시장보고서
상품코드
1871040

바이오메디컬 센서 시장 : 센서 유형별, 용도별, 기술별, 최종사용자별, 접속성별 - 세계 예측(2025-2032년)

Biomedical Sensors Market by Sensor Type, Application, Technology, End User, Connectivity - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 188 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

바이오메디컬 센서 시장은 2032년까지 연평균 복합 성장률(CAGR) 9.16%로 237억 2,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 117억 6,000만 달러
추정 연도 : 2025년 128억 2,000만 달러
예측 연도 : 2032년 237억 2,000만 달러
CAGR(%) 9.16%

융합하는 기술, 높아지는 규제 요건, 변화하는 사용자 요구사항이 바이오메디컬 센서의 가치 제안을 재정의하는 상황을 간략하게 설명합니다.

바이오메디컬 센서 생태계는 융합하는 기술 역량과 진화하는 사용자 니즈에 힘입어 혁신과 전략적 재배치가 가속화되는 단계에 있습니다. 최근 소형화, 재료과학, 저전력 전자기기의 발전으로 센서 기능이 향상되고, 소프트웨어 분석과 연결성을 통해 원시 데이터를 임상적, 운영적으로 활용할 수 있는 정보로 전환하고 있습니다. 그 결과, 기기 설계자, 부품 공급업체, 임상 최종 사용자, 시스템 통합사업자에 이르는 가치사슬 전반의 이해관계자들이 새로운 이용 사례를 확보하기 위해 제품 로드맵과 파트너십 전략을 재검토하고 있습니다.

부품 중심의 제품 제공에서 통합되고 검증된 안전한 센싱 에코시스템으로의 전환이 경쟁 및 제품 전략을 어떻게 재구성하고 있는가?

산업 환경은 개별 센싱 구성 요소에서 데이터 오케스트레이션, 검증, 라이프사이클 관리가 경쟁 우위를 결정하는 시스템 차원의 가치로 전환되고 있습니다. 기존에는 센서가 주로 감도와 특이성으로 평가되어 왔지만, 혁신적인 변화로 인해 통합 용이성, 유지보수 프로파일, 지속적인 모니터링 지원 능력을 포함한 엔드 투 엔드 성능이 중요하게 여겨지고 있습니다. 그 결과, 신규 진출기업과 기존 기업들은 다양한 임상 환경과 소비자 환경에 빠르게 구축할 수 있는 모듈형 플랫폼과 소프트웨어 생태계에 투자하고 있습니다.

2025년 조달, 물류, 구매 결정에 중대한 영향을 미치는 관세 변경에 따른 전략적 대응 및 공급망 재구축

2025년 시행된 관세 정책은 미국 전역의 조달, 공급망 설계 및 공급업체 선정에 새로운 고려 사항을 가져왔으며, 국경을 초월한 제조 및 조달에 대한 전략적 재검토를 촉구했습니다. 이에 따라 기업들은 관세 리스크를 줄이기 위해 부품 조달 전략을 평가하고, 가능한 한 공급업체 다변화와 니어쇼어링을 우선순위에 두고 있습니다. 그 결과, 계약 협상에는 관세 대응 조항이나 거래 파트너 간 위험을 분담하는 양자 협정이 점점 더 많이 포함되고 있습니다.

부문 주도형 연구 결과는 센서 유형, 용도, 기술, 최종 사용자, 연결 방식에 따라 검증, 설계, 상용화 우선순위를 결정하는 방법을 알려줍니다.

부문에 기반한 상세한 분석을 통해 센서 유형, 용도, 기술, 최종 사용자, 연결 모드에 따라 각기 다른 기회 영역과 기술 요구 사항을 파악할 수 있습니다. 센서 유형을 고려하면, 바이오 센서(DNA 센서, 효소 센서, 포도당 센서로 세분화)는 엄격한 생체 적합성 기준과 복잡한 교정 프로토콜을 요구하는 반면, 화학 센서, 광학 센서, 압력 센서, 온도 센서는 생산 공정에 영향을 주는 특정 재료와 패키징의 우선순위를 고려해야 합니다. 생산 공정에 영향을 미치는 재료 및 패키징의 우선순위를 가지고 있습니다. 이러한 차이는 맞춤형 검증 경로와 임상적 증거에 대한 서로 다른 요구 사항을 의미하며, 결과적으로 서로 다른 제품군이 채택되기까지 소요되는 기간에 영향을 미칩니다.

지역별 규제, 제조, 상업 생태계의 차이가 미주, 유럽, 중동 및 아프리카, 아시아태평양의 도입 경로와 전략적 우선순위를 형성하는 방법

지역별 동향은 기술 도입, 규제 전략, 파트너 생태계에 큰 영향을 미치며, 미주, 유럽/중동/아프리카, 아시아태평양별로 각각 다른 의미를 가집니다. 미국 대륙에서는 혁신 허브와 잘 구축된 의료기기 생태계가 임상 파트너십과 파일럿 도입을 위한 비옥한 토양을 제공합니다. 한편, 조달 프레임워크는 입증 가능한 임상적 유용성과 전자건강기록 시스템과의 상호운용성을 중시합니다. 그 결과, 이 분야에 집중하는 기업들은 임상적 근거 창출과 지불자 참여 모델을 중시하는 경향이 있습니다.

통합된 하드웨어 및 소프트웨어 제안, 증거에 기반한 차별화, 검증 및 시장 진입을 가속화하는 파트너십을 통해 형성되는 경쟁 구도

경쟁의 역학은 수직적 전문화, 플랫폼 통합, 그리고 부품 공급업체, 장치 제조업체, 소프트웨어 제공업체, 서비스 통합업체를 아우르는 전략적 파트너십의 조합에 의해 정의됩니다. 주요 기업들은 센서 하드웨어와 검증된 알고리즘, 보안 연결 모듈, 시판 후 증거 생성 서비스를 결합한 통합 솔루션을 통해 차별화를 꾀하고 있습니다. 이러한 통합적 가치 제안은 고객의 통합 비용을 절감하고 전환 장벽을 높여 상업적 포지셔닝을 강화합니다.

지속 가능한 경쟁 우위를 확보하기 위해 제품 설계, 공급망 복원력, 규제 전략, 상업화를 통합하는 실용적인 전략 안내서

업계 리더는 지속적인 가치 창출을 위해 제품 개발, 증거 창출, 시장 출시 실행을 통합하는 전략을 우선시해야 합니다. 첫째, 제품 설계 단계부터 규제 대응 및 상환 요건을 고려함으로써 도입 시간을 단축하고, 지불자와의 연계 성과를 향상시킵니다. 따라서 개발 초기 단계에서 임상 엔드포인트와 사용자 경험 지표를 명확히 하기 위해 부서 간 협업을 통한 체계화가 필수적입니다. 다음으로, 관세 리스크와 물류 리스크로 인한 자재 공급의 취약성이 우려되는 경우, 공급망 파트너 다변화, 니어쇼어링, 듀얼소싱 전략을 채택하는 동시에, 착륙 비용과 재고 탄력성을 최적화하기 위한 투명성 향상 도구에 대한 투자를 병행해야 합니다. 병행해야 합니다.

주요 이해관계자 인터뷰, 기술 문헌 통합, 시나리오 기반 분석을 결합한 투명한 혼합 조사 방식을 통해 실행 가능한 통찰력을 도출합니다.

본 조사 접근법은 다원적 정성 분석과 주요 이해관계자의 검증을 결합하여 엄격하고 맥락이 풍부한 조사 결과를 보장합니다. 디바이스 엔지니어, 임상 연구자, 조달 전문가, 규제 자문가 등 다양한 직군의 리더을 대상으로 1차 인터뷰를 실시하여 현실적인 제약 요인과 채택 촉진요인을 파악했습니다. 이러한 인터뷰는 최근 규제 지침, 기술 백서, 특허 출원 동향에 대한 체계적인 검토를 통해 기술 궤적과 표준화의 진화를 매핑하는 데 도움이 되었습니다.

검증된 하드웨어, 분석 기술, 강력한 시장 출시 전략의 통합이 바이오메디컬 센싱 분야의 장기적인 성공을 좌우할 것이라는 결론을 내렸습니다.

요약하면, 바이오메디컬 센서 분야는 강력한 센싱 하드웨어와 검증된 분석 기술, 안전한 연결성을 결합한 통합된 증거 중심 솔루션으로 전환하고 있습니다. 이러한 진화는 제품 개발, 규제 전략, 상업적 실행에 있어 중요한 의미를 갖습니다. 조직은 기술적 성능뿐만 아니라 상호운용성, 데이터 무결성, 실제 임상에서의 가치를 입증해야 하기 때문입니다. 따라서 성공은 학제 간 경계를 넘나들며 규제와 공급망 우발적 사건을 예측하고 일관된 로드맵을 실행할 수 있는 팀에게 유리할 것입니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 바이오메디컬 센서 시장 : 센서 유형별

  • 바이오센서
    • DNA 센서
    • 효소 센서
    • 글루코오스 센서
  • 화학 센서
  • 광학 센서
  • 압력 센서
  • 온도 센서

제9장 바이오메디컬 센서 시장 : 용도별

  • 환경 모니터링
  • 식품 안전
  • 산업 자동화
  • 의료 진단
  • 웨어러블 디바이스
    • 피트니스 트래커
    • 스마트 의류
    • 스마트 워치

제10장 바이오메디컬 센서 시장 : 기술별

  • 음향 센서
  • 전기화학 센서
    • 안페로메트릭 센서
    • 전도 비율 센서
    • 전위차식 센서
  • MEMS 센서
  • 광학 센서
  • 열 센서

제11장 바이오메디컬 센서 시장 : 최종사용자별

  • 피트니스 센터
  • 재택치료
    • 재택 진단 키트
    • 개인용 모니터링 디바이스
  • 병원 및 진료소
  • 제약회사
  • 연구기관

제12장 바이오메디컬 센서 시장 : 접속성별

  • 유선 접속
  • 무선 접속
    • Bluetooth
    • NFC
    • Wi-Fi
    • Zigbee

제13장 바이오메디컬 센서 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 바이오메디컬 센서 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 바이오메디컬 센서 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Abbott Laboratories
    • Roche Holding AG
    • Siemens Healthineers AG
    • GE HealthCare Technologies Inc.
    • Koninklijke Philips N.V.
    • Danaher Corporation
    • Thermo Fisher Scientific Inc.
    • Becton, Dickinson and Company
    • Bio-Rad Laboratories, Inc.
    • PerkinElmer, Inc.
LSH 25.12.03

The Biomedical Sensors Market is projected to grow by USD 23.72 billion at a CAGR of 9.16% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 11.76 billion
Estimated Year [2025] USD 12.82 billion
Forecast Year [2032] USD 23.72 billion
CAGR (%) 9.16%

A concise overview of how converging technologies, heightened regulatory expectations, and shifting user needs are redefining biomedical sensor value propositions

The biomedical sensors ecosystem is undergoing a period of intensified innovation and strategic repositioning driven by converging technological capabilities and evolving user demands. Recent advances in miniaturization, materials science, and low-power electronics have elevated sensor functionality, while software-enabled analytics and connectivity are transforming raw signals into clinically and operationally actionable information. As a result, stakeholders across the value chain-from device designers and component suppliers to clinical end users and systems integrators-are reassessing product roadmaps and partnership strategies to capture emerging use cases.

Furthermore, the interplay between regulatory requirements and reimbursement models has sharpened the focus on data integrity, interoperability, and user experience. This intensifying scrutiny, combined with changing expectations around remote monitoring and personalized health, is accelerating cross-sector collaboration. Consequently, organizations that integrate multidisciplinary capabilities-spanning biosensing chemistry, MEMS engineering, and secure wireless communications-are positioned to deliver differentiated solutions that address both clinical outcomes and operational efficiencies.

How the shift from component-centric offerings to integrated, validated, and secure sensing ecosystems is reshaping competitive dynamics and product strategies

The landscape is shifting from discrete sensing components toward systems-level value where data orchestration, validation, and lifecycle management define competitive advantage. Historically, sensors were evaluated primarily on sensitivity and specificity, but transformative shifts now emphasize end-to-end performance, including ease of integration, maintenance profiles, and the ability to support continuous monitoring. As a result, new entrants and incumbents are investing in modular platforms and software ecosystems that enable rapid deployment across diverse clinical and consumer settings.

In addition, the migration of analytic capabilities to the edge and the cloud has reframed product discussions around latency, privacy, and regulatory compliance. Consequently, manufacturers are adopting design-for-compliance approaches, embedding security-by-design principles, and establishing evidence-generation pathways that accelerate clinical acceptance. Meanwhile, the increasing role of wearables and consumer-facing diagnostics is broadening the definition of medical-grade sensing, prompting collaborations that bridge consumer electronics design sensibilities with clinical validation rigor. These convergences are shifting competitive dynamics and creating opportunities for vertically integrated propositions that couple robust hardware with validated software and services.

Strategic responses and supply chain reconfigurations driven by tariff changes that have materially impacted sourcing, logistics, and procurement decisions in 2025

Tariff policies enacted in 2025 have introduced new considerations for procurement, supply chain design, and supplier selection across the United States, prompting a strategic reassessment of cross-border manufacturing and sourcing. In response, firms have evaluated component sourcing strategies to mitigate tariff exposure, prioritizing supplier diversification and nearshoring where feasible. Consequently, contract negotiations increasingly incorporate tariff contingency clauses and bilateral agreements that allocate risk across trading partners.

Moreover, the tariff environment has accelerated investments in supply chain transparency and cost-to-serve analytics. Organizations are leveraging these tools to model landed costs, identify tariff-efficient routing, and evaluate the trade-offs between inventory positioning and cash flow. In parallel, companies are exploring deeper collaborations with logistics providers and contract manufacturers to secure capacity and insulate production ramps from sudden cost shifts. Taken together, these strategic responses reflect a pragmatic approach to maintaining continuity of supply while preserving margins and ensuring regulatory compliance for medical-grade devices.

Segment-driven intelligence revealing how sensor types, applications, technologies, end users, and connectivity choices determine validation, design, and commercialization priorities

A nuanced segmentation-based analysis reveals differentiated opportunity areas and technical requirements across sensor types, applications, technologies, end users, and connectivity modes. When considering sensor type, biosensors-further specialized into DNA sensors, enzyme sensors, and glucose sensors-demand rigorous biocompatibility standards and complex calibration protocols, whereas chemical, optical, pressure, and temperature sensors present distinct material and packaging priorities that influence production processes. These distinctions imply tailored validation pathways and varying requirements for clinical evidence, which in turn affect time-to-adoption for different product classes.

From an application perspective, deployments in environmental monitoring, food safety, industrial automation, medical diagnostics, and wearable devices each impose unique operating conditions and regulatory touchpoints. Within wearable devices, subsegments such as fitness trackers, smart clothing, and smartwatches require trade-offs between ergonomics, battery life, and sensor fidelity, necessitating close alignment between industrial design and sensor engineering. Technological choices also drive differentiation: acoustic, electrochemical, MEMS, optical, and thermal sensor platforms demand distinct signal processing stacks, and within electrochemical approaches, variants such as amperometric, conductometric, and potentiometric techniques necessitate specialized front-end electronics and reagent management strategies.

End-user segmentation further clarifies go-to-market pathways, with fitness centers, home healthcare, hospitals and clinics, pharmaceutical companies, and research laboratories each following different procurement cycles and evidence expectations. The home healthcare domain, encompassing at-home diagnostic kits and personal monitoring devices, places a premium on usability, regulatory labeling clarity, and remote support infrastructure. Finally, connectivity considerations-spanning wired and wireless paradigms and including Bluetooth, NFC, Wi-Fi, and Zigbee under the wireless umbrella-affect device architecture, security models, and interoperability strategies. Integrating these segmentation layers yields actionable insight into prioritized product features, validation investments, and commercialization partnerships necessary to succeed across the heterogeneous biomedical sensors landscape.

How divergent regional regulatory, manufacturing, and commercial ecosystems shape adoption pathways and strategic priorities across the Americas, Europe, Middle East & Africa, and Asia-Pacific

Regional dynamics exert significant influence on technology adoption, regulatory strategies, and partner ecosystems, with distinct implications across the Americas, Europe, Middle East & Africa, and Asia-Pacific regions. In the Americas, innovation hubs and established medical device ecosystems provide fertile ground for clinical partnerships and pilot deployments, while procurement frameworks reward demonstrable clinical utility and interoperability with electronic health record systems. Consequently, companies focusing on this region tend to emphasize clinical evidence generation and payer engagement models.

Across Europe, the Middle East & Africa, regulatory harmonization efforts and varied market access pathways require flexible regulatory strategies and localized clinical evidence. In that context, partnerships with regional distributors and contract research organizations often accelerate market entry. Similarly, in the Asia-Pacific region, a diverse mix of manufacturing capacity, rapidly growing consumer health adoption, and progressive digital health initiatives creates both scale opportunities and competitive pressures that favor cost-effective designs and scalable manufacturing models. Understanding these regional contours is essential for allocating commercial resources, structuring regulatory submissions, and establishing distribution networks that reflect local reimbursement and procurement realities.

Competitive landscape shaped by integrated hardware-software propositions, evidence-driven differentiation, and partnerships that accelerate validation and market entry

Competitive dynamics are defined by a combination of vertical specialization, platform integration, and strategic partnerships that span component suppliers, device manufacturers, software providers, and service integrators. Leading companies are differentiating through integrated offerings that combine sensor hardware with validated algorithms, secure connectivity modules, and post-market evidence generation services. These integrated value propositions reduce customer integration costs and increase switching barriers, thereby reinforcing commercial positioning.

At the same time, agile innovators are capturing niche opportunities by focusing on specific clinical or operational pain points-such as non-invasive glucose monitoring, continuous respiratory surveillance, or food-safety traceability-where targeted performance improvements can unlock rapid adoption. Strategic collaborations between technology vendors and clinical research organizations are also shaping the landscape, enabling accelerated validation and early real-world evidence generation. In combination, these competitive behaviors underscore the importance of balancing platform investments with focused, evidence-driven use cases to achieve sustainable differentiation.

Actionable strategic playbook for leaders to align product design, supply chain resilience, regulatory strategy, and commercialization for sustainable competitive advantage

Industry leaders should prioritize a coordinated strategy that aligns product development, evidence generation, and go-to-market execution to capture sustained value. First, embedding regulatory and reimbursement considerations into product design will reduce time-to-adoption and improve payer engagement outcomes; therefore, cross-functional teams must codify clinical endpoints and user experience metrics early in development. Second, diversify supply chain partners and adopt nearshoring or dual-sourcing tactics where tariff exposure and logistics risk suggest material vulnerability, while simultaneously investing in transparency tools to optimize landed cost and inventory resilience.

Third, accelerate software and connectivity maturation by adopting secure-by-design principles and open interoperability standards to facilitate integration with clinical workflows and consumer platforms. Fourth, pursue targeted partnerships with clinical research entities and distribution specialists to expedite evidence generation and market access, especially in regions with nuanced regulatory pathways. Finally, establish clear commercialization playbooks that differentiate between institutional customers-where clinical evidence and integration support dominate-and consumer-facing channels-where usability, form factor, and branding drive adoption. Taken together, these actions will enable organizations to convert technical advances into durable commercial advantage.

A transparent mixed-methods research methodology combining primary stakeholder interviews, technical literature synthesis, and scenario-based analytics to produce actionable findings

The research approach combines multi-source qualitative synthesis with primary stakeholder validation to ensure rigorous, context-rich findings. Primary interviews were conducted with cross-functional leaders including device engineers, clinical researchers, procurement specialists, and regulatory advisors to surface real-world constraints and adoption drivers. These interviews were complemented by a structured review of recent regulatory guidance, technical whitepapers, and patent filing trends to map technological trajectories and standards evolution.

Analytical techniques included capability mapping to assess the alignment of technology enablers with clinical use cases, scenario analysis to evaluate supply chain and policy contingencies, and vendor landscape profiling to identify patterns in integration strategies. Throughout the process, iterative validation sessions with domain experts refined assumptions and ensured that insights reflect operational realities rather than theoretical constructs. This methodology supports confident, actionable recommendations while maintaining transparency around data sources and analytical choices.

Concluding perspective on how integration of validated hardware, analytics, and resilient go-to-market strategies will determine long-term success in biomedical sensing

In sum, the biomedical sensors domain is transitioning toward integrated, evidence-centered solutions that marry robust sensing hardware with validated analytics and secure connectivity. This evolution has important implications for product development, regulatory strategy, and commercial execution, as organizations must now demonstrate not only technical performance but also interoperability, data integrity, and real-world clinical value. Accordingly, success will favor teams that can operate across disciplinary boundaries and execute coherent roadmaps that anticipate regulatory and supply chain contingencies.

Looking forward, the most resilient organizations will be those that balance platform investments with targeted, high-impact use cases, maintain flexible supply chains, and cultivate partnerships that accelerate evidence generation and market access. By doing so, they will be well-positioned to deliver meaningful improvements in patient outcomes, operational efficiency, and consumer engagement.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of wearable continuous glucose monitoring sensors with AI-driven predictive analytics for personalized diabetes management
  • 5.2. Development of bioresorbable implantable sensors for real-time monitoring of post-operative healing biomarkers
  • 5.3. Adoption of non-invasive optical biosensors integrating smartphone connectivity for home-based health tracking
  • 5.4. Advancements in flexible epidermal electronic sensors enabling continuous sweat analysis for athlete performance optimization
  • 5.5. Integration of nanomaterial-based biosensors for ultra-sensitive detection of cancer biomarkers at point of care
  • 5.6. Emergence of multiplexed lab-on-a-chip platforms combining electrochemical and optical sensing modalities for rapid diagnostics
  • 5.7. Regulatory advances supporting FDA approval pathways for next-generation implantable biosensor systems in cardiovascular monitoring
  • 5.8. Expansion of telemedicine-integrated sensor networks enabling remote patient monitoring and virtual care management

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Biomedical Sensors Market, by Sensor Type

  • 8.1. Biosensors
    • 8.1.1. DNA Sensors
    • 8.1.2. Enzyme Sensors
    • 8.1.3. Glucose Sensors
  • 8.2. Chemical Sensors
  • 8.3. Optical Sensors
  • 8.4. Pressure Sensors
  • 8.5. Temperature Sensors

9. Biomedical Sensors Market, by Application

  • 9.1. Environmental Monitoring
  • 9.2. Food Safety
  • 9.3. Industrial Automation
  • 9.4. Medical Diagnostics
  • 9.5. Wearable Devices
    • 9.5.1. Fitness Trackers
    • 9.5.2. Smart Clothing
    • 9.5.3. Smartwatches

10. Biomedical Sensors Market, by Technology

  • 10.1. Acoustic Sensors
  • 10.2. Electrochemical Sensors
    • 10.2.1. Amperometric Sensors
    • 10.2.2. Conductometric Sensors
    • 10.2.3. Potentiometric Sensors
  • 10.3. MEMS Sensors
  • 10.4. Optical Sensors
  • 10.5. Thermal Sensors

11. Biomedical Sensors Market, by End User

  • 11.1. Fitness Centers
  • 11.2. Home Healthcare
    • 11.2.1. At-Home Diagnostic Kits
    • 11.2.2. Personal Monitoring Devices
  • 11.3. Hospitals & Clinics
  • 11.4. Pharmaceutical Companies
  • 11.5. Research Laboratories

12. Biomedical Sensors Market, by Connectivity

  • 12.1. Wired Connectivity
  • 12.2. Wireless Connectivity
    • 12.2.1. Bluetooth
    • 12.2.2. NFC
    • 12.2.3. Wi-Fi
    • 12.2.4. Zigbee

13. Biomedical Sensors Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Biomedical Sensors Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Biomedical Sensors Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Abbott Laboratories
    • 16.3.2. Roche Holding AG
    • 16.3.3. Siemens Healthineers AG
    • 16.3.4. GE HealthCare Technologies Inc.
    • 16.3.5. Koninklijke Philips N.V.
    • 16.3.6. Danaher Corporation
    • 16.3.7. Thermo Fisher Scientific Inc.
    • 16.3.8. Becton, Dickinson and Company
    • 16.3.9. Bio-Rad Laboratories, Inc.
    • 16.3.10. PerkinElmer, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제