시장보고서
상품코드
1914152

자성 입자 영상 기기 시장 예측 : 제품 유형별, 용도별, 유통 경로별, 최종 사용자별(2026-2032년)

Magnetic Particle Imaging Device Market by Product Type, Application, Distribution Channel, End User - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 194 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

자성 입자 영상 기기 시장은 2025년에 1억 6,526만 달러로 평가되었으며, 2026년에는 1억 9,049만 달러, CAGR 16.48%로 성장하고 2032년까지 4억 8,092만 달러에 이를 것으로 예측되고 있습니다.

주요 시장 통계
기준 연도 2025년 1억 6,526만 달러
추정 연도 2026년 1억 9,049만 달러
예측 연도 2032년 4억 8,092만 달러
CAGR(%) 16.48%

자성 입자 영상(MPI)의 기술적 특징, 응용 가능성, 진화하는 기기 에코시스템에 대해 간략하게 소개합니다.

자성 입자 영상(MPI)은 초상자성 산화철 나노입자의 특이적인 자기 응답을 활용하여 전리 방사선을 사용하지 않고 고감도 및 고콘트라스트의 영상을 생성하는 급속하게 성숙하고 있는 영상 진단법입니다. 감쇠 및 양성자 완화에 의존하는 기존의 임상 양식과는 달리, MPI는 추적자의 자화를 직접 검출하므로, 투여된 나노입자 조영제에 고유한 실시간 신호를 제공합니다. 이 기술적 특징은 혈관 이미징부터 전임상 종양학 연구에서 표적 추적자 추적에 이르기까지 광범위한 임상 및 조사 응용 가능성의 기반이 되고 있습니다.

장비 개발, 트레이서 혁신, 공동 연구 경로의 새로운 전환점이 자성 입자 영상을 조사 단계에서 임상 실천으로 재구성하고 있습니다.

자성 입자 영상의 전망은 기술의 성숙화가 임상적 관심 증가와 규제 당국의 관여와 함께 변혁적인 전환기를 맞이하고 있습니다. 처음에는 전문 전임상 연구 그룹으로 제한되었던 MPI는 현재 장기 특이적인 임상 시스템과 전신 대응형을 모두 추구하는 디바이스 혁신자로부터 폭넓은 주목을 받고 있습니다. 이 전환은 신호의 충실도와 생체적합성을 향상시킨 추적자 화학의 진보와 이미지 재구성을 가속화하면서 아티팩트를 줄이는 알고리즘의 발전으로 촉진됩니다.

미국의 최근 관세 조정이 이미징 장비 개발 기업의 조달, 제조 전략 및 공급망의 탄력성에 미치는 영향 평가

미국의 정책환경에서 고급 화상진단장치 제조에 필수적인 특수부품 및 재료의 수입에 영향을 미치는 관세조정이 도입되었습니다. 이러한 변화로 인해 자장 발생 하드웨어, 파워 일렉트로닉스 및 정밀 모션 부품을 국제적으로 조달하는 기업들에게 비용 환경이 더욱 복잡해지고 있습니다. 그 결과 장비 개발 기업과 공급업체는 변동 관세에 대한 노출을 줄이면서 공급망 회복력을 유지하기 위해 조달 전략을 재조정하고 있습니다.

제품 유형, 용도, 유통 채널 및 최종 사용자 동향이 장치 전략과 보급에 미치는 영향을 밝히는 상세한 세분화 분석

세분화의 미묘한 차이를 이해함으로써 자성 입자 영상이 확대되는 다양한 경로와 다른 사용자 요구에 가치가 축적되는 영역을 명확하게 합니다. 제품 유형에 따라 시장은 임상 시스템과 전임상 시스템으로 구분됩니다. 임상 제품은 국소 고해상도 용도를 대상으로 하는 장기 특화형 설계와 적응증 확대 및 의료기관의 도입 촉진을 목표로 하는 전신 시스템에 의해 더욱 구별됩니다. 전임상 플랫폼은 트랜스레이셔널 연구를 가로지르는 대형 동물 시스템과 고처리량 실험실 연구에 최적화된 소형 동물 시스템으로 분류되며, 각각은 서로 다른 실험 및 검증 요구사항을 충족합니다.

지역 동향과 국경을 넘어서는 협력은 MPI 도입의 규제 경로, 임상 검증 거점, 지역별 제조 전략을 결정합니다.

자성 입자 영상 기술의 채택 경로와 상업 전략에서 지리적 역학이 결정적인 역할을 합니다. 지역 생태계가 규제 경로, 임상 협력, 공급망 구성을 형성하기 때문입니다. 아메리카에서는 임상연구거점과 선진적 트랜스레이셔널센터가 초기 임상실현가능성 연구를 추진하여 디바이스혁신기업과 학술의료센터의 집적이 이를 보완함으로써 학제간 검증을 가속시킵니다. 이 환경은 장치의 반복적 개선을 지원하고 산업계와 임상 연구자를 연결하는 파트너십을 육성합니다.

경쟁 환경 매핑 : 하드웨어 혁신 기업, 트레이서 전문 기업, 전략적 파트너가 협력하여 MPI 상업화를 추진하는 메커니즘 시각화

자성 입자 영상(MPI)의 기업 환경에는 확립된 이미징 기업, MPI 하드웨어 또는 트레이서 화학에 특화된 전문 스타트업 및 확장 가능한 생산을 가능하게 하는 수탁 제조 업체가 포함됩니다. 기존 영상 공급업체는 시스템 엔지니어링 전문 지식, 임상 워크플로우 통합 능력, 확립된 상업 채널을 제공하여 번들 솔루션과 기존 고객 관계를 통해 임상 응용을 가속화할 수 있습니다. 한편, 스타트업 기업은 코일 설계, 저노이즈 전자기기, 나노입자공학에 있어서 신속한 혁신의 원천이 되는 경우가 많으며, 학술그룹과 연계하여 관리된 전임상 환경에서 신규 어프로치의 검증을 실시하는 경우가 자주 보입니다.

개발자 및 이해관계자가 MPI의 임상 검증을 가속화하고, 공급망을 확보하고, 시장 출시 실행을 최적화하기 위한 실천가능한 전략적 단계

업계 리더는 기술 개발을 임상 요구와 상업적 현실과 일치시키는 일련의 협조적 행동을 우선함으로써 자성 입자 영상의 임상 응용 및 보급을 가속화할 수 있습니다. 트레이서와 기기의 공동 개발 프로그램에 투자하여 나노입자 제형과 스캐너 파라미터의 동시 최적화를 도모합니다. 이는 반복 사이클을 단축시키고 임상 도입의 근거를 강화시킵니다. 그런 다음 장기 특이적인 실현 가능성 연구에서 시작하여 보다 광범위한 임상 도입으로 진전하는 임상 검증 경로를 구축합니다. 이를 통해 증거 위험을 관리하면서 적응증을 확대할 수 있습니다. 이러한 단계적 접근은 보다 명확한 상환에 대한 상호작용을 지원하고 임상 유용성을 겨냥한 실증을 가능하게 합니다.

이해관계자 인터뷰, 기술적 검증, 체계적인 2차 조사를 조합한 종합적인 혼합방법 조사 접근법으로 확고한 지견을 확보합니다.

이 보고서를 지원하는 조사 기법은 1차 정성 조사와 기술 문헌 및 규제 문서의 정량적 삼각 측량을 통합 한 것입니다. 1차 조사에서는 디바이스 엔지니어, 트레이서 과학자, 임상 연구자, 병원·연구기관의 조달 책임자, 유통 파트너를 대상으로 한 구조화된 인터뷰를 실시해, 기술 요건, 도입 장벽, 서비스 기대에 관한 직접적인 견해를 수집했습니다. 이러한 인터뷰는 조영제 및 영상 진단 장치와 관련된 검토 논문, 전임상시험 프로토콜 및 규제 지침 문서 검토로 구성된 기술적 검증 작업으로 보완되었습니다.

기술적, 규제적 및 상업적 실행의 협력이 자성 입자 영상의 가능성을 지속적인 임상 및 조사에 미치는 영향력으로 전환하는 방법에 대한 전략적 결론

자성 입자 영상은 입증된 기술적 이점과 향상된 임상적 관심, 규모 확장, 규제 무결성, 공급망 최적화와 관련된 실천적 과제가 교차하는 중요한 분기점에 서 있습니다. 이 모달리티가 가진 트레이서 신호에 대한 고유의 특이성과 실시간 정량 이미징의 가능성은 표적을 좁힌 임상 응용이나 실험실과 환자 연구를 다루는 트랜스레이셔널 리서치에 있어서 명확한 가치 제안이 됩니다. 그러나 개발의 페이스와 형태는 개발자가 기존 워크플로우와의 통합, 특정 적응증에 대한 증거 창출, 의료 시스템 및 연구 고객의 운영 요건에 어떻게 효과적으로 대응하는지에 달려 있습니다.

자주 묻는 질문

  • 자성 입자 영상 기기의 시장 규모는 어떻게 예측되나요?
  • 자성 입자 영상(MPI)의 기술적 특징은 무엇인가요?
  • 자성 입자 영상의 임상적 전망은 어떻게 변화하고 있나요?
  • 미국의 관세 조정이 자성 입자 영상 기기 시장에 미치는 영향은 무엇인가요?
  • 자성 입자 영상 기기의 주요 제품 유형은 무엇인가요?
  • 자성 입자 영상 기기의 유통 채널은 어떻게 구성되나요?
  • 자성 입자 영상 기기의 주요 최종 사용자는 누구인가요?

목차

제1장 서문

제2장 조사 방법

  • 조사 디자인
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터 트라이앵글레이션
  • 조사 결과
  • 조사의 전제
  • 조사의 제약

제3장 주요 요약

  • CXO 시점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석, 2025
  • FPNV 포지셔닝 매트릭스, 2025
  • 새로운 수익 기회
  • 차세대 비즈니스 모델
  • 업계 로드맵

제4장 시장 개요

  • 업계 생태계와 밸류체인 분석
  • Porter's Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트 및 최종 사용자 관점
  • 소비자 체험 벤치마크
  • 기회 매핑
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 규정 준수 및 표준 프레임워크
  • ESG와 지속가능성 분석
  • 혁신과 리스크 시나리오
  • ROI와 CBA

제6장 미국 관세의 누적 영향, 2025

제7장 AI의 누적 영향, 2025

제8장 자성 입자 영상 기기 시장 : 제품 유형별

  • 임상용
    • 장기 특화형
    • 전신
  • 전임상
    • 대형 동물
    • 소형 동물

제9장 자성 입자 영상 기기 시장 : 용도별

  • 임상 진단
    • 심혈관 영상
    • 신경계 영상
  • 전임상 연구
    • 심혈관 연구
    • 종양학
      • 전이 탐지
      • 종양 영상

제10장 자성 입자 영상 기기 시장 : 유통 채널별

  • 직접 판매
    • 현장 영업
    • 온라인 판매
  • 유통업체
    • OEM 파트너
    • 제3자 유통사

제11장 자성 입자 영상 기기 시장 : 최종 사용자별

  • 병원
    • 민간 클리닉
    • 공립병원
  • 연구기관
    • 학술기관
    • 정부

제12장 자성 입자 영상 기기 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 자성 입자 영상 기기 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 자성 입자 영상 기기 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 미국 자성 입자 영상 기기 시장

제16장 중국 자성 입자 영상 기기 시장

제17장 경쟁 구도

  • 시장 집중도 분석, 2025
    • 집중 비율(CR)
    • 허핀달-허쉬만 지수(HHI)
  • 최근 동향과 영향 분석, 2025
  • 제품 포트폴리오 분석, 2025
  • 벤치마킹 분석, 2025
  • Aspect Imaging Ltd.
  • Bayer AG
  • BMG LABTECH GmbH
  • Bruker BioSpin GmbH
  • Danfoss A/S
  • I'rom Pharmaceutical Co., Ltd.
  • Koninklijke Philips NV
  • Magnetic Insight, Inc.
  • MILabs BV
  • Mitsubishi Electric
  • Siemens Healthineers AG
SHW 26.02.03

The Magnetic Particle Imaging Device Market was valued at USD 165.26 million in 2025 and is projected to grow to USD 190.49 million in 2026, with a CAGR of 16.48%, reaching USD 480.92 million by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 165.26 million
Estimated Year [2026] USD 190.49 million
Forecast Year [2032] USD 480.92 million
CAGR (%) 16.48%

A concise introduction to magnetic particle imaging outlining its technical distinctiveness, translational promise, and evolving device ecosystem

Magnetic Particle Imaging (MPI) represents a rapidly maturing imaging modality that leverages the unique magnetic response of superparamagnetic iron oxide nanoparticles to generate high-sensitivity, high-contrast images without ionizing radiation. Unlike established clinical modalities that rely on attenuation or proton relaxation, MPI directly detects tracer magnetization, delivering a real-time signal that is inherently specific to the administered nanoparticle contrast agent. This technical distinction underpins a range of potential clinical and research applications, from vascular imaging to targeted tracer tracking in preclinical oncology studies.

Early adopters in preclinical laboratories have demonstrated MPI's ability to visualize tracer dynamics with temporal resolution suited to perfusion and functional studies, while organ-specific device designs and whole-body system concepts are progressing through prototype and regulatory pathways. As a result, MPI is transitioning from a primarily investigational technique to a platform with emerging translational trajectories. The device ecosystem spans benchtop preclinical scanners optimized for small and large animal models, organ-focused clinical prototypes engineered for high-resolution target imaging, and evolving whole-body concepts intended to broaden clinical utility.

Technical innovation continues to be driven by advances in nanoparticle engineering, scanner architecture, and reconstruction algorithms. These developments have reduced some historical limitations around spatial resolution and sensitivity, while enabling lower tracer doses and faster acquisition times. At the same time, integration with complementary imaging modalities and compatible workflows is becoming a priority for clinical translation, prompting cross-disciplinary collaborations among imaging physicists, materials scientists, device engineers, and clinical investigators. Consequently, decision makers must weigh technical maturity, regulatory strategy, and operational integration when considering MPI adoption.

Emerging inflection in device development, tracer innovation, and collaborative pathways that are reshaping magnetic particle imaging from research to clinical practice

The landscape for magnetic particle imaging is undergoing transformative shifts as technical maturation aligns with growing clinical interest and regulatory engagement. Initially concentrated within specialized preclinical research groups, MPI is now attracting broader attention from device innovators pursuing both organ-specific clinical systems and whole-body form factors. This transition is being catalyzed by improvements in tracer chemistry, which have enhanced signal fidelity and biocompatibility, and by algorithmic advances that accelerate image reconstruction while reducing artifacts.

In parallel, strategic partnerships across academia, early-stage industry players, and larger medical device organizations are reshaping development pathways. These collaborations facilitate rapid iteration of hardware designs, validation studies across diverse biological models, and coordinated submissions for clinical feasibility trials. Importantly, the role of complementary modalities such as MRI and ultrasound is becoming more prominent, with hybrid workflows and data fusion approaches enabling richer diagnostic interpretation and clinical decision support. The shift toward integrated imaging strategies reinforces the necessity of interoperability standards, reproducible protocols, and robust tracer supply chains.

From a deployment perspective, the device footprint and cost profile are evolving alongside user requirements. Organ-specific devices aim to deliver high-resolution imaging with compact installations suitable for specialty centers, whereas whole-body ambitions seek to broaden clinical indications but face more stringent infrastructural and reimbursement considerations. As a result, stakeholders must adopt flexible development and commercialization strategies that accommodate phased clinical evidence generation, differentiated product tiers, and targeted market entry points. Taken together, these dynamics signal an inflection point in which MPI moves from niche research tool toward a clinically relevant imaging option, contingent on coordinated progress across technology, regulation, and clinical validation.

Assessing how recent tariff adjustments in the United States are altering procurement, manufacturing strategy, and supply chain resilience for imaging device developers

The policy environment in the United States has introduced tariff adjustments that affect the importation of specialized components and materials integral to advanced imaging device manufacturing. These changes create a more complex cost environment for firms that source field-generating hardware, power electronics, and precision motion components internationally. Consequently, device developers and their suppliers are recalibrating procurement strategies to mitigate exposure to variable duties while preserving supply chain resilience.

In response, multiple manufacturers have begun to diversify their supplier base, prioritize onshoring of critical subsystems where economically viable, and renegotiate long-term agreements with partners capable of absorbing some tariff volatility. At the same time, the tariffs have incentivized vertical integration in specific segments of the value chain, particularly for companies seeking to secure access to high-quality drive coils, gradient amplifiers, and tracer formulation materials. These strategic moves are coupled with cost modeling that factors in potential duty fluctuations, logistics lead times, and inventory positioning to sustain development timelines.

Beyond procurement, regulatory and clinical trial planning is being adapted to account for potential delays in component availability and increased unit costs for prototype and clinical systems. Organizations pursuing accelerated translation are assessing manufacturing strategies that balance domestic production, contract manufacturing in tariff-favorable jurisdictions, and strategic inventory buffers. For purchasers and health systems, procurement decisions now weigh not only device capabilities but also demonstrated supply continuity and long-term serviceability. Ultimately, while tariffs introduce short- to medium-term headwinds to cost structures, they are also prompting strategic supply-chain redesigns that can yield greater control over quality and delivery reliability across the device lifecycle.

In-depth segmentation analysis revealing how product type, application, distribution channels, and end-user dynamics influence device strategy and adoption

A nuanced understanding of segmentation clarifies the diverse pathways through which magnetic particle imaging can scale and where value accrues across different user needs. Based on product type, the market bifurcates into clinical and preclinical systems. Clinical offerings can be further differentiated by organ-specific designs that target localized, high-resolution applications and by whole-body systems that aim to broaden indication sets and institutional adoption. Preclinical platforms break down into large animal systems that bridge translational studies and small animal systems optimized for high-throughput laboratory research, each addressing distinct experimental and validation requirements.

Application-based segmentation highlights how clinical diagnosis and preclinical research drive device and tracer requirements differently. Clinical diagnostic use cases include cardiovascular imaging that demands rapid temporal resolution and vascular specificity, as well as neurological imaging where localized tracer delivery and sensitivity to small-volume distribution patterns are paramount. Preclinical research applications emphasize cardiovascular research workflows that probe perfusion and device-tissue interactions and oncology studies where tracer behavior is monitored for tumor imaging and metastasis detection. Within oncology, capabilities that facilitate metastasis detection and high-contrast tumor imaging are especially valued for translational research and targeted therapeutic development.

Distribution channel segmentation informs go-to-market and support models, with direct sales channels encompassing field-based engagement and digital sales pathways tailored to complex capital equipment. Field sales enable onsite demonstration, clinical workflow integration assistance, and relationship-driven procurement, while online sales support streamlined procurement for standardized or lower-complexity platforms. Distributor networks include OEM partnerships that embed MPI capabilities within broader imaging suites and third-party distributors who extend geographic reach and localized service capabilities. End-user segmentation delineates hospitals and research institutes as primary customers. Hospitals require device designs compatible with private clinic workflows and public hospital procurement and service standards, whereas research institutes include academic and government laboratories that prioritize reproducibility, modularity, and research-focused support packages.

Taken together, these segmentation perspectives shape product design, regulatory planning, and commercialization strategies. They also influence the types of evidence and service models purchasers will expect, from longitudinal clinical studies for organ-specific clinical devices to flexible research agreements and reagent supply models for preclinical systems. Therefore, a coherent product and market approach must align technical specifications, distribution choices, and support offerings with the distinct expectations of each segment.

Regional dynamics and cross-border collaboration that determine regulatory routes, clinical validation hubs, and localized manufacturing strategies for MPI adoption

Geographic dynamics play a pivotal role in the adoption trajectory and commercial strategy for magnetic particle imaging technologies, with regional ecosystems shaping regulatory pathways, clinical engagement, and supply chain configurations. In the Americas, clinical research hubs and advanced translational centers drive early clinical feasibility studies, complemented by a concentration of device innovators and academic medical centers that can accelerate multidisciplinary validation. This environment supports iterative device refinement and fosters partnerships that bridge industry and clinical investigators.

In Europe, Middle East & Africa, regulatory harmonization initiatives and strong translational research networks contribute to structured clinical evaluation pathways. Regional centers of excellence, often affiliated with major universities and public research institutes, are pivotal for demonstrating modality-specific advantages in targeted indications. Market access strategies in these jurisdictions emphasize robust clinical evidence and alignment with regional reimbursement mechanisms. In the Asia-Pacific region, rapid investments in research infrastructure and a growing appetite for advanced imaging technologies are driving significant interest in both preclinical and clinical MPI applications. Local manufacturers and research consortia are active in developing tracer chemistry, scanner designs adapted to regional clinical workflows, and localized service ecosystems to support deployment at scale.

Across all regions, cross-border collaboration and multi-center studies are increasingly common, enabling comparative validation and standardization. Nonetheless, regional differences in regulatory expectations, procurement practices, and clinical priorities necessitate tailored engagement plans. For device developers and suppliers, regional strategy should account for the relative strength of research communities, pathways for regulatory clearance or approval, and the maturity of domestic manufacturing and service capabilities to ensure sustainable market entry and expansion.

Mapping the competitive ecosystem to highlight how hardware innovators, tracer specialists, and strategic partners combine to drive MPI commercialization

The company landscape for magnetic particle imaging encompasses established imaging firms, specialized startups focused exclusively on MPI hardware or tracer chemistry, and contract manufacturers that enable scalable production. Established imaging suppliers contribute systems engineering expertise, clinical workflow integration capabilities, and established commercial channels that can accelerate clinical translation through bundled solutions and existing customer relationships. In contrast, startups are frequently the source of rapid innovation in coil design, low-noise electronics, and nanoparticle engineering, and they often collaborate with academic groups to validate novel approaches in controlled preclinical settings.

Strategic partnerships are a recurring theme among industry participants, enabling complementary capabilities to be combined into more compelling propositions. For example, hardware-focused companies commonly partner with tracer developers to optimize signal characteristics and with algorithm providers to enhance reconstruction and quantitative analysis. Contract manufacturers and service partners play a critical role in scaling production, ensuring traceability and quality control for contrast agents, and supporting aftermarket service contracts that are essential for clinical adopters. Investors and strategic acquirers are monitoring proof-of-concept clinical studies and regulatory milestones as signals for downstream consolidation opportunities.

Competitive dynamics are shaped by technical differentiation, intellectual property around nanoparticle formulations and scanner components, and the ability to demonstrate reproducible clinical or preclinical results. As clinical evidence accumulates, collaboration opportunities with larger medical device companies or diagnostic imaging networks are likely to increase, presenting pathways for accelerated commercialization and broader market access. For industry observers and potential partners, evaluating the capability mix-ranging from hardware design and manufacturing to tracer chemistry and clinical trial execution-is central to forming effective alliances and investment decisions.

Actionable strategic steps for developers and stakeholders to accelerate clinical validation, secure supply chains, and optimize go-to-market execution for MPI

Industry leaders can accelerate translation and adoption of magnetic particle imaging by prioritizing a set of coordinated actions that align technical development with clinical needs and commercial realities. First, invest in tracer-device co-development programs to ensure that nanoparticle formulations and scanner parameters are optimized in tandem; this reduces iteration cycles and strengthens the clinical case for adoption. Second, structure clinical validation pathways that begin with organ-specific feasibility studies and progress to broader clinical implementations, thereby managing evidence risk while expanding potential indications. These phased approaches support clearer reimbursement dialogues and enable targeted demonstration of clinical utility.

Third, build resilient supply chains that combine domestic production capabilities for critical subsystems with diversified international partnerships for components where onshoring is not feasible. This approach mitigates exposure to tariff volatility and logistics disruptions while preserving cost competitiveness. Fourth, create flexible distribution and service models that reflect segmentation realities: field-based clinical engagement for organ-specific devices, and scalable service architectures for preclinical systems used across academic and government laboratories. Finally, engage early with regulatory bodies and reimbursement stakeholders to clarify evidence requirements and to design studies that address decision-maker priorities. By implementing these actions, organizations can reduce commercialization friction, enhance stakeholder confidence, and position their offerings for accelerated adoption in both research and clinical settings.

Comprehensive mixed-method research approach combining stakeholder interviews, technical validation, and systematic secondary analysis to ensure robust insights

The research methodology underpinning this report integrates primary qualitative engagement with quantitative triangulation from technical literature and regulatory documentation. Primary research comprised structured interviews with device engineers, tracer scientists, clinical investigators, procurement leaders at hospitals and research institutes, and distribution partners to capture first-hand perspectives on technical requirements, adoption barriers, and service expectations. These interviews were complemented by technical validation exercises that reviewed peer-reviewed publications, preclinical study protocols, and regulatory guidance documents relevant to contrast agents and imaging devices.

Secondary analysis drew on a systematic review of scientific literature, patent filings, conference proceedings, and public regulatory submissions to characterize technological trajectories in nanoparticle formulation, coil and drive architectures, and reconstruction algorithm advances. Where possible, insights were cross-referenced across multiple sources to validate trends and to identify consensus or divergence among stakeholders. The methodology also incorporated scenario planning to assess the implications of supply chain disruptions, policy shifts, and differential regional regulatory timelines. Throughout, data integrity was maintained via source attribution and methodological transparency, and uncertainty was explicitly acknowledged where evidence was emergent or where competitive information remained confidential.

A strategic conclusion on how coordinated technical, regulatory, and commercial execution can convert magnetic particle imaging's potential into sustained clinical and research impact

Magnetic particle imaging stands at a pivotal juncture where demonstrated technical advantages and growing clinical interest converge with practical challenges related to scaling, regulatory alignment, and supply-chain optimization. The modality's intrinsic specificity to tracer signals and its potential for real-time quantitative imaging provide clear value propositions for targeted clinical applications and for translational research that bridges lab and patient studies. However, the pace and shape of adoption will be determined by how effectively developers address integration with existing workflows, evidence generation for specific indications, and the operational requirements of health systems and research customers.

Forward-looking organizations will be those that integrate tracer and device development, pursue strategic partnerships to de-risk supply and manufacturing, and design regulatory and clinical programs that progressively expand clinical credibility while managing resource commitments. Regional strategies should be informed by local regulatory landscapes and research capabilities, and distribution models must align with the expectations of hospitals and research institutions. With coordinated execution across these domains, magnetic particle imaging can move from promising technological concept to a reliable clinical and research tool that complements existing modalities and opens new avenues for precision diagnostics and therapeutic monitoring.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Magnetic Particle Imaging Device Market, by Product Type

  • 8.1. Clinical
    • 8.1.1. Organ Specific
    • 8.1.2. Whole Body
  • 8.2. Preclinical
    • 8.2.1. Large Animal
    • 8.2.2. Small Animal

9. Magnetic Particle Imaging Device Market, by Application

  • 9.1. Clinical Diagnosis
    • 9.1.1. Cardiovascular Imaging
    • 9.1.2. Neurological Imaging
  • 9.2. Preclinical Research
    • 9.2.1. Cardiovascular Research
    • 9.2.2. Oncology
      • 9.2.2.1. Metastasis Detection
      • 9.2.2.2. Tumor Imaging

10. Magnetic Particle Imaging Device Market, by Distribution Channel

  • 10.1. Direct Sales
    • 10.1.1. Field Sales
    • 10.1.2. Online Sales
  • 10.2. Distributors
    • 10.2.1. OEM Partners
    • 10.2.2. Third Party

11. Magnetic Particle Imaging Device Market, by End User

  • 11.1. Hospitals
    • 11.1.1. Private Clinics
    • 11.1.2. Public Hospitals
  • 11.2. Research Institutes
    • 11.2.1. Academic
    • 11.2.2. Government

12. Magnetic Particle Imaging Device Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Magnetic Particle Imaging Device Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Magnetic Particle Imaging Device Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. United States Magnetic Particle Imaging Device Market

16. China Magnetic Particle Imaging Device Market

17. Competitive Landscape

  • 17.1. Market Concentration Analysis, 2025
    • 17.1.1. Concentration Ratio (CR)
    • 17.1.2. Herfindahl Hirschman Index (HHI)
  • 17.2. Recent Developments & Impact Analysis, 2025
  • 17.3. Product Portfolio Analysis, 2025
  • 17.4. Benchmarking Analysis, 2025
  • 17.5. Aspect Imaging Ltd.
  • 17.6. Bayer AG
  • 17.7. BMG LABTECH GmbH
  • 17.8. Bruker BioSpin GmbH
  • 17.9. Danfoss A/S
  • 17.10. I'rom Pharmaceutical Co., Ltd.
  • 17.11. Koninklijke Philips N.V.
  • 17.12. Magnetic Insight, Inc.
  • 17.13. MILabs B.V.
  • 17.14. Mitsubishi Electric
  • 17.15. Siemens Healthineers AG
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제