에서 가치를 창출하는 데 더 유리한 위치에 서게 될 것입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 생물학적 이미징 시약 시장 : 제품 유형별

  • 조영제
    • 마이크로 버블
    • 상자성제
    • 초상자성 산화철
  • 형광 표지
    • 형광 단백질
    • 나노입자
    • 유기 색소
  • 발광 프로브
    • 생물 발광
    • 화학 발광
  • 양자점
    • 카본 기반
    • CdSe 기반

제9장 생물학적 이미징 시약 시장 : 영상 진단법별

  • 컴퓨터 단층촬영
    • 요오드 조영제
    • 나노입자 조영제
  • 자기공명영상(MRI)
    • T1 조영제
    • T2 조영제
  • 광학 이미징
    • 생물 발광 이미징
    • 형광 이미징
  • 양전자 방출 단층촬영
    • FDG
  • 단일 광자 방출 컴퓨터 단층촬영
    • 요오드 조영제
    • 테크네튬 조영제

제10장 생물학적 이미징 시약 시장 : 최종사용자별

  • 학술연구기관
    • 연구기관
    • 대학
  • CRO(계약연구기관)
    • 임상 제공업체
    • 전임상 서비스 제공업체
  • 병원 및 진단센터
    • 진단센터
    • 병원
  • 제약 기업 및 바이오테크놀러지 기업
    • 바이오테크놀러지 기업
    • 대형 제약 기업

제11장 생물학적 이미징 시약 시장 : 용도별

  • Ex Vivo Imaging
    • 조직 절편 이미징
    • 장기 전체 이미징
  • In Vitro Imaging
    • 현미경 검사
    • 플레이트 리더 어세이
  • In Vivo Imaging
    • 진단용 이미징
    • 치료 모니터링

제12장 생물학적 이미징 시약 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 생물학적 이미징 시약 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 생물학적 이미징 시약 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Thermo Fisher Scientific Inc.
    • Merck KGaA
    • Danaher Corporation
    • PerkinElmer, Inc.
    • Bio-Rad Laboratories, Inc.
    • Agilent Technologies, Inc.
    • Abcam plc
    • QIAGEN N.V.
    • Becton, Dickinson and Company
    • Luminex Corporation
LSH 25.12.03

The Biologic Imaging Reagents Market is projected to grow by USD 29.08 billion at a CAGR of 8.19% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 15.48 billion
Estimated Year [2025] USD 16.73 billion
Forecast Year [2032] USD 29.08 billion
CAGR (%) 8.19%

Comprehensive introduction to biologic imaging reagents and their pivotal role in modern diagnostics and translational research across academic and clinical settings

Biologic imaging reagents have become an essential enabler of contemporary diagnostics, preclinical research, and translational science. These reagents span contrast agents used in computed tomography and magnetic resonance imaging, fluorescent labels and luminescent probes that illuminate molecular processes, and quantum dots that offer precise optical signatures. Collectively, they underpin a spectrum of applications from in vitro assay development and ex vivo tissue characterization to in vivo diagnostic imaging and therapeutic monitoring, serving researchers, clinicians, and industry developers alike.

The convergence of imaging hardware innovation, advanced molecular labeling chemistries, and data-driven image analysis has elevated the importance of reagent performance, reproducibility, and regulatory compliance. As stakeholders pursue higher sensitivity, specificity, and biocompatibility, reagent design increasingly reflects cross-disciplinary inputs spanning materials science, molecular biology, and clinical requirements. Consequently, procurement and development decisions hinge not only on immediate performance but also on considerations such as scalability, batch consistency, and downstream integration into workflows.

This introduction sets the stage for a deeper examination of how technological advances, policy shifts, and evolving end-user expectations are reshaping priorities for manufacturers, research institutions, and healthcare providers. The following sections explore these dynamics and their implications for innovation, sourcing, and strategic planning across the biologic imaging reagent ecosystem.

Analysis of transformative shifts reshaping the biologic imaging reagents landscape driven by technological convergence, regulatory evolution, and novel translational applications

The landscape for biologic imaging reagents is undergoing transformative shifts driven by the interplay of technology, regulation, and translational demand. On the technology front, advances in nanomaterials, protein engineering, and probe chemistry are enabling reagents that deliver higher signal-to-noise ratios, enhanced targeting specificity, and improved biostability. These capabilities are accelerating adoption in complex imaging modalities and opening new use cases in therapeutic monitoring and precision diagnostics.

Simultaneously, regulatory frameworks and quality expectations have moved toward greater transparency and lifecycle evidence. This has prompted suppliers to invest in manufacturing controls, characterization protocols, and documentation that support clinical translation. As a result, collaborative partnerships between reagent developers and clinical research organizations have become more strategic, enabling iterative validation and faster clinical-readiness of novel reagents.

Market participants are also adapting to shifts in research models and funding priorities that emphasize reproducibility and translational impact. End users increasingly select reagents not only for their analytical performance but also for supply reliability, regulatory traceability, and compatibility with multiparametric imaging workflows. In response, developers are prioritizing modular chemistries and scalable production processes that can be validated across preclinical and clinical stages. The combined effect of these dynamics is a more rigorous, innovation-driven ecosystem with clearer pathways from concept to clinical utility.

Assessing the cumulative impact of emerging United States tariff policies on supply chains, sourcing strategies, and commercial access for biologic imaging reagents

Emerging tariff policies instituted in the United States in 2025 have introduced a set of cumulative impacts that reverberate across sourcing, manufacturing, and procurement strategies for biologic imaging reagents. Many reagents rely on specialized raw materials, including rare elements, proprietary dyes, and nanoparticle precursors, which are often sourced internationally. Tariff-induced cost pressures therefore encourage companies to reassess supplier portfolios, increase inventory buffers, and explore strategic vertical integration to reduce exposure to cross-border price volatility.

Beyond direct cost effects, tariffs contribute to shifts in supply chain architecture. Organizations are evaluating nearshoring or regional manufacturing to shorten lead times and reduce customs complexity, while others are diversifying supplier networks to mitigate single-source risks. These adaptations can increase operational overhead in the near term but foster resilience that supports uninterrupted research and clinical operations over time. Procurement teams also face higher compliance and administrative burdens, as customs classifications and regulatory clearances become more central to onboarding new suppliers.

On the demand side, tighter purchasing budgets and extended procurement cycles influence product selection criteria, with stakeholders prioritizing reagents that offer multi-use flexibility and predictable availability. The cumulative result is a landscape where strategic sourcing, supplier qualification, and investment in local manufacturing capacity are increasingly essential considerations for companies seeking to preserve both margin and market access in a tariff-constrained environment.

In-depth segmentation insights highlighting product types, imaging modalities, end users, and application pathways that influence innovation and procurement decisions

A nuanced understanding of segmentation dynamics is central to strategic decision making in the biologic imaging reagents domain. When viewed by product type, the ecosystem includes contrast agents, fluorescent labels, luminescent probes, and quantum dots; within contrast agents, microbubbles, paramagnetic agents, and superparamagnetic iron oxide each address specific modality needs, while fluorescent labels span fluorescent proteins, nanoparticles, and organic dyes, and luminescent probes differentiate between bioluminescent and chemiluminescent approaches, with quantum dots split between carbon based and cadmium selenide based variants. Each product family carries distinct development trajectories, regulatory considerations, and application compatibilities that influence both R&D prioritization and commercial positioning.

Considering imaging modality segmentation, computed tomography, magnetic resonance imaging, optical imaging, positron emission tomography, and single photon emission computed tomography present varied reagent demands; computed tomography workstreams lean on iodinated and nanoparticle agents, magnetic resonance imaging relies on differentiated T1 and T2 agents, optical imaging encompasses bioluminescence and fluorescence imaging techniques, positron emission tomography frequently centers on FDG and related radiotracers, and single photon emission computed tomography continues to employ iodine and technetium agents. These modality-specific requirements shape formulation constraints, stability profiles, and safety testing pathways.

From the end-user perspective, academic and research institutes, contract research organizations, hospitals and diagnostic centers, and pharmaceutical and biotechnology companies each impose different expectations around reagent performance, supply continuity, and documentation; academic institutions often prioritize versatility and reproducibility, contract research organizations emphasize standardized deliverables for trial support, healthcare providers require regulatory-compliant products for clinical diagnostics, and industry developers seek scalable, GMP-compatible reagents for translational pipelines. Finally, application-based segmentation across ex vivo, in vitro, and in vivo imaging delineates different validation regimes, with ex vivo work including tissue section and whole organ imaging, in vitro covering microscopy and plate reader assays, and in vivo focusing on diagnostic imaging and therapeutic monitoring. Together, these intersecting segmentation lenses inform product development, go-to-market strategies, and partnership choices across the value chain.

Regional dynamics and strategic implications across the Americas, Europe Middle East and Africa, and Asia Pacific that are driving adoption and investment priorities

Regional dynamics shape both demand patterns and strategic priorities for biologic imaging reagents. In the Americas, strong clinical research infrastructure, established biotechnology clusters, and high investment in translational science drive demand for advanced reagents that support clinical trials and diagnostic innovation. Procurement cycles in this region emphasize regulatory traceability and long-term supplier relationships, and organizations often seek reagents that can smoothly transition from preclinical validation to clinical deployment.

In Europe, the Middle East and Africa region, diverse regulatory landscapes and varied healthcare system maturity create differentiated opportunities. In Western European markets, rigorous regulatory standards and consolidated healthcare purchasers favor suppliers with extensive documentation and quality systems, whereas markets across the Middle East and Africa may prioritize cost-effective, robust solutions and support for local capacity building. Cross-border collaborations and pan-regional clinical networks are increasingly important channels for reagent adoption and validation.

In the Asia Pacific region, rapid expansion of research capabilities, growing investment in biotechnology and imaging infrastructure, and a large base of clinical research activity create significant demand for both foundational reagents and innovative probes. Manufacturers and distributors targeting this region often tailor offerings to local logistical realities and regulatory pathways while pursuing partnerships to accelerate market entry. Across these regions, regional manufacturing, localized regulatory expertise, and distributor relationships play pivotal roles in how reagents are evaluated, procured, and integrated into research and clinical workflows.

Competitive intelligence and company insights focused on strategic moves, collaborative research, and capability investments shaping the biologic imaging reagents market

Company-level dynamics in the biologic imaging reagent space reflect a balance between specialized innovation and strategic scale. Established suppliers invest in manufacturing rigor, regulatory documentation, and broad modality compatibility to serve clinical and institutional customers, while smaller, specialist firms emphasize novel chemistries, targeted probes, and collaborative development models that accelerate translational relevance. Across the competitive landscape, partnerships between reagent innovators, instrument manufacturers, and clinical research providers are a common mechanism to validate new products and demonstrate real-world utility.

Investment in intellectual property around probe design, nanoparticle synthesis, and conjugation chemistry remains a differentiator, as does the ability to provide comprehensive technical support and application training. Companies that can pair reagent performance with reproducible protocols and strong customer support tend to secure longer-term adoption among research institutions and diagnostic centers. Additionally, strategic licensing and co-development agreements allow larger organizations to access cutting-edge innovations without internalizing full R&D costs, while allowing smaller innovators to scale manufacturing and distribution.

Mergers and acquisitions alongside selective alliances continue to shape capability footprints, enabling companies to offer integrated solutions across modalities and applications. For decision makers evaluating potential partners or acquisition targets, priority criteria include technical differentiation, regulatory readiness, manufacturing scalability, and a demonstrated track record of enabling reliable translational outcomes.

Actionable recommendations for industry leaders to accelerate innovation, secure resilient supply chains, and optimize commercialization of imaging reagent portfolios

Industry leaders can take several practical steps to strengthen their position amid technological change and policy uncertainty. First, prioritize investments in supply chain resilience by qualifying geographically diverse suppliers, implementing robust quality controls, and exploring regional manufacturing options to reduce exposure to cross-border disruptions. These measures improve continuity and support long-term relationships with clinical and research customers.

Second, commit resources to standardization and documentation practices that facilitate clinical translation, regulatory compliance, and interoperable workflows. Producing comprehensive characterization data, stability profiles, and validated protocols enhances customer confidence and accelerates adoption across end-user segments. Third, pursue collaborative partnerships with instrument manufacturers, clinical sites, and translational research centers to co-develop and validate reagents in real-world settings; these alliances de-risk product development and create compelling use cases for commercialization.

Fourth, align product portfolios with modality-specific requirements and end-user expectations by developing modular reagent platforms that can be tailored to computed tomography, magnetic resonance imaging, optical imaging, and nuclear modalities. Finally, emphasize talent and capability development in areas such as bioconjugation chemistry, nanomaterials, and regulatory affairs to maintain a competitive edge. By executing on these recommendations, organizations can enhance innovation velocity while managing operational and regulatory complexities.

Transparent research methodology outlining data collection, stakeholder engagement, and analytical frameworks used to ensure rigor and reproducibility

The research underpinning this report combines primary stakeholder engagement with rigorous secondary analysis and cross-validation to ensure reliability and relevance. Primary inputs included structured interviews with reagent developers, translational researchers, clinical users, and procurement professionals to capture practical considerations around reagent selection, supply dynamics, and validation needs. These qualitative insights informed targeted follow-up discussions and hypothesis testing with subject matter experts across chemistry, imaging modalities, and regulatory affairs.

Secondary sources encompassed peer-reviewed literature, regulatory guidance documents, technical specifications for imaging modalities, and company disclosures that describe product characteristics and strategic initiatives. Analytical frameworks were applied to synthesize this material, evaluate technology readiness, and map capability gaps across product classes and applications. Throughout the process, attention was paid to ensuring reproducibility via documented assumptions, traceable data sources, and methodological transparency.

Limitations are acknowledged where proprietary commercial data or emerging regulatory changes introduce uncertainty. To mitigate these, sensitivity checks and scenario-based reasoning were used to explore alternative outcomes and to highlight strategic inflection points. The overall methodology prioritizes triangulation of evidence and stakeholder validation to produce actionable insights that support informed decision making across development, procurement, and commercialization activities.

Conclusive synthesis of strategic priorities, emerging opportunities, and risk considerations to guide decision makers in biologic imaging reagent strategies

In synthesis, biologic imaging reagents occupy a critical intersection of materials science, molecular biology, and clinical utility. Technological innovations in probe chemistry and nanomaterials are expanding capabilities across imaging modalities, while heightened regulatory expectations and policy shifts underscore the need for robust manufacturing and documentation practices. Companies that proactively address supply chain resilience, prioritize translational validation, and invest in modular, scalable reagent platforms will be better positioned to capture value as adoption pathways evolve.

Emerging challenges such as tariff-driven supply disruptions and increasing demand for clinical-grade evidence necessitate a strategic combination of operational agility and scientific excellence. Decision makers should weigh investments in local manufacturing, strategic partnerships, and regulatory expertise against the benefits of rapid innovation and market access. By focusing on reproducibility, interoperability with imaging systems, and proven clinical utility, organizations can differentiate their offerings and foster trust among researchers and clinicians.

This conclusion reinforces the central thesis that integrated strategies - spanning product design, supply chain management, and collaborative validation - will determine which organizations succeed in translating reagent innovation into sustained clinical and research impact. The subsequent call to action outlines how interested stakeholders can acquire the full research report and pursue tailored engagements to operationalize these findings.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of AI-driven image analysis algorithms to accelerate biologic reagent validation
  • 5.2. Expansion of near-infrared fluorescent probes for deep tissue biologic imaging applications
  • 5.3. Development of multiplexed antibody labeling kits for high-throughput biomarker discovery
  • 5.4. Adoption of organic photostable fluorophores with enhanced quantum yield for live-cell imaging
  • 5.5. Regulatory approval processes for novel recombinant protein-based imaging sensors
  • 5.6. Growth of single-cell spatial transcriptomics using barcoded imaging reagents for tissue mapping
  • 5.7. Demand for customized bioconjugation services to tailor imaging probes to specific research targets

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Biologic Imaging Reagents Market, by Product Type

  • 8.1. Contrast Agents
    • 8.1.1. Microbubbles
    • 8.1.2. Paramagnetic Agents
    • 8.1.3. Superparamagnetic Iron Oxide
  • 8.2. Fluorescent Labels
    • 8.2.1. Fluorescent Proteins
    • 8.2.2. Nanoparticles
    • 8.2.3. Organic Dyes
  • 8.3. Luminescent Probes
    • 8.3.1. Bioluminescent
    • 8.3.2. Chemiluminescent
  • 8.4. Quantum Dots
    • 8.4.1. Carbon Based
    • 8.4.2. CdSe Based

9. Biologic Imaging Reagents Market, by Imaging Modality

  • 9.1. Computed Tomography
    • 9.1.1. Iodinated Agents
    • 9.1.2. Nanoparticle Agents
  • 9.2. Magnetic Resonance Imaging
    • 9.2.1. T1 Agents
    • 9.2.2. T2 Agents
  • 9.3. Optical Imaging
    • 9.3.1. Bioluminescence Imaging
    • 9.3.2. Fluorescence Imaging
  • 9.4. Positron Emission Tomography
    • 9.4.1. Fdg
  • 9.5. Single Photon Emission Computed Tomography
    • 9.5.1. Iodine Agents
    • 9.5.2. Technetium Agents

10. Biologic Imaging Reagents Market, by End User

  • 10.1. Academic And Research Institutes
    • 10.1.1. Research Institutes
    • 10.1.2. Universities
  • 10.2. Contract Research Organizations
    • 10.2.1. Clinical Providers
    • 10.2.2. Preclinical Providers
  • 10.3. Hospitals And Diagnostic Centers
    • 10.3.1. Diagnostic Centers
    • 10.3.2. Hospitals
  • 10.4. Pharmaceutical And Biotechnology Companies
    • 10.4.1. Biotechnology Companies
    • 10.4.2. Large Pharmaceutical Companies

11. Biologic Imaging Reagents Market, by Application

  • 11.1. Ex Vivo Imaging
    • 11.1.1. Tissue Section Imaging
    • 11.1.2. Whole Organ Imaging
  • 11.2. In Vitro Imaging
    • 11.2.1. Microscopy
    • 11.2.2. Plate Reader Assays
  • 11.3. In Vivo Imaging
    • 11.3.1. Diagnostic Imaging
    • 11.3.2. Therapeutic Monitoring

12. Biologic Imaging Reagents Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Biologic Imaging Reagents Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Biologic Imaging Reagents Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Thermo Fisher Scientific Inc.
    • 15.3.2. Merck KGaA
    • 15.3.3. Danaher Corporation
    • 15.3.4. PerkinElmer, Inc.
    • 15.3.5. Bio-Rad Laboratories, Inc.
    • 15.3.6. Agilent Technologies, Inc.
    • 15.3.7. Abcam plc
    • 15.3.8. QIAGEN N.V.
    • 15.3.9. Becton, Dickinson and Company
    • 15.3.10. Luminex Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제