시장보고서
상품코드
1871018

지하 가스 저장 시장 : 저장 유형별, 용도별, 서비스별, 계약기간별, 최종 용도별 - 세계 예측(2025-2032년)

Underground Gas Storage Market by Storage Type, Application, Service, Contract Duration, End Use - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

지하 가스 저장 시장은 2032년까지 연평균 복합 성장률(CAGR) 9.22%로 2,252억 9,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 1,112억 5,000만 달러
추정 연도 : 2025년 1,216억 3,000만 달러
예측 연도 : 2032년 2,252억 9,000만 달러
CAGR(%) 9.22%

지하 가스 저장의 기본 개요와 전략적 프레임워크에 대한 정보를 제공하여 운영상의 의사결정과 장기적인 인프라 계획 수립에 도움이 되는 정보를 제공합니다.

지하 가스 저장은 신뢰성 확보, 송전망 안정화, 계절별 연료 밸런싱을 가능하게 함으로써 에너지 시스템에서 매우 중요한 역할을 담당하고 있습니다. 저장 시설을 지원하는 인프라는 에너지 전환의 요구, 진화하는 규제적 기대, 그리고 발전하는 디지털 기술과의 교차점이 점점 더 깊어지고 있습니다. 기존에는 전략적 재고 관리 및 피크 쉐이빙 서비스를 통해 운영 탄력성을 지원했지만, 현재는 재생에너지 발전 사이클과의 통합, 수소 혼합 테스트 지원, 다품종 지하 활동의 잠재적 허브 역할로 그 기능이 확대되고 있습니다.

탈탄소화, 수요 패턴의 변화, 기술 도입, 규제 변화가 지하 가스 저장 전략과 운영을 재구성하는 방식

탈탄소화 압력, 변화하는 수요 패턴, 기술 혁신에 힘입어 지하 가스 저장의 상황은 변혁적 전환기를 맞이하고 있습니다. 재생에너지 발전의 확대는 계절적, 일주기적 수요곡선을 변화시키고 있으며, 이는 저장자산의 변동성 완화 및 시스템 관성 공급의 활용 방식을 변화시키고 있습니다. 동시에 온실가스 감축을 위한 정책으로 저탄소 가스 대체연료 및 수소 혼합연료에 대한 관심이 가속화되고 있으며, 사업자들은 기존 암염동굴, 고갈저류층, 대수층이 새로운 혼합가스 서비스 및 전용 상품 서비스에 적합한지 재평가했습니다.

2025년 관세 조치가 저장설비 조달, 프로젝트 일정, 라이프사이클 비용 관리에 미치는 시스템적, 조달적 영향 평가

2025년 발효된 관세는 지하 가스 저장 프로젝트의 경제성, 공급망, 조달 전략에 누적 영향을 미치고 있습니다. 수입 압력용기, 압축기, 특수배관, 특정 철강재 부품에 대한 관세 적용으로 조달비용이 상승하고 리드타임이 연장됨에 따라 많은 개발사업자들이 벤더 선정과 물류계획을 재평가했습니다. 이에 따라 여러 사업자와 EPC 계약자들은 니어쇼어링을 가속화하고 대체 공급업체를 인증하는 한편, 초기 설비투자 증가를 고려한 자본 배분도 재검토하고 있습니다.

저장 유형, 용도, 서비스 빈도, 계약 기간, 최종 용도의 차이에 따른 기술적 및 상업적 선택의 전략적 일관성

세분화를 통해 얻은 통찰력은 자산 전략과 상업적 제안을 맞춤화할 수 있는 실용적인 관점을 제공합니다. 저장 유형에 따라 자산은 대수층, 고갈저류층, LNG 저장시설, 소금 동굴로 분류되며, 고갈저류층은 다시 심층과 얕은 층으로 나뉩니다. 이 분류는 지질학적 위험 프로파일, 개보수 복잡성, 적용 가능한 기술 기준을 나타냅니다. 저장 목적은 사용 패턴을 형성한다: 비상 대응, 피크 쉐이빙, 계절 조정은 각각 다른 운영 주기를 정의하고, 피크 쉐이빙 용도는 고열량 가스와 저열량 가스의 요구 사항을 구분하며, 이는 가스 품질 관리 및 상호 연결 의무에 영향을 미칩니다.

지역별 규제 체계, 인프라 성숙도, 수요 추세가 미주, 유럽, 중동/아프리카, 아시아태평양에서 어떻게 서로 다른 저장 전략을 이끌어 내는가?

지역적 동향은 지하가스 저장 생태계 전반의 규제 체계, 투자 의욕, 운영 규범에 강력한 영향을 미칩니다. 미국 대륙에서는 신규 시장 진출기업와 기존 사업자들이 성숙한 인프라 회랑과 가스 흐름의 변화, 지역적 파이프라인 역류, 배출량 투명성에 대한 관심 증가로 인한 성장 지역이 혼재된 상황에 대처하고 있습니다. 이 지역에서는 상업적으로 유연한 계약 형태와 기존 시설의 최적화를 위한 디지털 모니터링 시스템의 신속한 도입을 선호하는 경향이 있습니다. 유럽, 중동 및 아프리카은 기존 저장 시스템과 전략적 지정학적 고려사항이 중첩된 다양한 상황을 보여주고 있습니다. 엄격한 탈탄소화 목표와 허가제도로 인해 프로젝트를 추진하기 위해서는 환경 보호 조치와 이해관계자의 참여를 신중하게 통합해야 합니다.

저장 기회를 확보하기 위해서는 기술적 우수성, 배출량 관리, 유연한 상업적 모델을 통합하는 기업에게 유리한 경쟁적, 협력적 역학이 필요합니다.

지하 가스 저장 관련 기업 간의 경쟁은 통합 서비스 제공, 디지털 역량, 배출량 관리에서 입증된 실적에 점점 더 초점을 맞추었습니다. 강력한 설계, 조달, 시공 실적을 보유한 사업자는 개보수 및 전환 기회를 얻을 수 있는 위치에 있으며, 고정밀 모니터링, 누출 감지, 예지보전 툴을 제공하는 전문 벤더는 사업자가 다운타임을 줄이고 강화되는 환경 규제를 준수할 수 있도록 도와줍니다. 장비 제조업체, 서비스 기업, 자산 소유자 간의 협력이 더욱 전략적으로 이루어지고 있으며, 위험 분담과 기술 도입 가속화를 위한 합작 투자 및 장기 서비스 계약이 활용되고 있습니다.

자산 소유자를 위한 행동 지침: 디지털 무결성 프로그램, 다각화된 공급망, 적응형 계약, 적극적인 규제 대응을 통한 탄력성 강화

통찰력을 측정 가능한 성과로 전환하기 위해 업계 리더는 운영 탄력성, 전략적 파트너십, 상업적 유연성의 세 가지 접근 방식을 우선순위에 두어야 합니다. 첫째, 고도의 무결성 관리 및 디지털 모니터링에 투자하여 계획되지 않은 정지를 줄이고 강화되는 배출 규제 및 안전 의무를 충족합니다. 디지털 트윈 기술과 상태 모니터링 유지보수 프로그램의 도입은 수명주기 비용을 절감하고, 규제 당국과 고객을 위한 검증 가능한 데이터를 제공합니다. 다음으로, 조달 혼란과 관세 위험을 줄이기 위해 국내 조달과 적격 국제 공급업체를 균형 있게 조합한 공급망 다변화와 전략적 파트너십을 구축합니다. 기술 공급자와의 장기 서비스 계약을 통해 지원을 보장하면서 단계적 업그레이드를 가능하게 합니다.

이해관계자 인터뷰, 기술 문헌 검토, 시나리오 검증을 결합한 투명성 높은 혼합 연구 접근 방식을 채택하여 재현성 있고 운영 관련성이 높은 조사 결과를 보장합니다.

본 Executive Summary를 뒷받침하는 조사는 1차 이해관계자들과의 대화와 엄격한 2차 검증 및 기술 검토를 결합한 혼합 방식을 채택했습니다. 1차 데이터는 자산 소유자, 사업자, 엔지니어링 기업, 규제 당국 담당자와의 구조화된 인터뷰를 통해 운영 실태, 조달 과제, 정책 해석을 파악했습니다. 2차 정보로는 기술 표준, 공개 규제 신청 서류, 업계 백서, 운영 관행 검증 및 정성적 데이터 삼각측정을 실시했습니다. 기술평가에서는 지질 및 공학 문헌을 통합하여 저장 유형별 차별화와 고갈저류층, 대수층, LNG 구성, 암염동굴의 개보수 가능성을 평가하였습니다.

급변하는 에너지 환경 하에서 저배출 지하 가스 저장을 위한 전략적 요구와 운영 우선순위를 통합하여 강력한 저배출 지하 가스 저장을 실현합니다.

결론적으로, 지하 가스 저장은 에너지 전환기에도 에너지 시스템의 신뢰성을 뒷받침하는 필수적인 인프라 요소로 남을 것입니다. 그 기능은 기존의 계절적 조정을 넘어 계통 유연성, 탈탄소화 경로, 상품 다양화 역할로 확대되고 있습니다. 이해관계자들은 기술적 기회, 규제 압력, 공급망 재편의 복잡한 상호 작용에 직면하고 있으며, 성공 여부는 고도의 모니터링, 유연한 상업 계약, 전략적 조달 관행을 통합할 수 있는 능력에 달려있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 지하 가스 저장 시장 : 저장 유형별

  • 대수층
  • 고갈 유전 및 가스전
    • 심층 저장
    • 천층 저장
  • LNG 저장
  • 염동 저장

제9장 지하 가스 저장 시장 : 용도별

  • 긴급 대응
  • 피크 쉐이빙
    • 고발열량
    • 저발열량
  • 계절 조정

제10장 지하 가스 저장 시장 : 서비스별

  • Balancing
  • Injection
  • Withdrawal

제11장 지하 가스 저장 시장 : 계약기간별

  • 장기 계약
  • 단기
    • 6개월 미만
    • 6개월-12개월

제12장 지하 가스 저장 시장 : 최종 용도별

  • 산업
    • 화학
    • 제조업
  • 발전
  • 주택

제13장 지하 가스 저장 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 지하 가스 저장 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 지하 가스 저장 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Public Joint Stock Company Gazprom
    • Snam S.p.A.
    • ENGIE SA
    • Eni S.p.A.
    • E.ON SE
    • Uniper SE
    • EWE Gasspeicher GmbH
    • PGNiG S.A.
    • Gasunie N.V.
    • OMV Aktiengesellschaft
LSH 25.12.03

The Underground Gas Storage Market is projected to grow by USD 225.29 billion at a CAGR of 9.22% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 111.25 billion
Estimated Year [2025] USD 121.63 billion
Forecast Year [2032] USD 225.29 billion
CAGR (%) 9.22%

Foundational overview and strategic framing of underground gas storage essentials to inform operational decisions and long-term infrastructure planning

Underground gas storage occupies a pivotal role in energy systems by enabling reliability, grid stability, and seasonal fuel balancing. The infrastructure underpinning storage facilities is increasingly intersected by transitional energy imperatives, evolving regulatory expectations, and advancing digital capabilities. Historically, storage assets supported operational resilience through strategic inventories and peak-shaving services; today, their role is broadening to include integration with renewable generation cycles, support for hydrogen blending trials, and as potential hubs for multi-commodity subsurface activity.

This introduction frames the critical considerations facing asset owners, operators, investors, and policymakers. It establishes the technical foundations and commercial drivers that shape capital allocation and operational priorities. Throughout the following sections, the analysis emphasizes practical implications for project development, operational enhancements, and contractual design. The aim is to equip readers with a cohesive understanding of how global trends translate into concrete decisions, and to provide a clear pathway from insight to action for organizations engaged across the storage lifecycle.

As stakeholders navigate a complex intersection of supply dynamics, regulatory change, and technological innovation, clear priorities emerge: ensuring safety and environmental compliance, optimizing asset performance through advanced monitoring and control, and re-evaluating contractual flexibility to accommodate shifting demand profiles. These priorities guide the deeper analysis that follows and inform recommended actions for industry leaders seeking durable advantage.

How decarbonization, evolving demand patterns, technological adoption, and regulatory changes are reshaping underground gas storage strategy and operations

The landscape for underground gas storage is undergoing transformative shifts driven by decarbonization pressures, evolving demand patterns, and technological innovation. Renewable generation growth is altering seasonal and diurnal demand curves, which in turn changes how storage assets are used to buffer variability and provide system inertia. Simultaneously, policies aimed at reducing greenhouse gas emissions are accelerating interest in low-carbon gas alternatives and hydrogen blends, prompting operators to reassess the suitability of existing salt caverns, depleted reservoirs, and aquifers for new blended or dedicated commodity services.

Technological progress in digital twin models, remote sensing, and real-time monitoring is improving asset reliability and permitting more dynamic, short-term commercial strategies. These advances reduce operational uncertainty and open new revenue streams through faster injection and withdrawal cycles and more precise integrity management. Financing models are also shifting; investors increasingly evaluate projects through an environmental, social, and governance lens, which places a premium on leak detection, methane abatement, and transparent reporting.

Regulation and market design are adapting as well, with network codes and permitting frameworks evolving to manage multi-commodity futures while maintaining safety and public confidence. In addition, geopolitical dynamics and supply chain realignment continue to influence equipment availability and project schedules. Taken together, these shifts compel stakeholders to prioritize adaptive asset plans, invest selectively in digital and emissions-control technologies, and participate proactively in regulatory forums to shape practicable operational rules.

Assessing the systemic and procurement effects of 2025 tariff measures on equipment sourcing, project timelines, and lifecycle cost management for storage assets

The imposition of tariffs in 2025 has manifested as a cumulative influence on project economics, supply chains, and procurement strategies for underground gas storage stakeholders. Tariffs applied to imported pressure vessels, compressors, specialized piping, and certain steel components have raised acquisition costs and extended lead times, prompting many developers to re-evaluate vendor selection and logistics planning. In response, several operators and EPC contractors have accelerated nearshoring and qualification of alternative suppliers, while also revisiting capital allocation to account for higher initial equipment expenditures.

Beyond direct cost impacts, tariffs have introduced secondary effects on project sequencing and partner selection. Longer procurement cycles have increased the value of inventory planning and contractual flexibility, encouraging more modular construction approaches and staged commissioning to preserve optionality. Domestic manufacturing lines have seen renewed interest, yet capacity constraints and certification timelines limit how quickly onshore supply can fully substitute global sources. Consequently, owners have adopted mixed procurement strategies that blend domestic components with selectively sourced imports where standards or technology readiness necessitate it.

Operationally, the tariff environment has elevated the importance of lifecycle cost optimization. Operators are placing greater emphasis on condition-based maintenance, retrofitting existing assets to extend life, and exploring technologies that reduce dependence on items most affected by trade measures. From a strategic perspective, the tariffs have underscored the need for diversified supplier portfolios, clearer contractual risk allocation, and active engagement with policymakers to balance industrial policy objectives with infrastructure resilience.

Strategic alignment of technical and commercial choices based on storage type, application, service cadence, contract tenor, and end-use distinctions

Insights derived from segmentation provide practical lenses for tailoring asset strategies and commercial offers. Based on storage type, assets fall into aquifers, depleted reservoirs, LNG storage, and salt caverns, with depleted reservoirs further distinguished between deep and shallow formations; this classification informs geological risk profiles, retrofit complexity, and applicable engineering standards. Storage purpose shapes usage patterns: emergency response, peak shaving, and seasonal balancing define distinct operational cadences, and peak-shaving deployments are differentiated by high-calorific and low-calorific gas requirements, which affect gas quality management and interconnection obligations.

Service segmentation across balancing, injection, and withdrawal clarifies expected cycle frequency and asset wear, influencing maintenance planning and capacity design decisions. Contract duration divides into long term and short term arrangements, where short-term contracts are further split into less than six months and six to twelve months tenors; this spectrum determines cash flow predictability and the need for flexible operational protocols. End-use segmentation covers industrial, power generation, and residential demands, and the industrial category is further refined into chemical and manufacturing subsegments, each with unique hourly and seasonal consumption profiles, quality standards, and reliability expectations.

Drawing these perspectives together, stakeholders can align technical upgrades, commercial terms, and customer interfaces to the specific demands of targeted segments. For instance, retrofitting a depleted shallow reservoir for frequent injection and withdrawal intended for peak shaving in low-calorific markets will prioritize compressor responsiveness and gas conditioning. Conversely, long-duration seasonal balancing for residential supply emphasizes capacity assurance and regulatory compliance over rapid cycling performance.

How regional regulatory regimes, infrastructure maturity, and demand dynamics across the Americas, Europe Middle East & Africa, and Asia-Pacific drive differentiated storage strategies

Regional dynamics exert a powerful influence on regulatory regimes, investment appetite, and operational norms across the underground gas storage ecosystem. In the Americas, market entrants and incumbents contend with a mix of mature infrastructure corridors and pockets of growth driven by shifting gas flows, regional pipeline reversals, and a rising focus on emissions transparency; this region tends to favor commercially flexible contract arrangements and rapid deployment of digital monitoring to optimize existing facilities. Europe, Middle East & Africa presents a heterogeneous landscape where legacy storage systems overlap with strategic geopolitical considerations, and where stringent decarbonization targets and permitting regimes require careful integration of environmental safeguards and stakeholder engagement to advance projects.

Asia-Pacific is characterized by rapidly evolving demand dynamics, investment in LNG infrastructure, and varied regulatory maturity across national markets; the region shows significant interest in LNG storage solutions and in adapting storage assets to support peak demand from electricity generation. Across all regions, supply chain availability, domestic manufacturing capabilities, and public acceptance shape timelines and cost structures. Therefore, successful regional strategies combine local regulatory intelligence with adaptive technical designs and procurement plans that account for regional supply chain realities and policy trajectories.

These regional signals should inform prioritization decisions for developers and investors: allocating resources to retrofit or expand specific asset classes will depend on regional demand patterns, permitting timelines, and the presence of supportive market mechanisms that reward flexibility and low-emission operation.

Competitive and collaborative dynamics that favor companies blending technical excellence, emissions control, and flexible commercial models to secure storage opportunities

Competitive dynamics among companies involved in underground gas storage increasingly center on integrated service offerings, digital capabilities, and demonstrated performance in emissions control. Operators with robust engineering, procurement, and construction track records are positioned to capture retrofit and repurposing opportunities, while specialized vendors that provide high-fidelity monitoring, leak detection, and predictive maintenance tools enable operators to reduce downtime and comply with tightening environmental regulations. Collaboration between equipment manufacturers, service firms, and asset owners is becoming more strategic, with joint ventures and long-term service agreements used to share risk and accelerate technology adoption.

Financial sponsors and utilities are recalibrating their criteria for partnership, placing heightened weight on operational transparency and lifecycle emissions. Independent service providers that can demonstrate rapid deployment of condition-based monitoring and successful methane mitigation provide a competitive advantage in procurement processes. Meanwhile, engineering firms that validate repurposing pathways for hydrogen or blended gases offer long-term value to operators exploring fuel diversification. Collectively, these trends favor companies that balance technical excellence with flexible commercial models and are capable of navigating the regulatory and social license landscapes required to expand or convert storage assets.

Action-focused guidance for asset owners to strengthen resilience through digital integrity programs, diversified supply chains, adaptive contracts, and proactive regulatory engagement

To convert insight into measurable outcomes, industry leaders should prioritize a three-pronged approach: operational resilience, strategic partnerships, and commercial flexibility. First, invest in advanced integrity management and digital monitoring to reduce unplanned outages and to meet increasingly stringent emissions and safety obligations. Deploying digital twin capabilities and condition-based maintenance programs will lower lifecycle costs and provide verifiable data for regulators and customers. Second, cultivate supply chain diversity and strategic partnerships that balance domestic sourcing with qualified international suppliers to mitigate procurement disruptions and tariff exposure. Long-term service agreements with technology providers can lock in support while enabling incremental upgrades.

Third, revisit contract frameworks to incorporate greater optionality and shorter performance review cycles, allowing capacity to be redeployed rapidly in response to changing demand patterns. Explore staged project execution to preserve capital flexibility and to permit early revenue capture from partial commissioning. In parallel, engage proactively with regulators and local stakeholders to streamline permitting pathways and demonstrate environmental stewardship through transparent monitoring and reporting. Finally, evaluate repurposing pathways for hydrogen compatibility where geology and economics permit, and prioritize pilots that generate operational learnings and stakeholder confidence. Taken together, these actions will enhance resilience, create commercial differentiation, and support sustainable growth in a dynamic policy and market environment.

Transparent mixed-methods research approach combining stakeholder interviews, technical literature review, and scenario validation to ensure reproducible and operationally relevant findings

The research underpinning this executive summary used a mixed-methods approach that blends primary stakeholder engagement with rigorous secondary verification and technical review. Primary inputs included structured interviews with asset owners, operators, engineering firms, and regulatory officials to capture operational realities, procurement challenges, and policy interpretation. Secondary sources encompassed technical standards, public regulatory filings, and industry white papers to validate operational practices and to triangulate qualitative inputs. Technical assessment incorporated geological and engineering literature to differentiate storage types and to evaluate retrofit potential across depleted reservoirs, aquifers, LNG configurations, and salt caverns.

Analytical rigor was maintained through cross-validation of findings across multiple data streams and through scenario-based stress testing of supply chain and regulatory variables. A transparent audit trail documented source attributions and expert adjudication of conflicting inputs. Where possible, case studies of recent projects were used to illustrate practical implications for procurement, scheduling, and contractual design without extrapolating to market sizing. The methodology therefore emphasizes reproducibility, clarity of assumptions, and operational relevance to support decision-making under uncertainty while avoiding speculative projections.

Synthesis of strategic imperatives and operational priorities that enable resilient, lower-emission underground gas storage in a rapidly changing energy landscape

In conclusion, underground gas storage remains an essential infrastructure element that will continue to support energy system reliability during the energy transition. Its function is expanding beyond traditional seasonal balancing to encompass roles in grid flexibility, decarbonization pathways, and commodity diversification. Stakeholders face a complex interplay of technological opportunity, regulatory pressure, and supply chain realignment; success will depend on the ability to integrate advanced monitoring, flexible commercial contracting, and strategic procurement practices.

Practical priorities include accelerating digital adoption for integrity and emissions management, cultivating supplier diversity to mitigate tariff and logistics risks, and engaging proactively with regulators to shape viable pathways for repurposing and modernization. By aligning technical upgrades with tailored commercial models and regional insights, operators and investors can preserve asset value and capture new service opportunities without compromising safety or compliance. This synthesis provides a foundation for immediate operational adjustments and longer-term strategic planning that supports resilient, lower-emission storage systems.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Increasing integration of renewable energy storage solutions with underground gas storage facilities to balance grid fluctuations
  • 5.2. Deployment of hydrogen blending in high-pressure gas storage caverns to accelerate decarbonization of gas networks
  • 5.3. Adoption of digital twin and advanced monitoring technologies for real-time optimization of storage reservoir performance
  • 5.4. Expansion of salt cavern storage capacity to improve seasonal gas supply flexibility and energy security in Europe
  • 5.5. Strategic investment in underground storage retrofitting for combined compressed air and natural gas energy storage applications
  • 5.6. Rising regulatory pressure to reduce methane emissions from underground storage operations through leak detection and sealing innovations
  • 5.7. Development of multi-purpose subsurface storage hubs enabling gas, hydrogen, and CO2 storage to support integrated energy transition

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Underground Gas Storage Market, by Storage Type

  • 8.1. Aquifers
  • 8.2. Depleted Reservoirs
    • 8.2.1. Deep
    • 8.2.2. Shallow
  • 8.3. LNG Storage
  • 8.4. Salt Caverns

9. Underground Gas Storage Market, by Application

  • 9.1. Emergency Response
  • 9.2. Peak Shaving
    • 9.2.1. High-Calorific
    • 9.2.2. Low-Calorific
  • 9.3. Seasonal Balancing

10. Underground Gas Storage Market, by Service

  • 10.1. Balancing
  • 10.2. Injection
  • 10.3. Withdrawal

11. Underground Gas Storage Market, by Contract Duration

  • 11.1. Long Term
  • 11.2. Short Term
    • 11.2.1. Less Than Six Months
    • 11.2.2. Six To Twelve Months

12. Underground Gas Storage Market, by End Use

  • 12.1. Industrial
    • 12.1.1. Chemical
    • 12.1.2. Manufacturing
  • 12.2. Power Generation
  • 12.3. Residential

13. Underground Gas Storage Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Underground Gas Storage Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Underground Gas Storage Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Public Joint Stock Company Gazprom
    • 16.3.2. Snam S.p.A.
    • 16.3.3. ENGIE SA
    • 16.3.4. Eni S.p.A.
    • 16.3.5. E.ON SE
    • 16.3.6. Uniper SE
    • 16.3.7. EWE Gasspeicher GmbH
    • 16.3.8. PGNiG S.A.
    • 16.3.9. Gasunie N.V.
    • 16.3.10. OMV Aktiengesellschaft
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제