시장보고서
상품코드
1916879

일회용 수액백 시장 : 재료별, 제품 유형별, 용량별, 최종사용자별, 용도별 - 세계 예측(2026-2032년)

Disposable Infusion Bag Market by Material, Product Type, Capacity, End User, Application - Global Forecast 2026-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 196 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

일회용 수액백 시장은 2025년에 33억 4,000만 달러로 평가되었습니다. 2026년에는 35억 8,000만 달러로 성장하고, CAGR 7.84%로 성장을 지속하여 2032년까지 56억 7,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2025년 33억 4,000만 달러
추정 연도 : 2026년 35억 8,000만 달러
예측 연도 : 2032년 56억 7,000만 달러
CAGR(%) 7.84%

의료 제공에 있어 임상적 필요성, 재료 선택, 장비 구성, 운영상의 중요성을 강조한 일회용 수액백의 명확한 소개

일회용 수액백은 임상적, 물류적, 규제적 요구사항을 충족시키기 위해 일회용 안전성과 첨단 설계를 결합하여 현대의 정맥 내 치료에 필수적인 장치로 자리 잡았습니다. 최근 몇 년 동안 감염 관리, 교차 오염 위험 감소, 추적 가능한 공급망의 필요성과 같은 임상적 우선순위가 고분자 과학 및 제조 기술의 발전과 결합하여 무균 및 즉시 사용 가능한 주입 시스템을 구현할 수 있게 되었습니다. 그 결과, 임상의와 조달 담당자는 취급 작업을 최소화하고 투여를 간소화하며 수혈과 비경구 영양에서 화학 요법 및 백신 접종 프로그램에 이르기까지 다양한 치료 용도를 지원하는 장비를 우선적으로 채택하고 있습니다.

일회용 수액백의 혁신, 재료 채택, 임상 워크플로우, 지속가능성 트렌드를 재구성하는 주요 구조적 변화에 대한 종합적 개요

일회용 수액백 시장 환경은 기술, 규제, 의료 제공 형태의 변화로 인해 제품 설계 및 조달 행동을 재구성하는 변화의 시기를 맞이하고 있습니다. 재료 측면에서는 기존 가소제에서 대체 폴리머 시스템으로의 전환이 두드러지며, 필요한 기계적 특성을 유지하면서 문제가 되는 첨가제에 대한 환자 노출 위험을 줄입니다. 이러한 전환은 우수한 내화학성과 멸균 호환성을 갖춘 폴리올레핀 및 에틸렌 비닐 아세테이트 수지 배합을 광범위하게 채택함으로써 보완되었습니다. 동시에 제품 구조도 진화하고 있습니다. 멀티 챔버 구조는 온디맨드 컴파트먼트와 보다 안전한 혼합 워크플로우를 가능하게 하며, 미리 채워진 단일 챔버 옵션은 베드사이드 투약 속도를 높이고 조제 오류를 줄여줍니다.

2025년 미국 관세 조치가 조달, 생산 전략, 공급업체 협상, 임상 공급 연속성에 미치는 파급 효과 분석

2025년 시행된 관세 조치는 일회용 수액백 생태계 전체에 새로운 상업적, 운영적 고려사항을 가져왔으며, 제조업체, 유통업체, 의료시스템이 조달 및 비용 관리 전략을 재평가하도록 유도하고 있습니다. 수입에 의존하는 부품 및 완제품은 착륙 비용의 상승을 경험했고, 그 결과 조달팀은 공급의 연속성과 예측 가능한 가격 책정을 보장하기 위해 대체 공급업체, 니어쇼어링 옵션, 장기적인 공급업체 계약을 모색해야 했습니다. 이러한 움직임은 무역 정책의 변동성에 대한 노출을 줄이기 위한 수직적 통합과 지역적 제조 역량 확대에 대한 논의를 가속화했습니다.

최종 사용자, 재료군, 제품 아키텍처, 용량 범위, 치료 용도를 연결하는 정교한 세분화 분석을 통한 전략 수립

상세한 세분화 프레임워크를 통해 임상 이용 사례, 재료 과학, 제품 설계, 용량 선택, 치료 용도가 어떻게 교차하여 조달 및 개발 결정을 내리는지 확인할 수 있습니다. 최종 사용자를 평가할 때, 임상 환경에는 다음과 같은 시설이 포함됩니다. 휴대성과 사용 편의성이 최우선인 외래진료센터, 일반병동, 중환자실, 외래약국(각각 다른 취급 및 투약 요구사항이 있는 병원, 틈새치료에 특화된 구성이 필요한 전문클리닉. 소재 세분화에서는 유연성과 투명성을 겸비한 에틸렌비닐 아세테이트 수지, 인성과 가공성의 균형이 다른 공중합체 및 호모폴리머를 포함한 폴리올레핀계, 생체적합성 및 규제적 선호도를 고려하는 구매자들이 기존 용도와 새로운 DEHP 프리 대체품이 공존하는 PVC의 선택이 강조되고 있습니다.

지역 분석은 지리적 규제 프레임워크, 제조 능력, 의료 서비스 제공 모델이 일회용 수액백 채택에 미치는 영향을 밝힙니다.

지역별 동향은 북미, 남미, 유럽, 중동 및 아프리카, 아시아태평양 등 주요 지역의 제품 선호도, 규제 요건, 공급망 전략에 실질적인 영향을 미칩니다. 북미와 남미에서는 조달의 중점을 확장성, 재택 및 외래 수액 서비스 지원, 지역 안전 기준 및 표시 기준 준수에 두는 경우가 많으며, 공급업체에게 효율적인 유통망과 지역 밀착형 기술 지원 제공이 요구됩니다. 유럽, 중동 및 아프리카에서는 특정 가소제에 대한 규제와 일부 지역의 환경 규제 강화로 인해 구매자는 DEHP가 없는 제품 및 보다 지속 가능한 재료를 선택해야 하는 등 다양한 규제 환경이 존재합니다. 한편, 여러 시장에서의 수입의 복잡성은 지역 내 제조 파트너십의 가치를 높이고 있습니다.

수액백 분야의 리더십, 기술 차별화, 공급망 민첩성, 규제 대응 준비의 중요성에 대한 주요 기업 동향 및 경쟁사별 인사이트를 통해 수액백 부문의 리더십 형성, 기술 차별화, 공급망 민첩성, 규제 대응 준비의 중요성에 대한 통찰력 제공

일회용 수액백 시장의 경쟁 환경에서는 고분자 과학 기술력과 엄격한 품질 관리 시스템, 적응력 높은 생산기지를 갖춘 기업이 우위를 점하고 있습니다. 주요 공급업체들은 다양한 임상 워크플로우를 위한 다중 챔버 구성, 프리필드 단일 챔버 유닛 등 맞춤형 제품 설계와 검증된 멸균 공정 및 다양한 재료 옵션을 제공함으로써 차별화를 꾀하고 있습니다. 위탁생산 업체는 신규 진출기업 및 틈새 시장 제품 개발자들에게 스케일업 전문성, 규제 관련 문서 지원, 제조 유연성을 제공하여 혁신적 설계의 임상 도입 시간을 단축하는 데 매우 중요한 역할을 합니다.

제조업체와 의료 조달팀이 자재 전환, 조달 리스크, 제품 차별화를 효과적으로 관리할 수 있는 실용적인 전략 제안

업계 리더은 제품 개발, 공급망 탄력성, 상업적 참여를 진화하는 임상 및 규제적 기대에 부합하는 적극적인 전략을 채택해야 합니다. 첫째, 기존 가소제의 대체품 우선순위를 정하고, 치료용 유체 및 멸균 방법과의 적합성을 평가한 폴리올레핀 및 에틸렌 아세테이트 비닐(EVA) 옵션을 포함한 재료 로드맵을 수립하고, 엄격한 추출물 및 용출물 검사와 임상 검증을 수반해야 합니다. 다음으로, 지역별 생산 능력과 전략적 공급업체 관계를 결합하여 제조 및 조달을 다양화함으로써 무역 정책 변화에 대한 노출을 줄이고, 집중 치료 환경에서 리드 타임의 신뢰성을 향상시켜야 합니다.

본 조사의 투명한 조사 방법은 임상의와 조달 담당자를 대상으로 한 1차 조사와 재료, 규제, 공급망 동향에 대한 2차 검증을 결합하여 이루어졌습니다.

본 보고서를 뒷받침하는 조사 방법은 1차 정성적 조사와 엄격한 2차 검증을 통합하여 실천 가능한 임상의사 중심의 연구 결과를 도출합니다. 1차 조사에서는 중환자실, 외래 약국, 외래 투약 서비스, 전문 클리닉의 임상의를 대상으로 구조화된 인터뷰와 워크샵을 실시하였습니다. 또한 조달 책임자 및 제조 경영진과의 대화를 통해 업무 우선순위와 공급망 제약 사항을 파악했습니다. 이러한 인터뷰는 현장 방문 및 관찰 연구를 통해 보완되었으며, 실제 환경에서 의료기기의 취급, 표시 및 투약 시스템과의 호환성을 평가했습니다.

임상 안전성, 재료 혁신, 규제 압력, 공급망 탄력성이 상호 작용하여 이 부문을 형성하고 있다는 점을 강조하는 요약

일회용 수액백 부문은 임상적 안전성, 재료 혁신, 공급망 전략의 교차점에 위치하여 제조업체와 의료 서비스 제공업체 모두에게 기회와 책임을 창출하고 있습니다. 고분자 과학의 발전, 제품 구조의 진화, 의료 제공 모델의 변화는 취급 위험 감소, 환자 안전성 향상, 광범위한 치료 응용을 가능하게 하는 장치 개발을 지원하고 있습니다. 동시에 규제 당국의 모니터링 강화와 관세 등의 조치로 인해 공급망 복원력, 재료의 투명성, 지역적 제조 능력의 중요성이 커지고 있습니다.

자주 묻는 질문

  • 일회용 수액백 시장 규모는 어떻게 예측되나요?
  • 일회용 수액백의 주요 임상적 필요성은 무엇인가요?
  • 일회용 수액백 시장에서의 주요 재료 변화는 무엇인가요?
  • 2025년 미국의 관세 조치가 일회용 수액백 시장에 미치는 영향은 무엇인가요?
  • 일회용 수액백 시장의 주요 기업은 어디인가요?

목차

제1장 서문

제2장 조사 방법

  • 조사 디자인
  • 조사 프레임워크
  • 시장 규모 예측
  • 데이터트라이안규레이션
  • 조사 결과
  • 조사 전제
  • 조사 제약

제3장 주요 요약

  • 최고경영진의 관점
  • 시장 규모와 성장 동향
  • 시장 점유율 분석, 2025년
  • FPNV 포지셔닝 매트릭스, 2025년
  • 새로운 매출 기회
  • 차세대 비즈니스 모델
  • 산업 로드맵

제4장 시장 개요

  • 산업 에코시스템과 밸류체인 분석
  • Porter의 Five Forces 분석
  • PESTEL 분석
  • 시장 전망
  • GTM 전략

제5장 시장 인사이트

  • 소비자 인사이트와 최종사용자 시점
  • 소비자 경험 벤치마킹
  • 기회 매핑
  • 유통 채널 분석
  • 가격 동향 분석
  • 규제 준수와 표준 프레임워크
  • ESG와 지속가능성 분석
  • 파괴적 변화와 리스크 시나리오
  • ROI와 CBA

제6장 미국 관세의 누적 영향, 2025년

제7장 AI의 누적 영향, 2025년

제8장 일회용 수액백 시장 : 재료별

  • 에틸렌초산비닐 공중합체
  • 폴리올레핀
    • 공중합체
    • 호모폴리머
  • PVC
    • DEHP 함유
    • DEHP 프리

제9장 일회용 수액백 시장 : 제품 유형별

  • 멀티 챔버
    • 4실식
    • 미무로식
    • 2실식
  • 싱글 챔버
    • 비프리필드
    • 프리필드

제10장 일회용 수액백 시장 : 용량별

  • 500-1,000ml
    • 500-750ml
    • 750-1,000ml
  • 500 ml이하
    • 0-250ml
    • 250-500ml
  • 1,000ml 이상
    • 1,000-1,500ml
    • 1,500ml 이상

제11장 일회용 수액백 시장 : 최종사용자별

  • 외래 진료 센터
  • 병원
    • 일반 병동
    • 집중 치료실
    • 외래 약국
  • 전문 클리닉

제12장 일회용 수액백 시장 : 용도별

  • 수혈
    • 혈장
    • 혈소판
    • 적혈구
  • 약물전달
    • 진통제
    • 항생제
    • 화학요법
    • 백신
  • 비경구 영양
    • 말초 정맥 영양
    • 완전 정맥 영양

제13장 일회용 수액백 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 일회용 수액백 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 일회용 수액백 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 미국의 일회용 수액백 시장

제17장 중국의 일회용 수액백 시장

제18장 경쟁 구도

  • 시장 집중도 분석, 2025년
    • 집중 비율(CR)
    • 허쉬만 허핀달 지수(HHI)
  • 최근 동향과 영향 분석, 2025년
  • 제품 포트폴리오 분석, 2025년
  • 벤치마킹 분석, 2025년
  • Alfa Laboratories
  • APG Europe
  • B. Braun SE
  • Baxter International Inc.
  • Becton, Dickinson and Company
  • Biometrix Corporation
  • CellBios Healthcare & Lifesciences Pvt. Ltd.
  • Fairmont Medica
  • Fresenius Kabi AG
  • Hospira by Pfizer Inc.
  • ICU Medical, Inc.
  • Kraton Corporation
  • LyondellBasell Industries Holdings B.V.
  • Medicopack A/S
  • Mitra Industries Private Limited
  • Nipro Corporation
  • Otsuka Pharmaceutical Co., Ltd.
  • Poly Medicure Limited
  • Polycine GmbH
  • Qosina Corporation
  • RAUMEDIC AG
  • Shandong Weigao Group Medical Polymer Co., Ltd.
  • Terumo Corporation
LSH

The Disposable Infusion Bag Market was valued at USD 3.34 billion in 2025 and is projected to grow to USD 3.58 billion in 2026, with a CAGR of 7.84%, reaching USD 5.67 billion by 2032.

KEY MARKET STATISTICS
Base Year [2025] USD 3.34 billion
Estimated Year [2026] USD 3.58 billion
Forecast Year [2032] USD 5.67 billion
CAGR (%) 7.84%

Clear introduction to disposable infusion bags emphasizing clinical imperatives, material choices, device configurations and operational importance for healthcare delivery

The disposable infusion bag has become an essential device within modern intravenous therapy, combining single-use safety with increasing design sophistication to meet clinical, logistical, and regulatory demands. Over recent years clinical priorities such as infection control, reduction of cross-contamination risk, and the need for traceable supply chains have converged with advances in polymer science and manufacturing that enable sterile, ready-to-use fluid delivery systems. As a result, clinicians and procurement leaders are prioritizing devices that minimize handling, simplify administration, and support a variety of therapeutic applications from blood transfusion and parenteral nutrition to chemotherapy and vaccination programs.

Operationally, disposable infusion bags reduce the complexity of reprocessing and lower the risk associated with reusable containers, which is particularly salient in high-acuity settings such as intensive care units. Concurrently, manufacturers are responding with a spectrum of product configurations, from single-chamber prefilled systems optimized for immediate clinical use to multi-chamber assemblies that enable complex compounding at the point of care. Material selection and biocompatibility considerations also underpin product choice, with decisions balancing flexibility, clarity, chemical resistance, and potential leachables. Taken together, these dynamics position the disposable infusion bag as a focal point for clinical efficiency, patient safety, and supply chain resilience across care settings.

Comprehensive overview of the major structural shifts reshaping disposable infusion bag innovations, materials adoption, clinical workflows and sustainability trends

The disposable infusion bag landscape is undergoing transformative shifts driven by technological, regulatory, and care-delivery changes that are reshaping product design and procurement behaviors. On the materials front, there is a notable migration away from legacy plasticizers toward alternative polymer systems that reduce potential patient exposure to problematic additives while preserving necessary mechanical properties. This transition is complemented by the broader adoption of polyolefin and ethylene-vinyl acetate formulations that offer favorable chemical resistance and sterilization compatibility. Simultaneously, product architecture is evolving: multi-chamber constructs enable on-demand compartmentalization and safer admixture workflows, while prefilled single-chamber options accelerate bedside administration and reduce compounding errors.

Care delivery models are also changing, with greater emphasis on ambulatory and home infusion services that demand compact, user-friendly packaging and simplified administration protocols. Digital enablers such as serialized labeling, RFID tags, and connectivity for inventory management are beginning to integrate with device supply chains to support traceability and reduce waste. Lastly, heightened attention to environmental sustainability is prompting manufacturers and health systems to reassess material sourcing, sterilization footprints, and end-of-life handling, catalyzing investment in recyclable or more readily incinerable materials and in supply chain measures that reduce unnecessary packaging and transport emissions.

Analysis of the ripple effects of 2025 United States tariff measures on sourcing, production strategies, supplier negotiations and clinical supply continuity

Tariff actions implemented in 2025 have introduced a new layer of commercial and operational considerations across the disposable infusion bag ecosystem, prompting manufacturers, distributors, and health systems to reassess sourcing and cost-management strategies. Import-dependent components and finished goods experienced increased landed costs, which in turn pressured procurement teams to explore alternative suppliers, nearshoring options, and longer-term supplier agreements to secure supply continuity and predictable pricing. These dynamics accelerated conversations about vertical integration and the expansion of regional manufacturing capacity to mitigate exposure to trade policy volatility.

Beyond procurement, tariffs influenced material substitution decisions where feasible, encouraging the adoption of locally sourced polymers or alternative formulations that meet clinical and regulatory requirements while reducing tariff exposure. For many manufacturers, tariff-driven cost increases translated into tighter margin management and targeted efficiency programs across production and distribution. Health systems responded by reevaluating contractual terms, extending purchasing timelines, and seeking collaborative cost-sharing arrangements with suppliers. In parallel, regulatory compliance burdens related to material changes required careful validation, documentation, and clinician engagement to ensure clinical performance and safety were sustained during transitions away from tariff-affected sources.

Nuanced segmentation insight connecting end users, material families, product architectures, capacity ranges and therapeutic applications to inform strategy

A detailed segmentation framework reveals how clinical use cases, material science, product design, capacity choices, and therapeutic applications intersect to guide procurement and development decisions. When evaluating end users, clinical settings include ambulatory care centers where portability and ease of use are paramount, hospitals which encompass general wards, intensive care units, and outpatient pharmacies each with distinct handling and administration needs, and specialty clinics that often require tailored configurations for niche therapies. Material segmentation highlights ethylene-vinyl acetate as an option for flexibility and clarity, polyolefin families including copolymer and homopolymer variants that offer differing balances of toughness and processability, and PVC choices where legacy use and newer DEHP-free alternatives coexist as buyers weigh biocompatibility and regulatory preferences.

Product-type differentiation spans multi-chamber systems available in four-, three-, and two-chamber architectures that support complex compounding and staged delivery, alongside single-chamber solutions offered as either non-prefilled containers for on-site preparation or prefilled units for rapid administration. Capacity considerations include ranges below 500 milliliters with subbands for very low volume parenteral use, mid-range volumes between 500 and 1000 milliliters with further distinction for commonly used clinical bandings, and larger formats exceeding 1000 milliliters for high-volume infusion or specialized therapies. Application-focused segmentation captures blood transfusion needs across plasma, platelets, and red blood cells; drug delivery categories encompassing analgesics, antibiotics, chemotherapy agents, and vaccines; and parenteral nutrition requirements divided into peripheral and total parenteral nutrition, each with specific formulation and container compatibility implications. Integrating these dimensions enables more granular supplier selection, regulatory planning, and product roadmaps that align with the distinct functional needs of clinical specialties and care settings.

Regional analysis spotlighting how geographic regulatory frameworks, manufacturing capabilities and care delivery models shape disposable infusion bag adoption

Regional dynamics materially influence product preferences, regulatory expectations, and supply chain strategies across the principal geographies of the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, procurement emphasis often centers on scalability, support for home and ambulatory infusion services, and compliance with regional safety and labeling standards, encouraging suppliers to offer streamlined distribution and localized technical support. Europe, Middle East & Africa presents a heterogeneous regulatory environment where restrictions on certain plasticizers and heightened environmental mandates in parts of the region push buyers toward DEHP-free options and more sustainable material choices, while import complexity in several markets increases the value of regional manufacturing partnerships.

Asia-Pacific is characterized by a robust manufacturing base combined with growing clinical demand, which creates opportunities for suppliers to scale production and introduce cost-effective innovations. However, diverse regulatory regimes and varying levels of clinical infrastructure create a differentiated adoption curve for advanced device formats. Across all regions, supply chain resilience, regulatory harmonization efforts, and growing emphasis on lifecycle environmental performance are shaping procurement criteria and supplier selection, with buyers increasingly seeking partners who can offer compliant, reliable, and locally supported solutions.

Key corporate and competitive insights revealing how technological differentiation, supply chain agility and regulatory readiness shape leadership in the infusion bag sector

Competitive dynamics in the disposable infusion bag space favor organizations that combine technical competence in polymer science with rigorous quality systems and adaptive manufacturing footprints. Leading suppliers differentiate by offering a suite of material options, validated sterilization processes, and customizable product architectures such as multi-chamber configurations and prefilled single-chamber units that address diverse clinical workflows. Contract manufacturing organizations play a pivotal role for new entrants and niche product developers, providing scale-up expertise, regulatory documentation support, and manufacturing flexibility that accelerates time-to-clinic for innovative designs.

Strategic initiatives observed among incumbents include targeted investments in material substitution to address biocompatibility and sustainability goals, expansion of regional production capacity to mitigate trade exposure, and development of digital documentation and traceability tools to meet stricter regulatory and hospital compliance requirements. Partnerships across the supply chain-linking polymer suppliers, component manufacturers, and clinical services providers-are increasingly important to ensure end-to-end validation and continuity. Firms that can demonstrate consistent quality, clear regulatory pathways, and the ability to support clinical customers with training and field service tend to secure longer-term procurement relationships and preferred supplier status in healthcare systems.

Actionable strategic recommendations for manufacturers and healthcare procurement teams to manage materials transitions, sourcing risk and product differentiation effectively

Industry leaders should adopt a proactive strategy that aligns product development, supply chain resilience, and commercial engagement with evolving clinical and regulatory expectations. First, develop a materials roadmap that prioritizes alternatives to legacy plasticizers and assesses polyolefin and ethylene-vinyl acetate options for compatibility with therapeutic fluids and sterilization methods, accompanied by robust extractables and leachables testing and clinical validation. Second, diversify manufacturing and sourcing by combining regional production capacity with strategic supplier relationships to reduce exposure to trade policy shifts and to improve lead-time reliability for critical care settings.

Third, invest in product portfolio differentiation by expanding multi-chamber solutions for complex admixture workflows while scaling prefilled single-chamber options for ambulatory and vaccination programs, ensuring that packaging and labeling designs support rapid adoption and safe handling. Fourth, implement pricing and contracting frameworks that share tariff and supply volatility risks through longer-term agreements, indexation clauses, and collaborative inventory planning with major health system customers. Fifth, embed sustainability metrics into procurement and product development decisions, focusing on material selection, waste reduction, and end-of-life pathways that align with institutional environmental goals. Finally, strengthen clinical engagement and training programs to ensure safe transition to new materials or product architectures, thereby building clinician confidence and accelerating adoption.

Transparent research methodology blending primary clinician and procurement engagement with secondary validation of materials, regulations and supply chain dynamics

The research methodology underpinning this report integrates primary qualitative inquiry with rigorous secondary validation to produce actionable, clinician-centered insights. Primary research included structured interviews and workshops with clinicians across intensive care, outpatient pharmacy, ambulatory infusion services, and specialty clinics, as well as conversations with procurement leaders and manufacturing executives to capture operational priorities and supply chain constraints. These interviews were complemented by site visits and observational studies where device handling, labeling, and compatibility with infusion systems were assessed in real-world settings.

Secondary research drew on peer-reviewed literature, regulatory agency guidance, standards documentation, patent landscapes, and clinical guideline repositories to validate material safety profiles, sterilization approaches, and recommended handling practices. Supply chain mapping and materials analysis provided visibility into component sourcing and potential bottlenecks, while scenario analysis explored the implications of trade policy changes, regulatory shifts, and adoption patterns. Findings were triangulated through expert panels and iterative validation with industry stakeholders to ensure the conclusions are robust, clinically relevant, and operationally actionable.

Concluding synthesis highlighting the interplay of clinical safety, materials innovation, regulatory pressures and supply chain resilience shaping the sector

The disposable infusion bag sector sits at the intersection of clinical safety, materials innovation, and supply chain strategy, creating both opportunities and obligations for manufacturers and healthcare providers. Advances in polymer science, evolving product architectures, and shifting care delivery models support the development of devices that reduce handling risk, improve patient safety, and enable a wider range of therapeutic applications. At the same time, regulatory scrutiny and policy measures such as tariffs have amplified the importance of supply chain resilience, material transparency, and regional manufacturing capacity.

Decision-makers must therefore balance clinical performance with operational continuity and environmental responsibility, adopting materials roadmaps, diversification strategies, and clinician-engagement programs that de-risk transitions and support sustained adoption. By aligning product design with end-user workflows and regional regulatory expectations, stakeholders can deliver safer, more reliable infusion solutions that meet the needs of acute care, ambulatory settings, and expanding home-infusion models. Continued collaboration across manufacturers, clinicians, regulators, and procurement teams will be essential to realize these benefits while managing costs and compliance obligations.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Definition
  • 1.3. Market Segmentation & Coverage
  • 1.4. Years Considered for the Study
  • 1.5. Currency Considered for the Study
  • 1.6. Language Considered for the Study
  • 1.7. Key Stakeholders

2. Research Methodology

  • 2.1. Introduction
  • 2.2. Research Design
    • 2.2.1. Primary Research
    • 2.2.2. Secondary Research
  • 2.3. Research Framework
    • 2.3.1. Qualitative Analysis
    • 2.3.2. Quantitative Analysis
  • 2.4. Market Size Estimation
    • 2.4.1. Top-Down Approach
    • 2.4.2. Bottom-Up Approach
  • 2.5. Data Triangulation
  • 2.6. Research Outcomes
  • 2.7. Research Assumptions
  • 2.8. Research Limitations

3. Executive Summary

  • 3.1. Introduction
  • 3.2. CXO Perspective
  • 3.3. Market Size & Growth Trends
  • 3.4. Market Share Analysis, 2025
  • 3.5. FPNV Positioning Matrix, 2025
  • 3.6. New Revenue Opportunities
  • 3.7. Next-Generation Business Models
  • 3.8. Industry Roadmap

4. Market Overview

  • 4.1. Introduction
  • 4.2. Industry Ecosystem & Value Chain Analysis
    • 4.2.1. Supply-Side Analysis
    • 4.2.2. Demand-Side Analysis
    • 4.2.3. Stakeholder Analysis
  • 4.3. Porter's Five Forces Analysis
  • 4.4. PESTLE Analysis
  • 4.5. Market Outlook
    • 4.5.1. Near-Term Market Outlook (0-2 Years)
    • 4.5.2. Medium-Term Market Outlook (3-5 Years)
    • 4.5.3. Long-Term Market Outlook (5-10 Years)
  • 4.6. Go-to-Market Strategy

5. Market Insights

  • 5.1. Consumer Insights & End-User Perspective
  • 5.2. Consumer Experience Benchmarking
  • 5.3. Opportunity Mapping
  • 5.4. Distribution Channel Analysis
  • 5.5. Pricing Trend Analysis
  • 5.6. Regulatory Compliance & Standards Framework
  • 5.7. ESG & Sustainability Analysis
  • 5.8. Disruption & Risk Scenarios
  • 5.9. Return on Investment & Cost-Benefit Analysis

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Disposable Infusion Bag Market, by Material

  • 8.1. Ethylene-Vinyl Acetate
  • 8.2. Polyolefin
    • 8.2.1. Copolymer
    • 8.2.2. Homopolymer
  • 8.3. Pvc
    • 8.3.1. Dehp Containing
    • 8.3.2. Dehp Free

9. Disposable Infusion Bag Market, by Product Type

  • 9.1. Multi-Chamber
    • 9.1.1. Four Chamber
    • 9.1.2. Three Chamber
    • 9.1.3. Two Chamber
  • 9.2. Single Chamber
    • 9.2.1. Non-Prefilled
    • 9.2.2. Prefilled

10. Disposable Infusion Bag Market, by Capacity

  • 10.1. 500-1000 Ml
    • 10.1.1. 500-750 Ml
    • 10.1.2. 750-1000 Ml
  • 10.2. <500 Ml
    • 10.2.1. 0-250 Ml
    • 10.2.2. 250-500 Ml
  • 10.3. >1000 Ml
    • 10.3.1. 1000-1500 Ml
    • 10.3.2. >1500 Ml

11. Disposable Infusion Bag Market, by End User

  • 11.1. Ambulatory Care Centers
  • 11.2. Hospitals
    • 11.2.1. General Ward
    • 11.2.2. Icu
    • 11.2.3. Outpatient Pharmacy
  • 11.3. Specialty Clinics

12. Disposable Infusion Bag Market, by Application

  • 12.1. Blood Transfusion
    • 12.1.1. Plasma
    • 12.1.2. Platelets
    • 12.1.3. Red Blood Cells
  • 12.2. Drug Delivery
    • 12.2.1. Analgesics
    • 12.2.2. Antibiotics
    • 12.2.3. Chemotherapy
    • 12.2.4. Vaccines
  • 12.3. Parenteral Nutrition
    • 12.3.1. Peripheral Parenteral Nutrition
    • 12.3.2. Total Parenteral Nutrition

13. Disposable Infusion Bag Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Disposable Infusion Bag Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Disposable Infusion Bag Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. United States Disposable Infusion Bag Market

17. China Disposable Infusion Bag Market

18. Competitive Landscape

  • 18.1. Market Concentration Analysis, 2025
    • 18.1.1. Concentration Ratio (CR)
    • 18.1.2. Herfindahl Hirschman Index (HHI)
  • 18.2. Recent Developments & Impact Analysis, 2025
  • 18.3. Product Portfolio Analysis, 2025
  • 18.4. Benchmarking Analysis, 2025
  • 18.5. Alfa Laboratories
  • 18.6. APG Europe
  • 18.7. B. Braun SE
  • 18.8. Baxter International Inc.
  • 18.9. Becton, Dickinson and Company
  • 18.10. Biometrix Corporation
  • 18.11. CellBios Healthcare & Lifesciences Pvt. Ltd.
  • 18.12. Fairmont Medica
  • 18.13. Fresenius Kabi AG
  • 18.14. Hospira by Pfizer Inc.
  • 18.15. ICU Medical, Inc.
  • 18.16. Kraton Corporation
  • 18.17. LyondellBasell Industries Holdings B.V.
  • 18.18. Medicopack A/S
  • 18.19. Mitra Industries Private Limited
  • 18.20. Nipro Corporation
  • 18.21. Otsuka Pharmaceutical Co., Ltd.
  • 18.22. Poly Medicure Limited
  • 18.23. Polycine GmbH
  • 18.24. Qosina Corporation
  • 18.25. RAUMEDIC AG
  • 18.26. Shandong Weigao Group Medical Polymer Co., Ltd.
  • 18.27. Terumo Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제