시장보고서
상품코드
1912455

단결정 흑린 시장 예측 : 유형별, 제조 공정별, 용도별, 최종 이용 산업별(2026-2032년)

Single Crystal Black Phosphorus Market by Product Type, Production Process, Application, End Use Industry - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 183 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

단결정 흑린 시장은 2025년에 1억 527만 달러로 평가되었고, 2026년에는 1억 1,670만 달러, CAGR 12.51%로 성장하고, 2032년까지 2억 4,027만 달러에 달할 것으로 예측되고 있습니다.

주요 시장 통계
기준 연도 2025년 1억 527만 달러
추정 연도 2026년 1억 1,670만 달러
예측 연도 2032년 2억 4,027만 달러
CAGR(%) 12.51%

단결정 흑린의 기본 개요 : 합성 문제, 독특한 전자 특성, 산업 통합에 대한 경로

단결정 흑린은 높은 캐리어 이동도, 이방성 수송 특성, 조정 가능한 밴드 갭이라는 독특한 조합을 갖춘 매우 중요한 2차원 원소 반도체로서 등장해 폭넓은 첨단 기술에 있어서의 전략적 재료가 되고 있습니다. 이 물질의 층상 구조는 여러 층 또는 단층 시트로의 신뢰성 있는 박리를 가능하게 하고, 벌크 결정 및 박막의 제어 합성에서의 지속적인 진보가 실험 및 응용 분야의 시야를 넓히고 있습니다. 설문조사가 프로토타입으로 발전함에 따라 재료과학, 장치공학, 생물의학 연구 분야의 이해관계자들은 재현성 있는 생산과 확립된 제조 워크플로우에 통합하는 이중 과제에 직면하고 있습니다.

합성, 특성 평가, 통합 기술의 진보가 단결정 흑린을 실험실의 신기재료로부터 실용 기기 실현 재료로 전환시키는 원동력이 되고 있다.

최근, 합성, 특성 평가, 기기 프로토타입의 병행적인 진전에 의해 단결정 흑린의 전망을 재구축하는 복수의 변혁적 시프트가 확인되고 있습니다. 화학 수송법 및 증착 기술의 향상에 의해 결정 품질과 박막 균일성이 향상되어, 재현성이 있는 전기적 특성을 실현했습니다. 동시에, 액상 박리 및 제어된 초음파 처리에 있어서의 혁신에 의해 나노리본이나 양자점 등의 나노 스케일 형태에의 액세스가 확대되어, 광자공학이나 센싱 분야에 있어서의 새로운 기능적 이용 사례가 개척되었습니다. 실험실 입증에서 입증 시스템으로의 전환은 작동 조건 하에서 재료의 무결성을 유지하기 위해 패시베이션 전략과 헤테로 구조 조립에서 협력적인 발전이 필요했습니다.

2025년까지 누적 관세조치를 통한 직접 및 간접 공급망에 미치는 영향은 재료 이해관계자 조달, 생산 현지화, 운영 탄력성 전략을 재구성하고 있습니다.

2025년까지 누적 관세조치와 무역정책조정의 실시는 단결정 흑린 및 관련 생산설비를 다루는 이해관계자의 조달 전략과 비용 검토에 중대한 영향을 미쳤습니다. 지금까지 벌크 결정, 증착 시스템, 특수 전구체 조달에 국경을 넘은 밸류체인에 의존하고 있던 기업은 관세로 인한 비용 변동 위험을 줄이기 위해 조달 기법을 검토했습니다. 그 결과, 조달 부서는 공급업체 포트폴리오의 다양화, 최종 시장에 가까운 계약 제조업자와의 제휴 강화, 품질 인증 및 물류 지원 등 부가가치 서비스를 포함한 장기 공급업체 계약의 중시를 추진하고 있습니다.

제품 형태, 제조 공정, 가격대, 용도별 요건, 최종 이용 산업의 요청에 걸쳐 부문별로 도출된 기술적 및 상업적 지견

부문별 동향은 단결정 흑린 에코시스템 내에서 기술적 능력과 상업적 관심이 교차하는 영역을 드러냅니다. 제품 유형에 따라 수요와 개발의 초점은 벌크 결정, 나노 리본, 양자점, 박막에 달려 있습니다. 벌크 결정은 여러 층 및 단층 샘플로 세분화되며, 나노리본은 안락의자와 지그재그의 가장자리 형태로 분류되며, 박막은 에피택셜 박막 또는 박리 박막으로 제조됩니다. 각 형태는 고유의 가공 허용도와 기기 통합상의 과제를 수반하고, 전문적인 취급, 이송 및 캡슐화 프로토콜이 필요합니다. 제조 공정별로는 화학 기상 수송법, 액상 박리법, 기계적 박리법, 기상 퇴적법이 대상이 되며, 액상법은 전단 혼합과 초음파 처리로, 기상 퇴적법은 화학 기상 퇴적법과 물리 기상 퇴적법으로 나뉩니다. 이러한 공정 변형은 처리량, 결함 프로파일 및 스케일업 적성을 결정합니다.

지역별 능력과 전략적 우선사항이 나타내는 연구개발, 산업화, 표준화 개발에 있어서의 세계의 거점간의 보완적 강점

지역별 동향과 전략적 우선순위는 단결정 흑린의 개발이 각 지역의 연구 생태계, 산업의 강점, 정책 틀과 어떻게 연동되는지를 보여줍니다. 미국 대륙에서는 대학과 국립 연구소의 집중적인 활동이 스타트업 기업의 설립과 파일럿 스케일 시설과 연결되는 경우가 많으며, 기기 프로토타입, 지적 재산 개발, 기술 개발자와 시스템 통합자 간의 연계에 중점을 두고 있습니다. 이 지역에서는 합성, 기기 제조 및 응용 테스트를 결합한 수직 통합 접근법이 자주 추구되어 투명성이 높은 품질 프로토콜과 확장 가능한 프로세스 이전 경로를 강조합니다.

참여 기업 및 능력 클러스터 프로파일: 공급업체, 장비 공급업체 및 연구 기관이 협력하여 상업화 프로세스의 위험을 줄이는 메커니즘을 밝히기

업계 참가자들은 전문적인 결정 성장업자와 첨단 재료 공급업체부터 장비 제조업체, 시스템 통합자 및 실험실 프로토콜을 제조 가능한 프로세스로 전환하는 신흥 스타트업에 이르기까지 다양합니다. 확립된 재료 제조업체는 일관된 결정 품질, 인증 프로세스, 공급망 보증에 주력하는 반면, 장비 공급자는 재현성 있는 박막·나노구조 생산을 가능하게 하는 성막 플랫폼, 오염 관리, 인라인 계측 기술에 투자를 하고 있습니다. 스타트업과 스핀아웃 기업은 응용 주도의 혁신에 주력하고, 기기 레벨의 지적 재산, 독자적인 패시베이션 화학 기술, 파트너십을 통해 라이선싱과 스케일 업이 가능한 신규 헤테로 구조 조립 기술의 개발에 임하고 있습니다.

리더가 상업화를 가속화하고 공급망 리스크를 관리하며 기술 투자를 용도 중심의 이정표와 일치시키기 위한 실행 가능한 전략적 우선순위

업계 리더는 단결정 흑린의 최대 가치를 이끌어 내기 위해 적극적이고 시스템 지향적인 접근법을 채택해야합니다. 첫째, 투입 비용의 압력을 상쇄하고 생산 배치 전반에 걸쳐 일관된 기기 성능을 보장하기 위해 공정의 견고성과 수율 개선에 대한 투자를 우선합니다. 둘째, 중요한 투입물자와 설비에 관해서는 관세위험을 줄이고 프로토타입 및 인정 리드타임을 단축하기 위해 지역분산형 또는 이중조달 전략을 추구해 주십시오. 셋째, 표면화학자, 기기 엔지니어, 공급망 전문가를 통합한 학제간 팀에 투자하여 재료의 진보에서 검증된 기기 모듈로의 전환을 가속화해야 합니다.

본 보고서의 지견을 뒷받침하기 위해, 1차 인터뷰, 실험실 검증, 특허·규격 리뷰, 공급망 매핑을 통합한 혼합 수법에 의한 조사를 실시했습니다.

이 주요 요약을 지원하는 설문조사는 여러 증거원과 엄격한 검증 절차를 통합합니다. 1차 출처는 단결정 흑린 프로젝트에 종사하는 재료 과학자, 공정 엔지니어, 조달 책임자에 대한 구조화된 인터뷰 외에도 파일럿 생산 시설 및 학술 제조 시설에서의 실제 관찰을 포함합니다. 2차 정보원으로는 합성경로, 기기실증, 신뢰성연구를 상술한 검토문헌, 규격문서, 특허출원서류, 기술회의 의사록을 망라하고 있습니다. 이러한 소스를 상호 참조하면 실험실에서 생산으로의 전환 과정에서 기술적 성숙도 수준과 일반적인 고장 모드를 삼각측량적으로 확인할 수 있습니다.

기술적 진보와 상업화의 전제조건을 통합하고 이해관계자가 조사의 기세를 지속가능한 상업적 채택으로 전환하는 방법을 정의합니다.

단결정 흑린은 전자, 포토닉스, 센싱 및 특정 바이오메디컬 응용 분야에서 차세대 기기를 위한 전략적 재료로 자리매김하는 매력적인 특성의 집합체를 가지고 있습니다. 확장 가능한 합성 기술, 공정 재현성 및 패시베이션 처리의 지속적인 발전으로 인해 기기 프로토타입 및 초기 상업화 장벽이 크게 줄어들었습니다. 그러나 채택을 위해서는 공급망 탄력성, 인증 프레임워크, 재료 공급업체, 장비 공급업체 및 최종 사용자 간의 협력에 대한 협력적인 노력이 필수적이며 제품 플랫폼에 대한 안정적인 통합을 보장해야 합니다.

자주 묻는 질문

  • 단결정 흑린 시장 규모는 어떻게 예측되나요?
  • 단결정 흑린의 주요 특성은 무엇인가요?
  • 단결정 흑린의 합성과 특성 평가에서 최근 어떤 진전이 있었나요?
  • 2025년까지 단결정 흑린 시장에 미치는 관세조치의 영향은 무엇인가요?
  • 단결정 흑린의 제품 형태는 어떤 것들이 있나요?
  • 단결정 흑린 시장의 주요 참여 기업은 어디인가요?

목차

제1장 서문

제2장 조사 방법

  • 조사 디자인
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터 트라이앵글레이션
  • 조사 결과
  • 조사의 전제
  • 조사의 제약

제3장 주요 요약

  • CXO 시점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석, 2025
  • FPNV 포지셔닝 매트릭스, 2025
  • 새로운 수익 기회
  • 차세대 비즈니스 모델
  • 업계 로드맵

제4장 시장 개요

  • 업계 생태계와 밸류체인 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트 및 최종 사용자 관점
  • 소비자 체험 벤치마크
  • 기회 매핑
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 규정 준수 및 표준 프레임워크
  • ESG와 지속가능성 분석
  • 혁신과 리스크 시나리오
  • ROI와 CBA

제6장 미국 관세의 누적 영향, 2025

제7장 AI의 누적 영향, 2025

제8장 단결정 흑린 시장 : 제품 유형별

  • 벌크 결정
    • 소수층
    • 단층
  • 나노 리본
    • 암체어 나노 리본
    • 지그재그 나노 리본
  • 양자점
  • 박막
    • 에피택셜 박막
    • 박리 박막

제9장 단결정 흑린 시장 : 제조 공정별

  • 화학 기상 수송법
  • 액상 박리
    • 전단 혼합
    • 초음파 처리
  • 기계적 박리
  • 증착법
    • 화학 기상 증착
    • 물리 기상 증착

제10장 단결정 흑린 시장 : 용도별

  • 바이오메디컬
    • 약물 전달
    • 영상 진단제
  • 전자
    • 전계효과 트랜지스터
    • 논리 회로
    • 광검출기
  • 에너지 저장
    • 배터리
    • 슈퍼커패시터
  • 광닉스
    • 레이저
    • 광 변조기
  • 센서
    • 바이오 센서
    • 가스 센서
    • 압력 센서
    • 온도 센서

제11장 단결정 흑린 시장 : 최종 이용 산업별

  • 자동차
  • 소비자 전자 기기
  • 꾸방
  • 에너지
  • 헬스케어

제12장 단결정 흑린 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 단결정 흑린 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 단결정 흑린 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 미국 단결정 흑린 시장

제16장 중국 단결정 흑린 시장

제17장 경쟁 구도

  • 시장 집중도 분석, 2025
    • 집중 비율(CR)
    • 허핀달-허쉬만 지수(HHI)
  • 최근 동향과 영향 분석, 2025
  • 제품 포트폴리오 분석, 2025
  • 벤치마킹 분석, 2025
  • 2D Semiconductors Inc.
  • ACS Material LLC
  • American Elements LLC
  • BlackPhos GmbH
  • HQ Graphene
  • Hunan Azeal Materials Co. Ltd.
  • Manchester Nanomaterials
  • Merck KGaA
  • Nanjing Morsh Advanced Materials Co., Ltd.
  • Nanochemazone
  • Ossila Ltd.
  • SixCarbon Technology
  • Smart Elements GmbH
  • Stanford Advanced Materials
  • Strem Chemicals Inc.
SHW

The Single Crystal Black Phosphorus Market was valued at USD 105.27 million in 2025 and is projected to grow to USD 116.70 million in 2026, with a CAGR of 12.51%, reaching USD 240.27 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 105.27 million
Estimated Year [2026] USD 116.70 million
Forecast Year [2032] USD 240.27 million
CAGR (%) 12.51%

Foundational overview of single crystal black phosphorus highlighting synthesis challenges, unique electronic properties, and pathways to industrial integration

Single crystal black phosphorus has emerged as a pivotal two-dimensional elemental semiconductor with a unique combination of high carrier mobility, anisotropic transport properties, and tunable bandgap, making it a strategic material for a wide range of advanced technologies. The material's layered structure enables reliable exfoliation into few-layer or single-layer sheets, while continued progress in controlled synthesis of bulk crystals and thin films has broadened experimental and applied horizons. As research translates into prototypes, stakeholders across materials science, device engineering, and biomedical research confront the dual challenges of reproducible production and integration into established manufacturing workflows.

Across laboratories and early-stage manufacturing facilities, process selection remains a key determinant of material quality. Techniques such as mechanical exfoliation continue to provide benchmark samples for fundamental studies, whereas chemical and vapor-phase methods are advancing toward scalable film deposition and wafer-compatible approaches. Concurrent improvements in passivation, encapsulation, and interface engineering are mitigating stability concerns, enabling longer-term device testing and reliability assessments. These developments position single crystal black phosphorus not only as a subject of academic inquiry but as an enabling material for next-generation electronics, photonics, sensing, and biomedical platforms, with interdisciplinary collaboration driving rapid iteration between discovery and applied validation.

How advances in synthesis, characterization, and integration are driving the transition of single crystal black phosphorus from laboratory novelty to practical device-enabling material

Recent years have witnessed several transformative shifts reshaping the landscape for single crystal black phosphorus, driven by parallel advances in synthesis, characterization, and device prototyping. Improved chemical transport and vapor deposition techniques have pushed crystalline quality and film uniformity forward, enabling reproducible electrical performance. At the same time, innovations in liquid phase exfoliation and controlled sonication have expanded access to nanoscale morphologies such as nanoribbons and quantum dots, which in turn opened new functional use cases in photonics and sensing. Transitioning from laboratory demonstrations to demonstrator systems has required coordinated progress in passivation strategies and heterostructure assembly to preserve material integrity under operational conditions.

Commercial attention has evolved from purely material-centric metrics toward system-level integration considerations. Supply chain resilience, contamination control, and process repeatability now weigh as heavily as device performance parameters in industrial decision-making. Interdisciplinary teams have also matured, combining expertise in surface chemistry, device physics, and process engineering to create viable manufacturing roadmaps. This convergence of advances in materials processing, device design, and supply chain thinking is accelerating the movement from exploratory research to practical device implementations across sectors such as electronics, photonics, sensing, and biomedical engineering.

The direct and indirect supply chain consequences of cumulative tariff measures through 2025 reshaping sourcing, production localization, and operational resilience strategies for material stakeholders

The imposition of cumulative tariff actions and trade policy adjustments through 2025 has materially influenced procurement strategies and cost considerations for stakeholders working with single crystal black phosphorus and associated production equipment. Companies that previously relied on cross-border supply chains for bulk crystals, deposition systems, and specialized precursors have reevaluated sourcing approaches to mitigate exposure to tariff-driven cost volatility. As a result, procurement teams have diversified supplier portfolios, engaged contract manufacturers closer to end markets, and increased emphasis on long-term supplier agreements that include value-added services such as quality certification and logistics support.

These adjustments have also accelerated investments in regional manufacturing capabilities and in-process efficiency to offset imported cost pressures. For technology developers, the tariffs have heightened the strategic importance of process optimization and yield improvement, because higher per-unit input costs magnify the benefits of enhanced material utilization. Simultaneously, research organizations and industrial consortia have intensified efforts to qualify alternative production routes and local equipment sources to reduce dependency on tariff-affected trade lanes. Taken together, these responses reflect a pragmatic shift toward supply chain flexibility and operational resilience in the face of policy-driven disruptions.

Segment-driven technical and commercial insights spanning product morphologies, production routes, pricing tiers, application-specific requirements, and end-use industry imperatives

Segment-specific dynamics reveal where technical capability and commercial interest intersect within the single crystal black phosphorus ecosystem. Based on product type, demand and development focus extend across bulk crystals, nanoribbons, quantum dots, and thin films, with bulk crystals subdividing into few-layer and single-layer specimens, nanoribbons separating into armchair and zigzag edge geometries, and thin films produced as either epitaxial or exfoliated films. Each morphology brings distinct processing tolerances and device integration challenges, driving specialized handling, transfer, and encapsulation protocols. Based on production process, the field encompasses chemical vapor transport, liquid phase exfoliation, mechanical exfoliation, and vapor deposition, with liquid phase methods differentiating into shear mixing and sonication, and vapor deposition splitting into chemical vapor deposition and physical vapor deposition approaches; these process variants determine throughput, defect profiles, and suitability for scale-up.

Based on price range, offerings cluster into high, medium, and low tiers that correspond to crystal quality, dimensional control, and certification levels, which in turn affect application suitability and adoption velocity. Based on application, primary focus areas include biomedical, electronics, energy storage, photonics, and sensors, with biomedical work branching into drug delivery and imaging agents, electronics targeting field effect transistors, logic circuits, and photodetectors, energy storage research exploring batteries and supercapacitors, photonics developing lasers and optical modulators, and sensors advancing biosensors, gas sensors, pressure sensors, and temperature sensors; these applications create distinct specifications for purity, morphology, and interface treatment. Based on end use industry, the material finds relevance in automotive, consumer electronics, defense, energy, and healthcare sectors, each imposing unique regulatory, qualification, and reliability requirements that shape product roadmaps and commercialization timelines.

Regional capabilities and strategic priorities revealing complementary strengths in research, industrialization, and standards development across global hubs

Regional behavior and strategic priorities demonstrate how single crystal black phosphorus development tracks with local research ecosystems, industrial strengths, and policy frameworks. In the Americas, concentrated university and national laboratory activity often pairs with start-up formation and pilot-scale facilities, producing a strong emphasis on device prototyping, IP development, and collaboration between technology developers and system integrators. This region frequently pursues vertically integrated approaches that combine synthesis, device fabrication, and application testing, and it values transparent quality protocols and scalable process transfer pathways.

In Europe, Middle East & Africa, academic-industry consortia and government-supported programs emphasize standards, safety, and cross-border collaborative projects, with particular strength in precision instrumentation and photonics integration. Regulatory considerations and interdisciplinary funding models foster robust performance validation and qualification frameworks. In Asia-Pacific, high-volume electronics manufacturing capability, concentrated supplier ecosystems, and substantial investments in advanced materials R&D accelerate process industrialization and cost optimization. Regional supply chains in this area support rapid iteration of deposition and exfoliation technologies and close coupling between materials suppliers and large-scale device manufacturers. Together, these regional patterns create complementary strengths that stakeholders can leverage through partnerships, licensing arrangements, and coordinated standards development to accelerate commercialization.

Profiles of participants and capability clusters highlighting how suppliers, equipment vendors, and research institutions collaborate to de-risk commercialization pathways

Industry participants span a spectrum from specialized crystal growers and advanced materials suppliers to equipment manufacturers, system integrators, and emerging start-ups that translate laboratory protocols into manufacturable processes. Established material producers focus on consistent crystal quality, certification pathways, and supply chain assurance, while equipment providers invest in deposition platforms, contamination control, and in-line metrology that enable reproducible thin film and nanostructure production. Start-ups and spin-outs concentrate on application-driven innovation, developing device-level IP, proprietary passivation chemistries, and novel heterostructure assembly techniques that can be licensed or scaled through partnerships.

Academic and national laboratory actors continue to play a critical role in advancing fundamental understanding and creating testbeds for device demonstration. Contract research organizations and independent test houses provide third-party validation, reliability testing, and standards alignment services that reduce integration risk for adopters. Across these participant types, effective collaboration between material suppliers, equipment vendors, and end-users is emerging as a key differentiator; organizations that combine strong process control with application-focused product roadmaps are positioned to accelerate adoption and to reduce technical and commercial friction during early commercialization phases.

Actionable strategic priorities for leaders to accelerate commercialization, manage supply chain risk, and align technical investments with application-driven milestones

Industry leaders should adopt a proactive, systems-oriented approach to unlock the fullest value from single crystal black phosphorus. First, prioritize investment in process robustness and yield improvement to offset input cost pressures and to ensure consistent device performance across production batches. Second, pursue localized or dual-sourcing strategies for critical inputs and equipment to reduce tariff exposure and to shorten lead times for prototyping and qualification. Third, invest in cross-disciplinary teams that integrate surface chemists, device engineers, and supply chain specialists to accelerate translation from material advances to validated device modules.

Additionally, engage in standards development and third-party validation to build buyer confidence and to streamline regulatory approvals, particularly for biomedical and defense applications. Establish partnerships with equipment manufacturers to co-develop deposition and transfer tooling optimized for black phosphorus, thereby reducing time-to-qualified-production. Finally, adopt modular product roadmaps that allow initial entry with high-value, low-volume applications while preparing for scale-up in consumer or automotive segments; this staged approach balances revenue generation with technical risk mitigation and supports sustainable commercialization trajectories.

Mixed-methods research integrating primary interviews, laboratory validation, patent and standards review, and supply chain mapping to underpin the report's insights

The research underpinning this executive summary integrates multiple evidence streams and rigorous validation steps. Primary inputs include structured interviews with materials scientists, process engineers, and procurement leaders involved in single crystal black phosphorus projects, alongside hands-on observations at pilot production and academic fabrication facilities. Secondary sources comprise peer-reviewed literature, standards documentation, patent filings, and technical conference proceedings that detail synthesis routes, device demonstrations, and reliability studies. Cross-referencing these sources helps triangulate technical maturity levels and common failure modes during transfer from laboratory to production.

Laboratory reproducibility checks and independent characterization data were evaluated to verify claims about material properties and process performance. Supply chain mapping assessed equipment, precursor, and consumable dependencies, while policy and trade analyses examined recent tariff actions and their operational implications. Finally, scenario-based stress testing of procurement strategies and process variations provided a practical lens for understanding resilience options. This mixed-methods approach yields a balanced perspective that prioritizes actionable intelligence for research, engineering, and procurement stakeholders.

Synthesis of technical progress and commercialization prerequisites that define how stakeholders can translate research momentum into durable commercial adoption

Single crystal black phosphorus presents a compelling set of attributes that position it as a strategic material for next-generation devices across electronics, photonics, sensing, and select biomedical applications. Continued advances in scalable synthesis, process reproducibility, and passivation have materially reduced barriers to device prototyping and early commercialization. Nevertheless, adoption will depend on coordinated attention to supply chain resilience, qualification frameworks, and collaboration between material suppliers, equipment vendors, and end-users to ensure reliable integration into product platforms.

Long-term success will favor organizations that combine technical excellence in crystal and film production with pragmatic commercialization strategies that manage regulatory, logistical, and cost-related challenges. By prioritizing process optimization, regional sourcing strategies, and cross-disciplinary teams, stakeholders can translate current research momentum into commercial outcomes. The path forward is iterative, requiring sustained investment in both fundamental understanding and manufacturability to realize the broad potential of this versatile semiconductor.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Single Crystal Black Phosphorus Market, by Product Type

  • 8.1. Bulk Crystals
    • 8.1.1. Few Layer
    • 8.1.2. Single Layer
  • 8.2. Nanoribbons
    • 8.2.1. Armchair Nanoribbons
    • 8.2.2. Zigzag Nanoribbons
  • 8.3. Quantum Dots
  • 8.4. Thin Films
    • 8.4.1. Epitaxial Films
    • 8.4.2. Exfoliated Films

9. Single Crystal Black Phosphorus Market, by Production Process

  • 9.1. Chemical Vapor Transport
  • 9.2. Liquid Phase Exfoliation
    • 9.2.1. Shear Mixing
    • 9.2.2. Sonication
  • 9.3. Mechanical Exfoliation
  • 9.4. Vapor Deposition
    • 9.4.1. Chemical Vapor Deposition
    • 9.4.2. Physical Vapor Deposition

10. Single Crystal Black Phosphorus Market, by Application

  • 10.1. Biomedical
    • 10.1.1. Drug Delivery
    • 10.1.2. Imaging Agents
  • 10.2. Electronics
    • 10.2.1. Field Effect Transistors
    • 10.2.2. Logic Circuits
    • 10.2.3. Photodetectors
  • 10.3. Energy Storage
    • 10.3.1. Batteries
    • 10.3.2. Supercapacitors
  • 10.4. Photonics
    • 10.4.1. Lasers
    • 10.4.2. Optical Modulators
  • 10.5. Sensors
    • 10.5.1. Biosensors
    • 10.5.2. Gas Sensors
    • 10.5.3. Pressure Sensors
    • 10.5.4. Temperature Sensors

11. Single Crystal Black Phosphorus Market, by End Use Industry

  • 11.1. Automotive
  • 11.2. Consumer Electronics
  • 11.3. Defense
  • 11.4. Energy
  • 11.5. Healthcare

12. Single Crystal Black Phosphorus Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Single Crystal Black Phosphorus Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Single Crystal Black Phosphorus Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Single Crystal Black Phosphorus Market

16. China Single Crystal Black Phosphorus Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. 2D Semiconductors Inc.
  • 17.6. ACS Material LLC
  • 17.7. American Elements LLC
  • 17.8. BlackPhos GmbH
  • 17.9. HQ Graphene
  • 17.10. Hunan Azeal Materials Co. Ltd.
  • 17.11. Manchester Nanomaterials
  • 17.12. Merck KGaA
  • 17.13. Nanjing Morsh Advanced Materials Co., Ltd.
  • 17.14. Nanochemazone
  • 17.15. Ossila Ltd.
  • 17.16. SixCarbon Technology
  • 17.17. Smart Elements GmbH
  • 17.18. Stanford Advanced Materials
  • 17.19. Strem Chemicals Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제