시장보고서
상품코드
1912786

근적외선 정맥 시각화 기기 시장 : 제품 유형별, 기술별, 용도별, 최종사용자별, 유통 채널별 - 세계 예측(2026-2032년)

Near-Infrared Vein Visualization Device Market by Product Type, Technology, Application, End User, Distribution Channel - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 191 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

근적외선 정맥 시각화 기기 시장은 2025년에 4억 4,527만 달러로 평가되었습니다. 2026년에는 4억 8,472만 달러로 성장하고, CAGR 9.12%로 성장을 지속하여 2032년까지 8억 2,027만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2025년 4억 4,527만 달러
추정 연도 : 2026년 4억 8,472만 달러
예측 연도 : 2032년 8억 2,027만 달러
CAGR(%) 9.12%

근적외선 정맥 시각화 기술은 틈새 임상 보조 도구에서 다양한 의료 현장에서 혈관 접근 성공률 향상, 시술 시간 단축, 환자 경험 개선을 위해 널리 채택되는 도구로 성장했습니다. 이 장치는 혈액과 주변 조직의 빛 흡수와 대비의 차이를 이용하여 피하 혈관 구조를 임상의에게 시각화함으로써 보다 정확한 캐뉼라 삽입과 실패 횟수를 줄일 수 있습니다. 응급 의료 및 외래 진료 환경에서 시술 수요가 증가함에 따라, 임상의들은 모든 연령대의 환자에게 보다 빠르고 안전한 혈관 접근을 지원하고 결과의 편차를 줄이는 도구를 우선적으로 채택하고 있습니다.

광학 하드웨어, 센서 감도, 사용자 인터페이스 설계의 발전으로 도입 장벽을 낮추고 일상 업무에의 통합을 간소화했습니다. 휴대성, 신뢰성, 멸균 용이성을 겸비한 본 기술은 기존 병원 부문을 넘어 외래진료센터, 진단시설, 재택의료까지 임상현장에서의 수용을 확대하고 있습니다. 동시에 환자의 편안함, 바늘 공포증 감소, 의료 제공의 질적 지표에 대한 관심이 높아지면서 정맥 시각화 기술은 기존 임상 실습에 부가가치를 더하는 보조 수단으로 자리매김하고 있습니다. 이러한 추세는 제품 설계, 임상적 근거, 도입 전략에 대한 다각적인 평가가 필요함을 의미하며, 이해관계자들은 조달 및 배포 계획에서 이를 고려해야 합니다.

기술 융합과 임상 통합으로 급성기 의료부터 외래 의료까지 영상 유도 혈관 접근 솔루션의 급속한 보급 촉진

지난 몇 년 동안 기기의 소형화, 컴퓨터 지원 이미징 기술의 발전, 시각화 도구를 침대 옆으로 가까이 가져오는 현장 진료 도입 모델의 등장으로 혁신적인 변화가 일어났습니다. 핸드헬드 및 휴대용 폼팩터는 더욱 정교해졌으며, 고해상도 이미징과 직관적인 오버레이 디스플레이, 사용자 가이드를 결합하여 직원의 학습 기간을 단축합니다. 동시에, 웨어러블 및 고정형 솔루션은 특정 임상 채널에 맞게 맞춤화되어 신생아 중환자실에서의 지속적인 모니터링과 고빈도 수액 센터에서의 통합적인 지원을 가능하게 합니다.

2025년 무역 조치가 근적외선 혈관 이미징 장비 제조업체공급망 회복력, 가격 책정 역학 및 조달 전략에 미치는 영향

2025년에 도입된 관세 및 무역 조치의 조정은 전 세계에 분산된 공급망에 의존하는 의료용 이미징 장비의 부품 조달, 제조 결정 및 총 착륙 비용에 큰 영향을 미쳤습니다. 많은 장비 제조업체들은 여러 지역에서 생산되는 특수 광학 부품, CMOS 센서, 정밀 기계 부품에 의존하고 있습니다. 수입 관세의 변화는 이러한 부품의 실질 비용을 증가시키고, 공급업체와의 관계를 재검토하는 계기가 되었습니다. 이에 대응하여 여러 기업이 대체 공급업체 인증을 가속화하고, 지역 제조 거점을 확대하고, 비용과 공급 보장의 균형을 맞추는 재고 전략을 추구하고 있습니다.

최종 사용 시나리오, 임상 적용, 제품 유형, 유통 모델, 광학 양식이 도입 및 조달 결정에 영향을 미치는 메커니즘을 파악하는 상세한 세분화 분석

도입 현황과 상업적 기회를 평가하기 위해서는 최종 사용자 및 용도 세분화, 제품 유형, 유통 채널, 기반 기술 패러다임에 대한 명확한 이해가 필요합니다. 외래진료센터, 진단센터, 재택의료, 병원(병원은 다시 대형병원과 소형병원으로 구분)과 같은 최종 사용자 관점에서 분석하면 명확한 구매 동기와 도입 패턴이 드러납니다. 수술 건수가 많은 대형 병원에서는 일반적으로 견고한 서비스 계약, 핵심 시스템과의 통합, 부서 간 광범위한 임상적 용도를 지원하는 장비가 요구됩니다. 반면, 소규모 병원이나 외래진료센터에서는 작은 설치 공간, 쉬운 조작, 비용 효율적인 유지보수를 우선시하는 경향이 있습니다. 재택의료 분야에서의 도입은 휴대성, 배터리 지속시간, 의료진과 간병인을 위한 교육 지원 등을 통해 촉진될 것입니다.

지역별 도입 패턴과 미주, 유럽, 중동/아프리카, 아시아태평양의 규제 및 상업적 측면의 미묘한 차이가 도입 전략과 조달 전략을 형성하고 있습니다.

지역별 동향은 도입 일정, 규제 대응 프로세스, 상업 전략에 큰 영향을 미칩니다. 미국 대륙에서는 특히 대규모 의료 시스템에서 시술 시간의 현저한 단축, 환자 만족도 점수 향상, 임상 품질 프로그램과의 정합성이 도입을 촉진하고 있습니다. 이 지역의 상환 환경과 조달 관행은 명확한 운영상의 이점을 입증할 수 있고, 간호 및 응급 의료진을 위한 표준화된 교육 프로그램을 지원할 수 있는 장비를 선호합니다. 현지 생산 체제와 공급업체 네트워크도 공급망 혼란을 완화하고 리드타임을 단축하는 데 기여하고 있습니다.

하드웨어 혁신 기업, 소프트웨어 전문 기업, 임상 연구 파트너 간의 경쟁과 협업 트렌드가 가치 제안과 서비스 모델을 재정의하고 있습니다.

경쟁 구도는 광학 이미징 부문에 진출하는 기존 의료기기 제조업체, 혈관 시각화 전문 기업, 인접 이미징 모달리티 및 소프트웨어로 기능 강화를 모색하는 기술 기반 스타트업으로 구성되어 있습니다. 기존 업체들은 광범위한 유통 채널, 서비스 인프라, 기존 병원과의 관계를 활용하여 교육 및 유지보수 계약과 함께 시각화 기기를 판매하는 경우가 많은 반면, 신규 진입 업체들은 차별화된 폼팩터, 저렴한 가격대 또는 뛰어난 정맥 묘사를 표방하는 고급 영상처리 알고리즘으로 경쟁하고 있습니다. 경쟁하고 있습니다.

의료기기 제조업체와 의료기관의 리더이 제품 설계, 공급망, 임상 검증, 상업적 확장을 최적화할 수 있는 실행 가능한 전략적 지침 제공

업계 리더는 제품 성능, 공급망 복원력, 임상적 증거, 시장 출시 실행력을 종합적으로 고려한 다차원적 전략을 우선시해야 합니다. 제품 측면에서는 광학 성능 최적화 및 알고리즘 강화에 대한 투자를 우선순위가 높은 임상 적용과 긴밀하게 연계하여 신생아, 소아, 응급 및 종양학 환경의 미묘한 요구 사항을 충족할 수 있는 장비 능력을 확보해야 합니다. 폼팩터의 선택은 휴대성과 배터리 지속시간과 이미지 깊이 및 해상도의 균형을 유지하면서, 예상 사용 환경을 반영하는 것이어야 합니다.

투명하고 증거에 기반한 조사 방법을 채택하고, 임상의의 직접적인 의견, 현장 관찰, 규제 및 기술 문서 분석을 결합하여 연구 결과를 검증합니다.

본 Executive Summary를 뒷받침하는 조사에서는 정성적, 정량적 인풋을 체계적이고 재현 가능한 방법으로 통합했습니다. 1차 조사에는 응급의료, 신생아학, 소아종양학, 수액 간호, 조달 담당자를 포함한 임상 최종 사용자에 대한 심층 인터뷰와 장비 엔지니어 및 유통 파트너와의 구조화된 토론을 통해 실용적인 제약과 도입 촉진요인을 파악했습니다. 다양한 의료 현장에서의 기기 사용 현장 관찰은 인터뷰 데이터를 보완하고 사용성 및 워크플로우 평가의 기초가 되었습니다.

결론적으로, 영상기술의 발전을 일관된 혈관 접근성 개선으로 연결하기 위해 필요한 임상적 가치, 운영상의 우선순위, 전략적 행동을 강조하는 통합 분석

결론적으로, 근적외선 정맥 시각화 기기는 신뢰할 수 있는 혈관 접근과 환자 경험이라는 뿌리 깊은 운영상의 문제와 환자 경험 문제를 해결함으로써 현대의 임상 워크플로우에서 전략적인 위치를 차지하고 있습니다. 광학 부품, 영상 양식, 소프트웨어 기반 강화 기술의 기술 발전으로 인해 이러한 장비의 유용성은 급성기, 외래 및 재택 진료 환경으로 확대되고 있습니다. 정책 동향과 가격 변동은 공급망 유연성과 비용 관리의 중요성을 강조하는 한편, 규제, 조달 및 임상 관행의 지역적 차이로 인해 개별화된 상업화 접근이 필요합니다.

자주 묻는 질문

  • 근적외선 정맥 시각화 기기 시장 규모는 어떻게 예측되나요?
  • 근적외선 정맥 시각화 기술의 주요 이점은 무엇인가요?
  • 2025년에 도입될 무역 조치가 근적외선 혈관 이미징 장비에 미치는 영향은 무엇인가요?
  • 근적외선 정맥 시각화 기기의 주요 최종 사용자 유형은 무엇인가요?
  • 근적외선 정맥 시각화 기기 시장의 경쟁 구도는 어떻게 형성되고 있나요?

목차

제1장 서문

제2장 조사 방법

  • 조사 디자인
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터트라이안규레이션
  • 조사 결과
  • 조사 전제
  • 조사 제약

제3장 주요 요약

  • 최고경영진의 관점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석, 2025년
  • FPNV 포지셔닝 매트릭스, 2025년
  • 새로운 매출 기회
  • 차세대 비즈니스 모델
  • 산업 로드맵

제4장 시장 개요

  • 산업 에코시스템과 밸류체인 분석
  • Porter의 Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트와 최종사용자 시점
  • 소비자 경험 벤치마킹
  • 기회 매핑
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 준수와 표준 프레임워크
  • ESG와 지속가능성 분석
  • 파괴적 변화와 리스크 시나리오
  • ROI와 CBA

제6장 미국의 관세의 누적 영향, 2025년

제7장 AI의 누적 영향, 2025년

제8장 근적외선 정맥 시각화 기기 시장 : 제품 유형별

  • 핸드헬드 디바이스
  • 휴대용 디바이스
    • AC 전력
    • 배터리
  • 고정형 디바이스
  • 웨어러블 디바이스

제9장 근적외선 정맥 시각화 기기 시장 : 기술별

  • 연속파
    • 700-900nm
    • 900-1,100nm
  • 펄스파
    • 주파수 변조 이미징
    • 시간 게이트 이미징

제10장 근적외선 정맥 시각화 기기 시장 : 용도별

  • 응급 의료
  • 정맥 액세스
  • 신생아 케어
    • 분만실
    • NICU
  • 종양학 시술
  • 소아 의료
    • 일반 소아과
    • 소아 종양학
  • 채혈

제11장 근적외선 정맥 시각화 기기 시장 : 최종사용자별

  • 외래진료센터
  • 진단센터
  • 재택치료
  • 병원
    • 대형 병원
    • 소형 병원

제12장 근적외선 정맥 시각화 기기 시장 : 유통 채널별

  • 직접 판매
  • 유통업체
  • 온라인 판매

제13장 근적외선 정맥 시각화 기기 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 근적외선 정맥 시각화 기기 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 근적외선 정맥 시각화 기기 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 미국의 근적외선 정맥 시각화 기기 시장

제17장 중국의 근적외선 정맥 시각화 기기 시장

제18장 경쟁 구도

  • 시장 집중도 분석, 2025년
    • 집중 비율(CR)
    • 허쉬만 허핀달 지수(HHI)
  • 최근 동향과 영향 분석, 2025년
  • 제품 포트폴리오 분석, 2025년
  • 벤치마킹 분석, 2025년
  • AccuVein Inc.
  • Ambulanc(Shenzhen) Tech. Co. Ltd.
  • Christie Medical Holdings, LLC
  • Fluoptics SAS
  • Healicom Medical Equipment Co., Ltd.
  • Medcaptain Medical Technology Co., Ltd.
  • Near Infrared Imaging Inc.
  • Novarix Ltd.
  • Shenzhen Openg Medical Technology Co., Ltd.
  • Shenzhen Vivolight Medical Device and Technology Co., Ltd.
  • Veinlite LLC
LSH 26.02.04

The Near-Infrared Vein Visualization Device Market was valued at USD 445.27 million in 2025 and is projected to grow to USD 484.72 million in 2026, with a CAGR of 9.12%, reaching USD 820.27 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 445.27 million
Estimated Year [2026] USD 484.72 million
Forecast Year [2032] USD 820.27 million
CAGR (%) 9.12%

Near-infrared vein visualization technology has matured from a niche clinical aid into a broadly adopted tool that improves vascular access success, reduces procedural time, and enhances patient experience across diverse care settings. These devices use light absorption and contrast differences between blood and surrounding tissue to render subcutaneous vasculature visible to clinicians, enabling more precise cannulation and fewer failed attempts. As procedural demands increase in emergency and outpatient environments, clinicians are prioritizing tools that reduce variability in outcomes and support faster, safer vascular access for patients of all ages.

Advances in optical hardware, sensor sensitivity, and user interface design have reduced barriers to adoption and simplified integration into routine workflows. The combination of portability, reliability, and ease of sterilization has expanded clinical acceptance beyond traditional hospital departments into ambulatory centers, diagnostic facilities, and home-based care. At the same time, rising attention to patient comfort, needle-phobia mitigation, and quality metrics for care delivery has positioned vein visualization as a value-enhancing adjunct to existing clinical practice. These dynamics set the stage for a multifaceted evaluation of product design, clinical evidence, and deployment strategies that stakeholders must consider in procurement and roll-out planning.

Technological convergence and clinical integration driving rapid adoption of imaging-guided vascular access solutions across acute and ambulatory care settings

The past several years have seen transformative shifts driven by improvements in device miniaturization, computational imaging, and the rise of point-of-care deployment models that bring visualization tools closer to the bedside. Handheld and portable form factors have become more sophisticated, combining high-resolution imaging with intuitive overlays and user guidance that shorten the learning curve for staff. Concurrently, wearable and stationary solutions are being tailored for specific clinical pathways, enabling continuous monitoring in neonatal intensive care units or integrated support in high-volume infusion centers.

Integrations with digital health ecosystems are gaining traction, as secure data capture and interoperability with electronic health records support procedure documentation, quality tracking, and telemedicine-enabled remote support. Technology choices between continuous wave and pulsed wave approaches are evolving in tandem with application needs; continuous wave platforms optimized for different near-infrared wavelength bands are preferred for rapid visualization across varied skin tones, while pulsed wave modalities are enabling advanced signal processing techniques for deeper vein detection and improved contrast. As imaging algorithms incorporate machine learning components, vendors and providers are focused on demonstrating clinical validity and explainability to meet regulatory expectations and clinician trust requirements. These shifts collectively are redefining procurement criteria and clinical protocols for vascular access devices.

How 2025 trade measures have reshaped supply chain resilience, pricing dynamics, and sourcing strategies for near-infrared vascular imaging device manufacturers

The introduction of tariffs and trade policy adjustments in 2025 has created a discernible impact on component sourcing, manufacturing decisions, and total landed costs for medical imaging devices that rely on globally distributed supply chains. Many device manufacturers depend on specialized optical components, CMOS sensors, and precision mechanical parts produced in multiple geographies; changes in import tariffs increase the effective cost of these components and prompt re-evaluation of supplier relationships. In response, several firms are accelerating qualification of alternate suppliers, expanding regional manufacturing footprints, and pursuing inventory strategies that balance cost against supply assurance.

Beyond immediate procurement effects, tariffs influence strategic decisions such as where to locate final assembly, how to price products for different customer segments, and how to structure long-term distribution agreements. Health systems and procurement teams facing constrained budgets may shift toward prioritized purchasing of high-impact devices or seek bundled solutions that include training and service to justify expenditure. For manufacturers, the policy-driven cost pressures underscore the importance of design-for-manufacturing optimization, vertical integration where feasible, and transparent value communication that links device capabilities to clinical outcomes and operational efficiencies. In sum, trade policy changes have catalyzed a renewed focus on supply chain resilience, cost-to-serve optimization, and collaborative sourcing models across the industry.

In-depth segmentation insights revealing how end-use scenarios, clinical applications, product types, distribution models, and optical modalities determine adoption and procurement decisions

Evaluating adoption and commercial opportunities requires a clear understanding of end-user and application segmentation, product typologies, distribution pathways, and underlying technology paradigms. When viewed through the lens of end users across ambulatory centers, diagnostic centers, home care, and hospitals where hospitals are further differentiated into large hospitals and small hospitals, distinct purchasing rationales and deployment patterns emerge. Large hospitals with high procedural volumes typically demand robust service agreements, integration with enterprise systems, and devices that support broad clinical use across departments, whereas small hospitals and ambulatory centers often prioritize compact footprints, ease of use, and cost-effective maintenance. Home care adoption is driven by portability, battery life, and clinician or caregiver training support.

Application-level segmentation across emergency care, IV access, neonatal care which includes delivery room and NICU settings, oncology procedures, pediatric care which includes general pediatric and pediatric oncology use cases, and phlebotomy highlights how clinical requirements shape product selection. Emergency and IV access scenarios prioritize rapid, repeatable performance and ruggedized designs, while neonatal and pediatric environments emphasize noninvasiveness, gentle ergonomics, and compatibility with very small or fragile vasculature. Oncology and infusion procedures require consistent visualization over repeated sessions, which raises expectations for device durability and infection control protocols.

Product-type segmentation into handheld device, portable device which can be AC powered or battery operated, stationary device, and wearable device outlines where innovation is concentrated. Handheld instruments are favored for their immediacy and low training burden, while portable units that offer AC or battery operation balance performance and mobility for decentralized care. Stationary systems are suited to dedicated infusion suites and NICU bays, and wearable devices are emerging for continuous monitoring and repeated access facilitation. Distribution pathways through direct sales, distributors, and online sales influence go-to-market strategies; direct sales enable deeper clinical relationships and training, distributors provide reach in fragmented geographies, and online channels facilitate rapid procurement for smaller buyers.

On the technology front, continuous wave approaches with spectral bands such as 700-900 nm and 900-1100 nm support fast visualization across a range of skin tones and depths, whereas pulsed wave techniques including frequency-modulated imaging and time-gated imaging enable better depth discrimination and signal-to-noise improvements. Technology selection therefore intersects with clinical application and user expectations, and product roadmaps should align optical modality choices with the prioritized use cases to maximize clinician utility and patient benefit.

Regional adoption patterns and regulatory-commercial nuances across the Americas, Europe Middle East & Africa, and Asia-Pacific that shape deployment and sourcing strategies

Regional dynamics substantially affect adoption timelines, regulatory pathways, and commercial strategies. In the Americas, particularly within high-volume health systems, adoption is driven by demonstrable reductions in procedural time, improved patient satisfaction scores, and alignment with clinical quality programs. The region's reimbursement landscape and procurement practices favor devices that can demonstrate clear operational benefits and support standardized training programs for nursing and emergency staff. Local manufacturing and supplier networks also play a role in mitigating supply chain disruptions and reducing lead times.

Across Europe, the Middle East & Africa, regulatory harmonization within parts of Europe supports multi-country product launches, while varying procurement processes and public health priorities across the Middle East and Africa require tailored entry strategies. In these markets, value propositions that emphasize cost-effectiveness, infection control benefits, and interoperability with existing clinical workflows resonate with public and private buyers. Regional distributors and strategic partnerships are often essential to navigate heterogeneous payer systems and clinical credentialing requirements.

The Asia-Pacific region presents a diverse landscape with a mix of advanced tertiary care centers and rapidly expanding outpatient and home-care services. High-volume urban hospitals in certain Asia-Pacific markets seek cutting-edge imaging performance and local serviceability, whereas growth opportunities in smaller facilities and home care hinge on affordability, ease of training, and battery-powered portability. In several Asia-Pacific countries, supportive industrial policies and growing medical manufacturing capabilities offer opportunities for localized assembly and component sourcing that can offset tariff-related cost pressures and improve time-to-market for new product introductions.

Competitive dynamics and collaboration trends among hardware innovators, software specialists, and clinical research partners that are redefining value propositions and service models

The competitive landscape comprises established medical device manufacturers expanding into optical imaging, specialized firms focused exclusively on vascular visualization, and technology startups exploring adjacent imaging modalities and software-enabled enhancements. Established firms often leverage broad sales channels, service infrastructure, and existing hospital relationships to bundle visualization devices with training and maintenance agreements, while newer entrants compete on differentiated form factors, lower price points, or advanced image processing algorithms that claim superior vein delineation.

Collaborations between technology companies and clinical research centers are accelerating evidence generation, with firms investing in prospective studies and real-world data collection to demonstrate improvements in first-attempt success rates, reductions in procedure time, and usability across diverse patient cohorts. Strategic partnerships that pair hardware vendors with software developers or medical consumable suppliers create integrated solutions for infusion centers and high-volume clinics. At the same time, intellectual property around optical filtering, imaging pipelines, and user interfaces is an increasingly important competitive moat, driving selective M&A and licensing activity aimed at consolidating core capabilities. Service models that emphasize training, remote diagnostics, and predictive maintenance are becoming a differentiator as purchasers evaluate total cost of ownership and long-term clinical support.

Actionable strategic directives for device manufacturers and health system leaders to optimize product design, supply chains, clinical validation, and commercial scaling

Industry leaders should prioritize a multi-dimensional strategy that addresses product performance, supply chain resilience, clinical evidence, and go-to-market execution. From a product perspective, investments in optical optimization and algorithmic enhancement should be closely aligned with prioritized clinical applications to ensure that device capabilities meet the nuanced demands of neonatal, pediatric, emergency, and oncology settings. Form factor choice must reflect the intended use environment, balancing portability and battery life against imaging depth and resolution.

On supply chain and commercial operations, diversifying component suppliers and evaluating regional assembly options can reduce exposure to tariff volatility and shorten lead times. Leaders should build flexible pricing and service packages that accommodate the differing procurement preferences of large hospitals versus ambulatory and home-care buyers. Clinically, sponsoring robust, peer-reviewed evidence and facilitating hands-on training programs will accelerate clinician acceptance and support inclusion in institutional procurement frameworks. Finally, establishing partnerships with distribution networks and digital health platforms can amplify reach and create bundled offerings that combine devices, consumables, and analytics-delivering clearer value to purchasers and fostering long-term adoption.

Transparent, evidence-driven research methodology combining primary clinician input, field observations, and regulatory and technical document analysis to validate findings

The research underpinning this executive summary synthesized qualitative and quantitative inputs through a structured and replicable methodology. Primary research included in-depth interviews with clinical end users spanning emergency medicine, neonatology, pediatric oncology, infusion nursing, and procurement officers, as well as structured discussions with device engineers and distribution partners to capture practical constraints and adoption drivers. Field observations of device use in varied care settings augmented interview data and informed usability and workflow assessments.

Secondary research encompassed a comprehensive review of regulatory filings, clinical literature, and product documentation to validate technical claims and performance characteristics. Supplier landscape analysis and trade policy documentation were examined to understand supply chain implications and tariff impacts. Triangulation across these sources ensured that conclusions are grounded in multiple evidence streams. Data validation steps included cross-referencing interview insights with documented clinical guidelines and corroborating supplier information with publicly available regulatory approvals. The methodology recognizes limitations related to evolving policy environments and rapid technological change, and therefore emphasizes the need for continuous monitoring and iterative evidence collection for future decision cycles.

Concluding synthesis emphasizing clinical value, operational priorities, and strategic actions required to translate imaging advances into consistent vascular access improvements

In conclusion, near-infrared vein visualization devices occupy a strategic position in modern clinical workflows by addressing a persistent operational and patient-experience problem: reliable vascular access. Technological advances across optical components, imaging modalities, and software-driven enhancement have broadened the utility of these devices across acute, ambulatory, and home care settings. Policy developments and tariff dynamics underscore the importance of supply chain agility and cost management, while regional nuances in regulation, procurement, and clinical practice require tailored commercialization approaches.

For stakeholders evaluating opportunities in this domain, the imperative is clear: combine clinical evidence generation with practical product design and resilient manufacturing strategies to create solutions that demonstrably improve procedural outcomes and integrate smoothly into existing care pathways. By aligning technical capabilities with clearly defined use cases and robust training and service offerings, manufacturers and health systems can achieve meaningful improvements in vascular access efficiency and patient satisfaction, while mitigating operational and regulatory risks.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Near-Infrared Vein Visualization Device Market, by Product Type

  • 8.1. Handheld Device
  • 8.2. Portable Device
    • 8.2.1. Ac Powered
    • 8.2.2. Battery Operated
  • 8.3. Stationary Device
  • 8.4. Wearable Device

9. Near-Infrared Vein Visualization Device Market, by Technology

  • 9.1. Continuous Wave
    • 9.1.1. 700-900 Nm
    • 9.1.2. 900-1100 Nm
  • 9.2. Pulsed Wave
    • 9.2.1. Frequency-Modulated Imaging
    • 9.2.2. Time-Gated Imaging

10. Near-Infrared Vein Visualization Device Market, by Application

  • 10.1. Emergency Care
  • 10.2. Iv Access
  • 10.3. Neonatal Care
    • 10.3.1. Delivery Room
    • 10.3.2. Nicu
  • 10.4. Oncology Procedures
  • 10.5. Pediatric Care
    • 10.5.1. General Pediatric
    • 10.5.2. Pediatric Oncology
  • 10.6. Phlebotomy

11. Near-Infrared Vein Visualization Device Market, by End User

  • 11.1. Ambulatory Centers
  • 11.2. Diagnostic Centers
  • 11.3. Home Care
  • 11.4. Hospitals
    • 11.4.1. Large Hospitals
    • 11.4.2. Small Hospitals

12. Near-Infrared Vein Visualization Device Market, by Distribution Channel

  • 12.1. Direct Sales
  • 12.2. Distributors
  • 12.3. Online Sales

13. Near-Infrared Vein Visualization Device Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Near-Infrared Vein Visualization Device Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Near-Infrared Vein Visualization Device Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States Near-Infrared Vein Visualization Device Market

17. China Near-Infrared Vein Visualization Device Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. AccuVein Inc.
  • 18.6. Ambulanc (Shenzhen) Tech. Co. Ltd.
  • 18.7. Christie Medical Holdings, LLC
  • 18.8. Fluoptics SAS
  • 18.9. Healicom Medical Equipment Co., Ltd.
  • 18.10. Medcaptain Medical Technology Co., Ltd.
  • 18.11. Near Infrared Imaging Inc.
  • 18.12. Novarix Ltd.
  • 18.13. Shenzhen Openg Medical Technology Co., Ltd.
  • 18.14. Shenzhen Vivolight Medical Device and Technology Co., Ltd.
  • 18.15. Veinlite LLC
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제